Topic 7:
Intermediate Representation and
Instruction Selection

COS 320

Compiling Techniques

Princeton University
Spring 2018

Prof. David August

Intermediate Representations

Stream of Abstract

Source Tokens Syntax Tree | Semantic R Target
—= Lexer Parser — . Back End———
Analysis

Intermediate Representation (IR):
e An abstract machine language
e Expresses operations of target machine
e Not specific to any particular machine
e Independent of source language
IR code generation not necessary:
e Semantic analysis phase can generate real assembly code directly.

e Hinders portability and modularity.

Intermediate Representations

Suppose we wish to build compilers for n source languages and m target machines.
Case 1: no IR

e Need separate compiler for each source language/target machine combination.
e A total of nn * m compilers necessary.

e Front-end becomes cluttered with machine specific details, back-end becomes clut-
tered with source language specific details.

Case 2: IR present

e Need just n front-ends, m back ends.

Intermediate Representations

Java Java Sparc
ML
\ /_~ mips
/ \ Pentium
C

Pascal

C
C++ C++ Alpha
FIGURE 7.1. Compilers for five languages and four target machines:

(left) without an IR, (right) with an IR.
From Modern Compiler Implementation in ML,
Cambridge University Press, ©1998 Andrew W. Appel

Properties of a Good IR

e Must be convenient for semantic analysis phase to produce.

e Must be convenient to translate into real assembly code for all desired target ma-
chines.
— RISC processors execute operations that are rather simple.
+ Examples: load, store, add, shift, branch
+ IR should represent abstract load, abstract store, abstract add, etc.
— CISC processors execute more complex operations.
+ Examples: multiply-add, add to/from memory

+ Simple operations in IR may be “clumped” together during instruction selec-
tion to form complex operations.

IR Representations

The IR may be represented in many forms:

Expression trees:
e exp: constructs that compute some value, possibly with side effects.
e stm: constructs that perform side effects and control flow.

signature TREE = sig
datatype exp = CONST of int
| NAME of Temp.label
| TEMP of Temp.temp
| BINOP of binop * exp * exp
| MEM of exp
| CALL of exp * exp list
| ESEQ of stm * exp

IR Expression Trees

TREE continued:

and stm = MOVE of exp * exp
| EXP of exp
| JUMP of exp * Temp.label list
| CJUMP of relop * exp * exp *

Temp.label * Temp.label

| SEQ of stm * stm
| LABEL of Temp.label

and binop = PLUS|MINUS|MUL|DIV|AND|OR|

LSHIFT|RSHIFT|ARSHIFT|XOR
EQ|NE|LT|GT|LE|GE |ULT |ULE | UGT | UGE

and relop
end

Expressions

Expressions compute some value, possibly with side effects.
CONST (i) integer constant 7

NAME (n) symbolic constant n corresponding to assembly language label (abstract
name for memory address)

TEMP () temporary ¢, or abstract/virtual register ¢
BINOP (op, e, e3) e10p esy, e evaluated before ey
e integer arithmetic operators: PLUS, MINUS, MUL, DIV
e integer bit-wise operators: AND, OR, XOR
e integer logical shift operators: LSHIFT, RSHIFT
e integer arithmetic shift operator: ARSHIFT

Expressions

MEM (¢) contents of wordSize bytes of memory starting at address ¢

e wordSize is defined in Frame module.
e if MEM is used as left operand of MOVE statement = store
e if MEM is used as right operand of MOVE statement = load

CALL (f, [) application of function f to argument list [
e subexpression f 1s evaluated first

e arguments in list / are evaluated left to right

ESEQ (s,) the statement s evaluated for side-effects, e evaluated next for result

Statements

Statements have side effects and perform control flow.
MOVE (TEMP (¢) ,

MOVE (MEM (e1) , e3) evaluate eq, yielding address a; evaluate e, store result in
wordSize bytes of memory stating at address «

) evaluate e and move result into temporary ¢.

EXP (¢) evaluate expression e, discard result.
JUMP (¢, labs) jump to address ¢

e ¢ may be literal label (NAME (/)), or address calculated by expression

e [abs specifies all locations that e can evaluate to (used for dataflow analysis)
o jump to literal label /: JUMP (NAME (/) , [/])

CJUMP (op, €1, es, t, f) evaluate eq, then es; compare results using op; if true,
jump to ¢, else jump to f

e EQ, NE: signed/unsigned integer equality and non-equality
e LT, GT, LE, GE: signed integer inequality
e ULT, UGT, ULE, UGE: unsigned integer inequality

Statements

SEQ(sy, s2) statement sy followed by so

LABEL (/) label definition - constant value of [defined to be current machine code
address

e similar to label definition in assembly language

e use NAME (/) to specify jump target, calls, etc.
e The statements and expressions in TREE can specify function bodies.

e Function entry and exit sequences are machine specific and will be added later.

