Topic 8: Control Flow

COS 320

Compiling Techniques

Princeton University
Spring 2018
Prof. David August
The Front End:

1. assumes the presence of an infinite number of registers to hold temporary variables.
2. introduces inefficiencies in the source to IR translation.
3. does a direct translation of programmer’s code.
4. does not create pseudo-assembly tuned to the target architecture.
 - Not scheduled for machines with non-unit latency.
 - Not scheduled for wide-issue machines.
The Back End:

1. Maps infinite number of virtual registers to finite number of real registers \rightarrow *register allocation*

2. Removes inefficiencies introduced by front-end \rightarrow *optimizer*

3. Removes inefficiencies introduced by programmer \rightarrow *optimizer*

4. Adjusts pseudo-assembly composition and order to match target machine \rightarrow *scheduler*

Research and development in back end is growing rapidly.

- EPIC Architectures
- Binary re-optimization
- Runtime optimization
- Optimizations requiring additional hardware support
for i := 0 to 10
do a[i] = x;
 ADDI r1 = r0 + 0

LOOP:
 LOAD r2 = M[FP + a]
 ADDI r3 = r0 + 4
 MUL r4 = r3 * r1
 ADD r5 = r2 + r4
 LOAD r6 = M[FP + x]
 STORE M[r5] = r6
 ADDI r1 = r1 + 1
 BRANCH r1 <= 10, LOOP

Loop invariant code removal...
for i := 0 to 10
 do a[i] = x;

 ADDI r1 = r0 + 0
 LOAD r2 = M[FP + a]
 ADDI r3 = r0 + 4
 LOAD r6 = M[FP + x]

 LOOP:
 MUL r4 = r3 * r1
 ADD r5 = r2 + r4
 STORE M[r5] = r6

 ADDI r1 = r1 + 1
 BRANCH r1 <= 10, LOOP

Uses 6 virtual registers, only have 5 real registers...
Scheduling

1. ADDI r1 = r0 + 0
2. LOAD r2 = M[FP + A]
3. ADDI r3 = r0 + 4
4. LOAD r4 = M[FP + X]

LOOP:
1. MUL r5 = r3 * r1
2. ADD r5 = r2 + r5
3. STORE M[r5] = r4
4. ADDI r1 = r1 + 1
5. BRANCH r1 <= 10, LOOP

Multiply instruction takes 2 cycles...
Analysis

- Control Flow Analysis determines the how instructions are fetched during execution.
- Control Flow Analysis precedes dataflow analysis.
- Dataflow analysis determines how data flows among instructions.
- Dataflow analysis precedes optimization, register allocation, and scheduling.
Control Flow Analysis determines the how instructions are fetched during execution.

- *Control Flow Graph* - graph of instructions with directed edge $I_i \rightarrow I_j$ iff I_j can be executed immediately after I_i.
r1 = 0

LOOP:
 r1 = r1 + 1
 r2 = r1 & 1
 BRANCH r2 == 0, ODD
 r3 = r3 + 1
 JUMP NEXT

ODD:
 r4 = r4 + 1

NEXT:
 BRANCH r1 <= 10, LOOP
Basic Blocks

- *Basic Block* - run of code with single entry and exit.
- Control flow graph of basic blocks more convenient.
- Determine by the following:
 1. Find *leaders*:
 (a) First statement
 (b) Targets of conditional and unconditional branches
 (c) Instructions that follow branches
 2. Basic blocks are leader up to, but not including next leader.
Basic Block Example

\[r1 = 0 \]

LOOP:
- \[r1 = r1 + 1 \]
- \[r2 = r1 \& 1 \]
- **BRANCH** \(r2 == 0, \text{ ODD} \)

- \[r3 = r3 + 1 \]
- **JUMP** NEXT

ODD:
- \[r4 = r4 + 1 \]

NEXT:
- **BRANCH** \(r1 <= 10, \text{ LOOP} \)
Domination Motivation

Constant Propagation:

\[r_1 = 4 \]

\[r_2 = r_1 + 5 \]

\[r_2 = 9 \]
Dominator Analysis

- Assume every Control Flow Graph (CFG) has start node \(s_0 \) with no predecessors.
- Node \(d \) dominates node \(n \) if every path of directed edges from \(s_0 \) to \(n \) must go through \(d \).
- Every node dominates itself.
- Consider:

![Diagram]

- If \(d \) dominates each of the \(p_i \), then \(d \) dominates \(n \).
- If \(d \) dominates \(n \), then \(d \) dominates each of the \(p_i \).
Dominator Analysis

- If d dominates each of the p_i, then d dominates n.
- If d dominates n, then d dominates each of the p_i.
- $\text{Dom}[n] =$ set of nodes that dominate node n.
- $N =$ set of all nodes.
- Computation:
 1. $\text{Dom}[s_0] = \{s_0\}$.
 2. for $n \in N - \{s_0\}$ do $\text{Dom}[n] = N$
 3. while (changes to any $\text{Dom}[n]$ occur) do
 4. for $n \in N - \{s_0\}$ do
 5. $\text{Dom}[n] = \{n\} \cup (\cap_{p \in \text{pred}[n]} \text{Dom}[p])$.
Dominator Analysis Example

