The Front End

Topic 8: Control Flow

COS 320

Compiling Techniques

Princeton University
Spring 2018
Prof. David August

Stream of Abstract - - Pseudo-
Source Tokens Syntax Tree | Semantic | IR Trees Canon- IR Trees |[nstruction| Assembly
—= Lexer Parser . N .
Analysis icalizer Selection
Target
Back End——
The Front End:

1. assumes the presence of an infinite number of registers to hold temporary variables.
2. introduces mefficiencies in the source to IR translation.

3. does a direct translation of programmer’s code.

4. does not create pseudo-assembly tuned to the target architecture.

e Not scheduled for machines with non-unit latency.

e Not scheduled for wide-issue machines.

The Back End Optimization
The Back End: for i := 0 to 10
do ali] = x;

1. Maps infinite number of virtual registers to finite number of real registers — register

allocation
2. Removes inefficiencies introduced by front-end — optimizer
3. Removes inefficiencies introduced by programmer — optimizer

4. Adjusts pseudo-assembly composition and order to match target machine — sched-
uler

Research and development in back end is growing rapidly.
e EPIC Architectures

e Binary re-optimization

e Runtime optimization

e Optimizations requiring additional hardware support

ADDI rl = r0 + O

LOOP:
LOAD r2 = M[FP + al]
ADDI r3 = r0 + 4
MUL r4 = r3 * ril
ADD r5 = r2 + r4
LOAD ré6 = M[FP + X]
STORE M[r5] = ré6

ADDT rl =rl + 1
BRANCH rl <= 10, LOOP

Loop invariant code removal...



Register Allocation Scheduling

. 1 ADDT rl = r0 + 0
For & := 0 to 10 2  LOAD  r2 M[F; + A] L ADDI - rl =10 + 0
do alil] = x; - 2  LOAD 2 = M[FP + A
3 ADDL - x3 =10 + 4 3 ADDI §3 - ré + Z ]
ADDI  rl = r0 + 0 4 LOAD 14 = M[FP + X] =
LOAD r2 = M[FP + a] 4 LOAD r4 = M[FP + X]
ADDI r3 = 1r0 + 4 ,OOP :
LOAD 16 = M[FP + Xx] L oL E - 13 % 1 LOOP:
) t t r 1 MUL ¥5 = r3 * rl
) 2 ADDT rl = rl + 1
LOOP:: 3 ADD r5 = r2 + 5 *
MUL r4 = r3 * rl 4 STORE M[r5] = r4 3 ADD r5 = r2 + 5
ADD r5 = r2 + r4 5 ADDT 1l = r1 + 1 4 STORE MI[r5] = r4
_ 5 BRANCH rl <= 10, LOOP
STORE  M[r5] = ré 6 BRANCH rl <= 10, LOOP <

ADDI rl =rl + 1

BRANCH rl <= 10, LOOP Multiply instruction takes 2 cycles...

Uses 6 virtual registers, only have 5 real registers...

Analysis Control Flow Analysis

Control Flow Analysis determines the how instructions are ferched during execution.

e Control Flow Graph - graph of instructions with directed edge /; — I; iff I; can be
—=| Optimization Register Allocation Scheduling ——= executed immediately after /;.

Control Flow Analysi Dataflow Analysis

e Control Flow Analysis determines the how instructions are fetched during execution.
e Control Flow Analysis precedes dataflow analysis.
e Dataflow analysis determines how data flows among instructions.

e Dataflow analysis precedes optimization, register allocation, and scheduling.



Control Flow Analysis Example

Basic Blocks

rl =0
LOOP:

rl = rl +
r2 =rl &
BRANCH r2
r3 = r3 +
JUMP NEXT
ODD:

r4d = rd +
NEXT:
BRANCH ri1

1
1
-= 0, ODD
1

<= 10, LOOP

Basic Block Example

e Basic Block - run of code with single entry and exit.
e Control flow graph of basic blocks more convenient.
e Determine by the following:

1. Find leaders:
(a) First statement
(b) Targets of conditional and unconditional branches
(¢) Instructions that follow branches

2. Basic blocks are leader up to, but not including next leader.

Domination Motivation

rl =0
LOOP:
rl =rl + 1
r2 =rl & 1
BRANCH r2 == 0, ODD
r3 = r3 + 1
JUMP NEXT
ODD:
r4d = rd4d + 1
NEXT:
BRANCH rl <= 10, LOOP

Constant Propagation:

=4 l

2=rl+5 l

2=rl+5 2=9

l l



Dominator Analysis

Dominator Analysis

e Assume every Control Flow Graph (CFG) has start node s¢ with no predecessors.

e Node d dominates node n if every path of directed edges from sy to n must go
through d.

e Every node dominates itself.

e Consider:

e If d dominates each of the p;, then d dominates 7.

o If d dominates 7, then d dominates each of the p;.