Translation of Abstract Syntax

e if Absyn . exp computes value = Tree.exp
e if Absyn . exp does not compute value = Tree.stm
e if Absyn . exp has boolean value = Tree.stmand Temp. labels

datatype exp Ex of Tree.exp

| Nx of Tree.stm

| Cx of Temp.label * Temp.label -> Tree.stm

e Ex “expression” represented as a Tree . exp

e Nx “no result” represented as a Tree . stm

e Cx “conditional” represented as a function. Given a false-destination label and a

true-destination label, it will produce a Tree . stm which evaluates some condi-
tionals and jumps to one of the destinations.

Translation of Abstract Syntax (Conditionals)

Conditional:
X > y:
Cx(fn (t, £) => CJUMP(GT, x, vy, t, f))

Cx(fn (t, f) => SEQ(CJUMP(GT, a, b, t, z),
SEQ (LABEL z, CJUMP (LT, <, 4, t, £))))
May need to convert conditional to value:
a = x > y:
Cx corresponding to “x > y” must be converted into Tree . exp e.
MOVE (TEMP (a) , e)
Need three conversion functions:

val unkEx: exp -> Tree.exp
val unNx: exp -> Tree.stm
val unCx: exp -> (Temp.label * Temp.label -> Tree.stm)

Translation of Abstract Syntax (Conditionals)

The three conversion functions:

val unEx: exp -> Tree.exp
val unNx: exp -> Tree.stm
val unCx: exp -> (Temp.label * Temp.label -> Tree.stm)

a =X > y:
MOVE (TEMP (a) , unEx(Cx(t,f) => ...)

unEx makes a Tree . exp even though e was Cx.

Translation of Abstract Syntax

Implementation of function UnEx:

structure T = Tree

fun unEx (Ex(e)) = e
| unEx(Nx(s)) = T.ESEQ(s, T.CONST(0))
| unEx(Cx(genstm))
let val r = Temp.newtemp ()
val t = Temp.newlabel()
val £ = Temp.newlabel ()
in T.ESEQ(seq[T.MOVE(T.TEMP (r), T.CONST (1)),
genstm(t, f),
T.LABEL(f),
T.MOVE (T.TEMP(r), T.CONST(0)),
T.LABEL(t)],
T.TEMP (r))

end

Translation of Abstract Syntax

e Recall type and value environments tenv, venv.

e The function transVar return a record {exp, ty} of
Translate.exp and Types.ty.

e exp is no longer a place-holder

Simple Variables

e Case 1: variable v declared in current procedure’s frame

InFrame (k) :
MEM (BINOP (PLUS, TEMP (FP), CONST (k)))

k: offest in own frame
FP is declared in FRAME module.
e Case 2: variable v declared in temporary register

InReg(t_103):
TEMP (t_103)

Simple Variables

e Case 3: variable v not declared in current procedure’s frame, need to generate IR
code to follow static links

InFrame (k_n) :
MEM (BINOP (PLUS, CONST(k_n),
MEM (BINOP (PLUS, CONST(k n-1),

MEM (BINOP (PLUS, CONST(k_2),
MEM (BINOP (PLUS, CONST(k_l), TEMP (FP)))))))))
1, k2,..., k n-1: static link offsets
n:

k
k. offset of v in own frame

Simple Variables

To construct simple variable IR tree, need:
o [s: level of function f'in which v used
e [,: level of function g in which v declared
e MEM nodes added to tree with static link offsets (k_1, . .,kn-1)

e When [, reached, offset k_n used.

Array Access

Given array variable a,

&(al0]) = a
&(al[l]l]) = a + w, where w is the word-size of machine
&(al2]) = a + (2 * w)

Let e be the IR tree for a:

alil:
MEM (BINOP (PLUS, e, BINOP(MUL, i, CONST(w))))

Compiler must emit code to check whether i is out of bounds.

Record Access

type rectype = {fl:int, f£2:int, £3:int}

offset: 0 1 2

var a:rectype := rectype{fl=4, £f2=5, £3=6}
Let e be IR tree for a:

a.f3:
MEM (BINOP (PLUS, e, BINOP (MUL, CONST (3), CONST (w))))

Compiler must emit code to check whether a isnil.