<table>
<thead>
<tr>
<th>Node</th>
<th>$Dom[n]$</th>
<th>$Dom[n]$</th>
<th>$IDom[n]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1-12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Immediate Dominator/Dominator Tree

- Immediate dominator used in constructing *dominator tree*.
- Dominator Tree:
 - efficient representation of dominator information
 - used for other types of analysis (e.g. control dependence)
- s_0 is root of dominator tree.
- Each node d dominates only its descendants in tree.
- Every node n ($n \neq s_0$) has exactly one immediate dominator $IDom[n]$.
- $IDom[n] \neq n$
- $IDom[n]$ dominates n
- $IDom[n]$ does not dominate any other dominator of n.
- Last dominator of n on any path from s_0 to n is $IDom[n]$.
Immediate Dominator Example

```
    1
     \
   2
 /\  \
3 4
 \
5 6
 \
8 7
 /\ \
9 11
 \
10 12

Node | Dom[n] | IDom[n]
-----|--------|--------
1    | 1      |        |
2    | 1,2    |        |
3    | 1,2,3  |        |
4    | 1,2,4  |        |
5    | 1,2,5  |        |
6    | 1,2,4,6|        |
7    | 1,2,7  |        |
8    | 1,2,5,8|        |
9    | 1,2,5,8,9|    |
10   | 1,2,5,8,9,10| |
11   | 1,2,7,11|        |
12   | 1,2,12 |        |
```
Post Dominator

- Assume every Control Flow Graph (CFG) has exit node x with no successors.
- Node p post-dominates node n if every path of directed edges from n to x must go through p.
- Every node post-dominates itself.
- Derivation of post-dominator and immediate post-dominator analysis analogous to dominator and immediate dominator analysis.
- Post-dominators will be useful in computing control dependence.
- Control dependence will be useful in many future optimizations.
Loop Optimization

- Large fraction of execution time is spent in loops.
- Effective loop optimization is extremely important.
- First step in loop optimization → find the loops.
- A loop is a set of CFG nodes S such that:
 1. there exists a header node h in S that dominates all nodes in S.
 - there exists a path of directed edges from h to any node in S.
 - h is the only node in S with predecessors not in S.
 2. from any node in S, there exists a path of directed edges to h.
- A loop is a single entry, multiple exit region.
Examples of Loops
Back Edges

- **Back-edge** - flow graph edge from node n to node h such that h dominates n
- Each back-edge has a corresponding *natural loop*.
Natural Loops

- Natural loop of back-edge \(\langle n, h \rangle \):
 - has a loop header \(h \).
 - set of nodes \(X \) such that \(h \) dominates \(x \in X \) and there is a path from \(x \) to \(n \) not containing \(h \).

- A node \(h \) may be header of more than one natural loop.

- Natural loops may be nested.
Loop Optimization

- Compiler should optimize inner loops first.
 - Programs *typically* spend most time in inner loops.
 - Optimizations may be more effective → loop invariant code removal.
- Convenient to merge natural loops with same header.
- These merged loops are not natural loops.
- Not all cycles in CFG are loops of any kind (more later).
Loop Optimization

Loop invariant code motion

- An instruction is loop invariant if it computes the same value in each iteration.
- Invariant code may be hoisted outside the loop.

```
ADDI   r1 = r0 + 0
LOAD   r2 = M[FP + a]
ADDI   r3 = r0 + 4
LOAD   r6 = M[FP + x]

LOOP:
    MUL   r4 = r3 * r1
    ADD   r5 = r2 + r4
    STORE M[r5] = r6

ADDI   r1 = r1 + 1
BRANCH r1 <= 10, LOOP
```
Loop Optimization

- **Induction variable analysis and elimination** - \(i \) is an induction variable if only definitions of \(i \) within loop increment/decrement \(i \) by loop-invariant value.

- **Strength reduction** - replace expensive instructions (like multiply) with cheaper ones (like add).

```plaintext
ADDI    r1 = r0 + 0
LOAD    r2 = M[FP + a]
ADDI    r3 = r0 + 4
LOAD    r6 = M[FP + x]

LOOP:
MUL     r4 = r3 * r1
ADD     r5 = r2 + r4
STORE   M[r5] = r6

ADDI    r1 = r1 + 1
BRANCH  r1 <= 10, LOOP
```
Non-Loop Cycles
Non-Loop Cycles

- Loops are instances of *reducible* flow graphs.
 - Each cycle of nodes has a unique header.
 - During reduction, entire loop becomes a single node.
- Non-Loops are instances of *irreducible* flow graphs.
 - Analysis and optimization is more efficient on reducible flow graphs.
 - Irreducible flow graphs occur rarely in practice.
 - Use of structured constructs (e.g. if-then, if-then-else, while, repeat, for) leads to reducible flow graphs.
 - Use of goto’s *may* lead to irreducible flow graphs.
 - Irreducible flow graphs can be made reducible by *node-splitting*.