Topic 8: Control Flow

COS 320

Compiling Techniques

Princeton University Spring 2018 Prof. David August

The Front End:

- 1. assumes the presence of an infinite number of registers to hold temporary variables.
- 2. introduces inefficiencies in the source to IR translation.
- 3. does a direct translation of programmer's code.
- 4. does not create pseudo-assembly tuned to the target architecture.
 - Not scheduled for machines with non-unit latency.
 - Not scheduled for wide-issue machines.

The Back End:

- 1. Maps infinite number of virtual registers to finite number of real registers \rightarrow register allocation
- 2. Removes inefficiencies introduced by front-end $\rightarrow optimizer$
- 3. Removes inefficiencies introduced by programmer $\rightarrow optimizer$
- 4. Adjusts pseudo-assembly composition and order to match target machine \rightarrow *sched*-*uler*

Research and development in back end is growing rapidly.

- EPIC Architectures
- Binary re-optimization
- Runtime optimization
- Optimizations requiring additional hardware support

Optimization

```
for i := 0 to 10
  do a[i] = x;
  ADDI r1 = r0 + 0
```

LOOP:

LOAD	r2	=	M[F	Ρ	+ a]
ADDI	r3	=	r0	+	4
MUL	r4	=	r3	*	r1
ADD	r5	=	r2	+	r4
LOAD	r6	=	M [F	Ρ	+ x]
STORE	M[r	5]	=	re	5
ADDI	r1	=	r1	+	1
BRANCH	r1	<=	= 10),	LOOP

Loop invariant code removal...

for i := 0 to 10 do a[i] = x;ADDI r1 = r0 + 0LOAD r2 = M[FP + a]ADDI r3 = r0 + 4LOAD r6 = M[FP + x]LOOP: MUL r4 = r3 * r1ADD r5 = r2 + r4STORE M[r5] = r6ADDI r1 = r1 + 1BRANCH r1 <= 10, LOOP

Uses 6 virtual registers, only have 5 real registers...

Scheduling

4

5

6

1	ADDI	r1	=	r0 +	0
2	LOAD	r2	=	M[FP	+ A]
3	ADDI	r3	=	r0 +	4
4	LOAD	r4	=	M[FP	+ X]
	LOOP:				
1	MUL	r5	=	r3 *	r1
2					
3	ADD	r5	=	r2 +	r5

2	LOAD	r2	=	M [I	Ρ	+	A]
3	ADDI	r3	=	r0	+	4	
4	LOAD	r4	=	M [I	₹P	+	X]
	LOOP:						
1	MUL	r5	=	r3	*	r	L
2	ADDI	r1	=	r1	+	1	
3	ADD	r5	=	r2	+	r	5
4	STORE	с] М	c5]	=	r4	1	
5	BRANCH	r1	<=	= 10),	LC	DOP

ADDI r1 = r0 + 0

1

Multiply instruction takes 2 cycles...

STORE M[r5] = r4

ADDI r1 = r1 + 1

BRANCH r1 <= 10, LOOP

- Control Flow Analysis determines the how instructions are fetched during execution.
- Control Flow Analysis precedes dataflow analysis.
- Dataflow analysis determines how data flows among instructions.
- Dataflow analysis precedes optimization, register allocation, and scheduling.

Control Flow Analysis determines the how instructions are *fetched* during execution.

• Control Flow Graph - graph of instructions with directed edge $I_i \rightarrow I_j$ iff I_j can be executed immediately after I_i .

r1 = 0LOOP: r1 = r1 + 1r2 = r1 & 1BRANCH r2 == 0, ODD r3 = r3 + 1JUMP NEXT ODD: r4 = r4 + 1NEXT: BRANCH r1 <= 10, LOOP

- *Basic Block* run of code with single entry and exit.
- Control flow graph of basic blocks more convenient.
- Determine by the following:
 - 1. Find *leaders*:
 - (a) First statement
 - (b) Targets of conditional and unconditional branches
 - (c) Instructions that follow branches
 - 2. Basic blocks are leader up to, but not including next leader.

r1 = 0LOOP: r1 = r1 + 1r2 = r1 & 1BRANCH r2 == 0, ODD r3 = r3 + 1JUMP NEXT ODD: r4 = r4 + 1NEXT: BRANCH r1 <= 10, LOOP

Constant Propagation:

- Assume every Control Flow Graph (CFG) has *start* node s_0 with no predecessors.
- Node d dominates node n if every path of directed edges from s_0 to n must go through d.
- Every node dominates itself.
- Consider:

- If d dominates each of the p_i , then d dominates n.
- If d dominates n, then d dominates each of the p_i .