Conditional Statements

if e; then ey else e3
e Treat e; as Cx expression = apply unCx.

e Treat e9, e3 as Ex expressions = apply unEx.

Ex (ESEQ (SEQ (unCx (el) (t, £),
SEQ (LABEL (t),
SEQ (MOVE (TEMP (r) , unEx(e2)),
SEQ (JUMP (NAME (join)),
SEQ (LABEL (f) ,
SEQ (MOVE (TEMP (r) , unEx(e3)),
LABEL (join)))))))
TEMP (xr)))

Strings

e All string operations performed by run-time system functions.

e In Tiger, C, string literal is constant address of memory segment initialized to char-
acters in string.

— In assembly, label used to refer to this constant address.

— Label definition includes directives that reserve and initialize memory.
‘‘foo'’:
1. Translate module creates new label /.
2. Tree .NAME (/) returned: used to refer to string.

3. String fragment “foo” created with label /. Fragment is handed to code emitter,
which emits directives to initialize memory with the characters of “foo” at address [.

Strings

String Representation:
Pascal fixed-length character arrays, padded with blanks.
C variable-length character sequences, terminated by /000’
Tiger any 8-bit code allowed, including /000’
"fo0"

label:

O |0 |h W

Strings

e Need to invoke run-time system functions
— string operations
— string memory allocation

e Frame.externalCall: string * Tree.exp -> Tree.exp

Frame.externalCall ("stringEqual", [sl, s2])
— Implementation takes into account calling conventions of external functions.
— Easiest implementation:

fun externalCall (s, args) =
T.CALL (T.NAME (Temp .namedlabel (s)), args)

Array Creation

type intarray = array of int
var a:intarray := intarray[10] of 7

Call run-time system function initArray to malloc and initialize array.

Frame.externalCall ("initArray", [CONST(10), CONST(7)1)

Record Creation

type rectype = { fl:int, f2:int, f£3:int }
var a:rectype := rectype{fl = 4, f2 = 5, £3 = 6}

ESEQ (SEQ (MOVE (TEMP (result),

Frame.externalCall ("allocRecord",
[CONST (12)1)),

SEQ (MOVE (BINOP (PLUS, TEMP (result), CONST(0*w)),

CONST (4)),

SEQ (MOVE (BINOP (PLUS, TEMP (result), CONST (1l*w)),

CONST(5)),

SEQ (MOVE (BINOP (PLUS, TEMP (result), CONST (2*w)),

CONST(6)))))),

TEMP (result))

e allocRecord is an external function which allocates space and returns address.

e result is address returned by allocRecord.

While Loops

One layout of a while loop:

while CONDITION do BODY

test:
if not (CONDITION) goto done
BODY
goto test

done:

A break statement within body is a JUMP to label done.
transExp and transDec need formal parameter “break”:

e passed done label of nearest enclosing loop
e needed to translate breaks into appropriate jumps

e when translating while loop, t ransExp recursively called with loop done label in
order to correctly translate body.

For Loops

Basic idea: Rewrite AST into let/while AST; call transExp on result.

for i := lo to hi do
body
Becomes:
let
var i := lo
var limit := hi
in
while (i <= limit) do
(body;
i := 1 + 1)
end
Complication:
Ifl1imit == maxint, then increment will overflow in translated version.

Function Calls

f(al, a2, ., an) =>
CALL (NAME (1 f), sl::[el, e2, ..., en])

e s1 static link of £ (computable at compile-time)
e To compute static link, need:

—1_f: level of f
—1_g: level of g, the calling function

e Computation similar to simple variable access.

Declarations

Consider type checking of “let” expression:

fun transExp (venv, tenv) =

| trexp(A.LetExp{decs, body, pos}) =

let
val {venv = venv’, tenv = tenv’'} =
transDecs (venv, tenv, decs)
in
transExp (venv’, tenv’) body
end

e Need 1level, break.

e What about variable initializations?

Declarations

Consider type checking of “let” expression:

fun transExp (venv, tenv) =

| trexp (A.LetExp{decs, body, pos}) =

let
val {venv = venv’, tenv = tenv’} =
transDecs (venv, tenv, decs)
in
transExp (venv’, tenv’) body
end

e Need level, break.

e What about variable mitializations?

Function Declarations

e Cannot specify function headers with IR tree, only function bodies.
e Special “glue” code used to complete the function.
e Function is translated into assembly language segment with three components:

— prologue
— body

— epilogue

Function Prolog

Prologue precedes body in assembly version of function:
1. Assembly directives that announce beginning of function.
2. Label definition for function name.
3. Instruction to adjust stack pointer (SP) - allocate new frame.