Dominator Analysis Example

o If d dominates each of the p;, then d dominates 7.
e If d dominates n, then d dominates each of the p;.
e Dom|n| = set of nodes that dominate node 7.
e NV = set of all nodes.
e Computation:

1. Dom|so] = {so}.

2.forn € N — {s9} do Dom[n| = N

3. while (changes to any Dom|n| occur) do

4. forn € N — {so} do

5. Dom[n] = {n} U (ﬁpep,.gd[n:Dom [p]).

Immediate Dominator/Dominator Tree

Node | Dom|n] Dom|n| IDom|n]

1 1

1-12
1-12
1-12

2
“‘_ ‘, 3
e TR 5 | 112
’ |y 6 | 1-12
8

1w

1-12

1-12

9 1-12

2 1 10 | 1-12
i , 11 1-12
o L1 12 | 1-12

e Immediate dominator used in constructing dominator tree.
e Dominator Tree:

— efficient representation of dominator information

—used for other types of analysis (e.g. control dependence)
e 5 1s root of dominator tree.
e Each node d dominates only its descendants in tree.
e Every node n (n # sp) has exactly one immediate dominator [ Dom|n|.
e IDomln| # n
e [ Dom|n| dominates n
e [ Dom|n| does not dominate any other dominator of 7.

e Last dominator of n on any path from s to n 1s I Dom/|n].



Immediate Dominator Example

Post Dominator

: Node| Dom|n| I Dom|n|
: Vo2 1,2
’ M 4 12.4
— ~1 3 1.2.5
| 6 1,2.4.6
LTS o 7 1.2,7
| 8 1,2,5.8
. 9 1,2.5.8.9
N 11 10 |1.2.5.8.9.10
I # 11 1.2.7.11
\ 0 I 12 1.2.12

Loop Optimization

e Assume every Control Flow Graph (CFG) has exif node = with no successors.

e Node p post-dominates node n if every path of directed edges from n to x must go
through p.

e Every node post-dominates itself.

e Derivation of post-dominator and immediate post-dominator analysis analogous to
dominator and immediate dominator analysis.

e Post-dominators will be useful in computing control dependence.

e Control dependence will be useful in many future optimizations.

Examples of Loops

e Large fraction of execution time 1s spent in loops.
e Effective loop optimization is extremely important.
e First step in loop optimization — find the loops.

e A loop 1s a set of CFG nodes S such that:

1. there exists a header node h in S that dominates all nodes in S.

— there exists a path of directed edges from / to any node in S.

— h 1s the only node in S with predecessors not in S.
2. from any node in S, there exists a path of directed edges to /.

e A loop 1s a single entry, multiple exit region.



Back Edges

Natural Loops

- ;'>" - / e Back-edge - flow graph edge from node n to node / such
5 6

that /» dominates n

e Each back-edge has a corresponding natural loop.

Loop Optimization

o Natural loop of back-edge (n, h):
— has a loop header h.

—set of nodes X such that 4 dominates = € X and there
1s a path from x to n not containing /.

e A node h may be header of more than one natural loop.

e Natural loops may be nested.

Loop Optimization

e Compiler should optimize inner loops first.

— Programs typically spend most time in inner loops.

— Optimizations may be more effective — loop invariant code removal.
e Convenient to merge natural loops with same header.
e These merged loops are not natural loops.

e Not all cycles in CFG are loops of any kind (more later).

Loop invariant code motion
e An instruction is loop invariant if it computes the same value in each iteration.

e Invariant code may be hoisted outside the loop.

ADDIT rl =r0 + 0

LOAD r2 = M[FP + a]

ADDIT r3 = r0 + 4

LOAD r6 = M[FP + x]
LOOP :

MUL r4d = r3 * rl

ADD r5 = r2 + r4

STORE M[xr5] = 16

ADDI rl =rl + 1
BRANCH rl <= 10, LOOP



Loop Optimization Non-Loop Cycles

e Induction variable analysis and elimination - / is an induction variable if only
definitions of ¢ within loop increment/decrement 7 by loop-invariant value.

e Strength reduction - replace expensive instructions (like multiply) with cheaper
ones (like add).

ADDT rl = xr0 + O

LOAD r2 = M[FP + a]

ADDI r3 = xr0 + 4

LOAD r6 = M[FP + x]
LOOP:

MUL r4 = r3 * ril

ADD r5 = r2 + r4

STORE MI[r5] = r6

ADDI rl =rl + 1
BRANCH rl <= 10, LOOP

Non-Loop Cycles Node Splitting

e Loops are instances of reducible flow graphs.

— Each cycle of nodes has a unique header.
— During reduction, entire loop becomes a single node.

e Non-Loops are instances of irreducible flow graphs.
— Analysis and optimization is more efficient on reducible flow graphs.
— Irreducible flow graphs occur rarely in practice.

x Use of structured constructs (e.g. 1f-then, if-then-else, while, repeat, for) leads
to reducible flow graphs.
x Use of goto’s may lead to irreducible flow graphs.

— Irreducible flow graphs can be made reducible by node-splitting.