Dominator Analysis

- If d dominates each of the p_i , then d dominates n.
- If d dominates n, then d dominates each of the p_i .
- Dom[n] = set of nodes that dominate node n.
- N = set of all nodes.
- Computation:
 - 1. $Dom[s_0] = \{s_0\}.$
 - 2. for $n \in N \{s_0\}$ do Dom[n] = N
 - 3. while (changes to any Dom[n] occur) do
 - 4. for $n \in N \{s_0\}$ do
 - 5. $Dom[n] = \{n\} \cup (\bigcap_{p \in pred[n]} Dom[p]).$

Dominator Analysis Example

1	Nada	Dom[n]	$D_{om}[m]$	$ID_{om}[m]$
	node	Dom[n]	Dom[n]	IDom[n]
	1	1		
	2	1-12		
	3	1-12		
3 4	4	1-12		
	5	1-12		
5 6	6	1-12		
8 7	7	1-12		
	8	1-12		
	9	1-12		
9 11	10	1-12		
	11	1-12		
$10 \rightarrow 12$	12	1-12		
		1		1

Immediate Dominator/Dominator Tree

- Immediate dominator used in constructing *dominator tree*.
- Dominator Tree:
 - efficient representation of dominator information
 - used for other types of analysis (e.g. control dependence)
- s_0 is root of dominator tree.
- \bullet Each node d dominates only its descendants in tree.
- Every node $n \ (n \neq s_0)$ has exactly one immediate dominator IDom[n].
- $IDom[n] \neq n$
- IDom[n] dominates n
- IDom[n] does not dominate any other dominator of n.
- Last dominator of n on any path from s_0 to n is IDom[n].

Immediate Dominator Example

Post Dominator

- Assume every Control Flow Graph (CFG) has *exit* node x with no successors.
- Node *p* post-dominates node *n* if every path of directed edges from *n* to *x* must go through *p*.
- Every node post-dominates itself.
- Derivation of post-dominator and immediate post-dominator analysis analogous to dominator and immediate dominator analysis.
- Post-dominators will be useful in computing control dependence.
- Control dependence will be useful in many future optimizations.

Loop Optimization

- Large fraction of execution time is spent in loops.
- Effective loop optimization is extremely important.
- First step in loop optimization \rightarrow find the loops.
- A *loop* is a set of CFG nodes S such that:
 - 1. there exists a *header* node h in S that dominates all nodes in S.
 - there exists a path of directed edges from h to any node in S.
 - -h is the only node in S with predecessors not in S.
 - 2. from any node in S, there exists a path of directed edges to h.
- A loop is a single entry, multiple exit region.

Back Edges

- *Back-edge* flow graph edge from node *n* to node *h* such that *h* dominates *n*
- Each back-edge has a corresponding *natural loop*.

Natural Loops

- Natural loop of back-edge $\langle n, h \rangle$:
 - has a loop header h.
 - set of nodes X such that h dominates $x \in X$ and there is a path from x to n not containing h.
- \bullet A node h may be header of more than one natural loop.
- Natural loops may be nested.

- Compiler should optimize inner loops first.
 - Programs typically spend most time in inner loops.
 - Optimizations may be more effective \rightarrow loop invariant code removal.
- Convenient to merge natural loops with same header.
- These merged loops are not natural loops.
- Not all cycles in CFG are loops of any kind (more later).

Loop Optimization

Loop invariant code motion

- An instruction is loop invariant if it computes the same value in each iteration.
- Invariant code may be hoisted outside the loop.

ADDI	r1	=	r0	+	0
LOAD	r2	=	M [F	P	+ a]
ADDI	r3	=	r0	+	4
LOAD	r6	=	M [F	۶P	+ x]
LOOP:					
MUL	r4	=	r3	*	r1
ADD	r5	=	r2	+	r4
STORE	M[1	:5]	=	re	5
ADDI	r1	=	r1	+	1
BRANCH	r1	<=	= 10),	LOOP

Loop Optimization

- Induction variable analysis and elimination *i* is an induction variable if only definitions of *i* within loop increment/decrement *i* by loop-invariant value.
- Strength reduction replace expensive instructions (like multiply) with cheaper ones (like add).

ADDI	r1	=	r0 +	0	
LOAD	r2	=	M[FP	+	a]
ADDI	r3	=	r0 +	4	
LOAD	r6	=	M[FP	+	x]

LOOP:

MUL	r4	=	r3	*	r1
ADD	r5	=	r2	+	r4
STORE	M[1	:5]	=	re	5

```
ADDI r1 = r1 + 1
BRANCH r1 <= 10, LOOP
```

Non-Loop Cycles

- Loops are instances of *reducible* flow graphs.
 - Each cycle of nodes has a unique header.
 - During reduction, entire loop becomes a single node.
- Non-Loops are instances of *irreducible* flow graphs.
 - Analysis and optimization is more efficient on reducible flow graphs.
 - Irreducible flow graphs occur rarely in practice.
 - * Use of structured constructs (e.g. if-then, if-then-else, while, repeat, for) leads to reducible flow graphs.
 - * Use of goto's may lead to irreducible flow graphs.
 - Irreducible flow graphs can be made reducible by *node-splitting*.

Node Splitting