4. Instructions to save escaping arguments into stack frame, instructions to move non-
escaping arguments into fresh temporary registers.

5. Instructions to store into stack frame any callee-save registers used within function.

Function Epilog

Epilogue follows body in assembly version of function:
6. Instruction to move function result (return value) into return value register.
7. Instructions to restore any callee-save registers used within function.
8. Instruction to adjust stack pointer (SP) - deallocate frame.
9. Return instructions (jump to return address).

10. Assembly directives that announce end of function.

e Steps 1, 3, 8, 10 depend on exact size of stack frame.
e These are generated late (after register allocation).
e Step 6:

MOVE (TEMP (RV) , unEx (body))

Fragments

signature FRAME = sig

datatype frag = STRING of Temp.label * string
| PROC of {body:Tree.stm, frame:frame}
end

e Each function declaration translated into fragment.
e Fragment translated into assembly.
e body field is instruction sequence: 4, 5, 6, 7

e frame contains machine specific information about local variables and parameters.

Problem with IR Trees

Problem with IR trees generated by the Translate module:
e Certain constructs don’t correspond exactly with real machine instructions.
e Certain constructs interfere with optimization analysis.

e CJUMP jumps to either of two labels, but conditional branch instructions in real
machine only jump to one label. On false condition, fall-through to next instruction.

e ESEQ, CALL nodes within expressions force compiler to evaluate subexpression
in a particular order. Optimization can be done most efficiently if subexpressions
can proceed in any order.

e CALL nodes within argument list of CALL nodes cause problems if arguments passed
in specialized registers.

Solution: Canonicalizer

Canonicalizer

Stream of Abstract

Source Tokens Syntax Tree | Semantic | IR Trees | Canon- | IR Trees Target
Lexer Parser i Back End =
Analysis icalizer

Canonicalizer takes Tree . stm for each function body, applies following transforms:

1. Tree.stmbecomes Tree.stm list, list of canonical trees. For each tree:
e No SEQ, ESEQ nodes.
o Parent of each CALL node is EXP (. ..) orMOVE (TEMP (t), ...)

2. Tree.stm list becomes Tree.stm list list, statements grouped into
basic blocks

e A bhasic block is a sequence of assembly instructions that has one entry and one
exit point.
o First statement of basic block is LABEL.
o Last statement of basic block is JUMP, CJUMP.
e No LABEL, JUMP, CJUMP statements in between.
3. Tree.stm list 1list becomes Tree.stm list

e Basic blocks reordered so every CJUMP immediately followed by false label.
e Basic blocks flattened into individual statements.

Instruction Selection

Stream of

Abstract . . Pseudo-
Source L | Tokens ‘ P ‘SymaxTree‘Seu]a!lth‘ IR Trees \ Canon- IR Trees [[nstruction| Assembly
exer arser . - .
| ‘ ‘ ‘ Analysis ‘ ‘ icalizer Selection
Target
Back End =

Instruction Selection

e Process of finding set of machine instructions that implement operations specified
in IR tree.

e Each machine instruction can be specified as an IR tree fragment — tree pattern

e Goal of instruction selection is to cover IR tree with non-overlapping tree patterns.

Our Architecture

e Load/Store architecture

e Relatively large, general purpose register file
— Data or addresses can reside in registers (unlike Motorola 68000)
— Each instruction can access any register (unlike x86)

e 1 always contains zero.

e Each instruction has latency of one cycle.

e Execution of only one instruction per cycle.

Our Architecture
Arithmetic:
ADD Tqg=Tg + T2
ADDI rg=rs+c
SUB g =Ts — Ts2
SUBI ry=rs—c
MUL g =Ts1 ¥ T2
DIV Tq=Ta/Ts
Memory:
LOAD rq = :\[[1'5 + (,t]
STORE M[rg + ¢ =7y
MOVEM M {rq| = Mlry)
Pseudo-ops

Pseudo-op - An assembly operation which does not have a corresponding machine code
operation. Pseudo-ops are resolved during assembly.

MOV rq =71s|ADDI 714 =1,+0

MOV rq =71s|ADD rg=1rg +19

MOVI 7y =c |BADDI ry=ro+c

(Pseudo-op can also mean assembly directive, such as .align.)

Instruction Tree Patterns

Name Effect Trees
— r TEMP o
ADD I rp+ Ik /+\ |
MUL P /*\ T
SUB Ty T /\)
DIV Tk //\ Y
- + CONST
ADDI roorj+cC PN s /\(” 7
CONST CONST
SUBI noor; ¢ /_\ '
CONST
MEM MEM MEM_ MEM
M] I A ! (o col\'STl o
LOAD i Ml +c - . L
’ N PN S
CONST CONST
Instruction Tree Patterns
MOVE MOVE MOVE MOVE
N N N N
MEM MEM MEM o~ MEM [
STORE MU +el 1 Fon I b I
+ + CONST
CONST CONST
MOVE
MOVEM Myl Ml MEM MEM oy
| 1
Example
al[i] := xassuming i inregister, a and X in stack frame.
MOVE
/’//// \\‘\‘“\
MEM MEM
PLUS PLU
MEM MULT TEMP CONST
‘ /"'/// | ‘
PLUS TEMP CONST FP offset-x
TEMP CONST temp-i 4
FP offset-a

Individual Node Selection

MOVE
MEM MEM
\ |
PLUS PLUS
N\ ST~
MEM MULT TEMP CONST
| —\ | |

PLUS TEMP CONST FP offset-x

TEMP CONST temp-i 4

FP offset-a

Individual Node Selection

ADDI rl = r0 + offset a
ADD r2 = rl + FP
LOAD 13 = M[r2 + 0]

ADDI r4 = xr0 + 4
MUL r5 = r4d * r 1

ADD r6 = r3 + r5

ADDI r7 = r0 + offset x
ADD r8 = r7 + FP
LOAD 19 = M[r8 + 0]

STORE M[r6 + 0] = r9

9 registers, 10 instructions

Random Tiling
T
/ MOVE
/ MEM
\K“k’*** o - 7777#/,
PLUS PLUS
MEM MULT TEMP CONST

| _— _— \ ‘ ‘

PLUS TEMP CONST FP offset-x

TEMP CONST temp-i 4

FP offset-a

Random Tiling

ADDI rl = r0 + offset a
ADD r2 = rl + FP
LOAD r3 = M[r2 + 0]

ADDI r4 = r0 + 4
MUL r5 =r4 * r i

ADD ré6 = r3 + r5
ADDI r7 = r0 + offset x

ADD r8 = r7 + FP
MOVEM M[r6] = M[r8]

Saves a register (9 — 8) and an instruction (10 — 9).

Node Selection

e There exist many possible tilings - want tiling/covering that results in instruction
sequence of /east cost
— Sequence of instructions that takes least amount of time to execute.

— For single issue fixed-latency machine: fewest number of instructions.
e Suppose each instruction has fixed cost:

— Optimum Tiling: tiles sum to lowest possible value - globally “the best”

— Optimal Tiling: no two adjacent tiles can be combined into a single tile of lower
cost - locally “the best”

— Optimal instruction selection easier to implement than Optimum instruction se-
lection.

— Optimal is roughly equivalent to Optimum for RISC machines.
— Optimal and Optimum are noticeably different for CISC machines.

e Instructions are not self-contained with individual costs.

Optimal Instruction Selection:

Maximal Munch

e Cover root node of IR tree with largest tile ¢ that fits (most nodes)
— Tiles of equivalent size = arbitrarily choose one.
e Repeat for each subtree at leaves of .

e Generate assembly instructions in reverse order - instruction for tile at root emitted
last.

Maximal Munch

PLUS PLUS

MEM MULT TEMP CONST

| N\ | |

PLUS TEMP CONST FP offset-x

TEMP CONST temp-i 4

FP offset-a

Maximal Munch

LOAD r3 = M[FP + offset a]

ADDI r4 = r0 + 4
MUL r5 = r4d * r i

ADD r6 = r3 + r5

ADD r8 = FP + offset x
MOVEM M[r6] = M[r8]

S registers, 6 instructions

Assembly Representation

structure Assem = struct
type reg = string
type temp = Temp.temp
type label = Temp.label

datatype instr = OPER of
{assem: string,
dst: temp list,
src: temp list,
jump: label list option}

end

Codegen

fun codegen (frame) (stm: Tree.stm) :Assem.instr list =
let
val ilist = ref(nil: Assem.instr list)
fun emit(x) = ilist := x::!ilist
fun munchStm: Tree.stm -> unit
fun munchExp: Tree.exp -> Temp.temp
in
munchStm (stm) ;
rev(!ilist)
end

Statement Munch

fun munchStm (
T.MOVE (T.MEM (T.BINOP (T.PLUS, el, T.CONST(c))), e2)
) =
emit (Assem.OPER{assem="STORE M[’'s0 + " ~

int(ec) ~ "] = ’s1\n",
src=[munchExp (el), munchExp (e2)],
dst=1[1],
jump=NONE})

munchStm (T.MOVE (T.MEM(el), T.MEM(e2))) =
emit (Assem.OPER{assem="MOVEM M[’'s0] = M[’s1]\n"
src=[munchExp (el), munchExp (e2)],
dst=[],
jump=NONE })
munchStm (T.MOVE (T.MEM (el), e2)) =
emit(Assem.OPER{assem:"STORE M['s0] = 's1\n"
src=[munchExp (el), munchExp(e2)],
dst=[1],
jump=NONE })

Expression Munch

and munchExp (T.MEM (T.BINOP (T.PLUS, el, T.CONST(c)))) =
let
val t = Temp.newtemp ()
in
emit (Assem.OPER{assem="LOAD 'd0 = M['s0 +"
int (c) ~ "I\n",
src=[munchExp (el)],
dst=[t],
jump=NONE}) ;

~

end

Expression Munch

| munchExp (T.BINOP (T.PLUS, el, T.CONST(c))) =
let
val t = Temp.newtemp ()
in
emit (Assem.OPER{assem="ADDI ’'d0 = ’s0 +" °
int (¢) ~ "\n",
src=[munchExp (el)],
dst=[t],
jump=NONE}) ;

end

munchExp (T.TEMP (t)) = t

Optimum Instruction Selection

e Find optimum solution for problem (tiling of IR tree) based on optimum solutions
for each subproblem (tiling of subtrees)

e Use Dynamic Programming to avoid unnecessary recomputation of subtree costs.
e cost assigned to every node in IR tree
— Cost of best instruction sequence that can tile subtree rooted at node.

e Algorithm works bottom-up (Maximum Munch is top-down) - Cost of each subtree
55 (c;) has already been computed.

e For each tile ¢ of cost ¢ that matches at node 7, cost of matching ¢ is:
ot X G

all leaves i of t

e Tile is chosen which has minimum cost.

Optimum Instruction Selection — Example

MEM (BINOP (PLUS, CONST (1), CONST(2))))

MEM (PLUS (CONST (1) , CONST(2)))
MEM

PLUS

RS

CONST CONST

1 2

Optimum Instruction Selection — Example

Step 1: Find cost of root node
(a,b): a is minimum cost, b is corresponding pattern number

ME‘!M
PLUS
(L8 — T—(L.%)
COI‘\TST COI|\TST
1 2
Consider PLUS node:
Pattern Cost [Leaves Cost | Total
(2) PLUS(el, €2) 1 2 3
(6) PLUS(CONST(c), el) |1 1 2
(7) PLUS(el. CONST(¢)) | 1 1 2

Optimum Instruction Selection — Example

MEM
euos 20
(L8 — (L8
COI“TST COI“TST
1 2
Consider MEM node:

Pattern Cost | Leaves Cost | Total
(13) MEM(el) 1 2 3
(10) MEM(PLUS(el, CONST(c)) |1 1 2
(11) MEM(PLUS(CONST(c), el) |1 1 2

Optimum Insruction Selection — Example

(2, 10)
MEM
PLUS (2,6)
(L8 — (LY
CONST CONST
1 2
Step 2: Emit instructions
ADDTI rl = r0 + 1
LOAD r2 = M[rl + 2]

Optimum Instruction Selection — Big Example

TEMP

FP

MQYE
MEM .
| |
PLUS o
""""'”—A‘v—wﬁ.,,,, P \ / n\\‘\\\\\\\
MEM MgLT TEMP CONST
‘ - ,..v/,..,,/..v,/ - \ ‘ ‘
PLUS TEMP CONST FP offfset-x
—] ‘ ‘
CONST temp-i 4
|
Offset—a

Optimum Instruction Selection — Big Example

TEMP

FP

| |
B@US PLUS
MEM MULT TEMP CONST
] |
PLUS TEMP CONST FP offset-x
—] | |
CONST temp-i 4
|
offset-a

Optimum Instruction Selection — Big Example

LOAD r3

ADDI r4
MUL r5

ADD re6

LOAD r9

= M[FP + offset a]

= 1r0 + 4
=14 *r i

= 1r3 + 5

= M[FP + offset x]

STORE M[r6] = r9

S registers, 6 instructions
Optimal tree generated by Maximum Munch is also optimum...

