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Types

What is a type?

Type Checking:
• Helps find language-level errors:

• Memory Safety – can’t dereference something not a pointer
• Control-Flow Safety – can’t jump to something not code
• Type Safety – redundant specification checked

• Helps find application-level errors:
• Ensures isolation properties

• Helps generate code:
• Is that “+” a floating point add or an integer add?
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Defining a Type System

• RE à Lexing

• CFG à Parsers

• Inductive Definitions à Type Systems

An inductive definition really has two parts:

1. Specification of the form of judgments – A judgment is 
an assertion/claim, may or may not be true. A valid 
judgment is a true/provable judgment.

2. A collection of inference rules – what allow you to 
conclude whether a judgment is true or false 
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Inference Rules

An implementation-language-independent way: type 
system with inference rules. 

Read: if a has type bool and b has type bool, then a && b
has type bool. 
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Inference Rules

An inference rule has a set of premises J1, . . . , Jn and 
one conclusion J, separated by a horizontal line:

Read: 
• If I can establish the truth of the premises  J1,...,Jn, I 

can conclude: J is true. 
• To check J, check J1,...,Jn. 

An inference rule with no premises is called an Axiom – J 
always true



Judgments

The premises and conclusions are called judgments. 

The most common judgments in type systems have the 
form:

Read: expression e has type T. 
Means: Based on no outside evidence, e is an expression
with type T
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Axioms and Rules

Examples: BT, BF, B&&, B||
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Type Checking and Type Inference 

Two activities: 

• Type checking: Given an expression e and a type T, 
decide if e : T

• Type inference: Given an expression e, find a type T
such that e : T 

Both activities necessary.  Both originate from typing rules. 
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Type Checking Implementation

Example: type checking for &&:

check(a && b, bool): 
check(a, bool) 
check(b, bool) 

No patterns matching types other than bool.
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Type Inference Implementation

Example: type checking for &&:

infer(a && b): 
check(a, bool) 
check(b, bool)
return bool

Inference involves checking.
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Recall Symbol Table, Scope Topic

• Generally, a variable can be any type available in the 
language.

• In C and Java, type determined by the declaration of 
the variable. 

• In inference rules, variables are collected to a context. 
• Context is a symbol table of (variable, type) pairs. 
• In inference rules, the context is denoted by the Greek 

letter Γ, Gamma. 
• The judgment form for typing is generalized to: 

• Read: expression e has type T in context Γ
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Context
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Consider:

This means:
x + y > y is bool in context where x and y are ints

Context notation:

Adding variable to existing context:



Context
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Most judgments share the same Γ, because the context 
doesn’t change. 

For declarations:

The condition “if x : T in Γ” is not a judgment – but a 
sentence in the metalanguage (English).   (Condition is a 
symbol table lookup of x in Γ.)



Functions
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Function Application:

Notation:



Proofs
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Proof Tree: a trace of the steps that the type checker 
performs, built up rule by rule. 

Each judgment is a conclusion from the ones above with 
some of the rules, indicated beside the line. This tree uses 
the variable rule and the rules for + and >: 



Overloading
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The binary arithmetic operations (+ - * /) and comparisons 
(== != < > <= >=) are overloaded in many languages.

If the possible types are int, double, and string, the typing 
rules become: 



Overloading Implementation
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First infer the type of the first operand, then check the 
second operand with respect to this type: 

infer (a + b) :
t := infer(a)
// check that t ∈ {int, double, string} 
check (b, t)
return t 



Type Conversion
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Example: an integer can be converted into a double

Generally, integers and doubles have different binary 
representations operated upon by different instructions. 

Compiler generates a conversion instruction (or 
instructions) for type conversions. 



Type Conversion
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2 + “hello” produces “2hello”

Evaluate: 1 + 2 + "hello" + 1 + 2 



Statement Validity
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When type-checking a statement, simply check whether 
the statement is valid. 

A new judgment form: 

Read: Statement s is valid in environment Γ. 
Example: while



Expression Statements
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Some expressions simply need a type inference. 
For example: assignments and function calls. 

Parameters of the function define the context. 
The body statements s1 . . . sn are checked in this context. 
Context may change within the body from declarations. 
Check all variables in the parameter list are distinct. 



Return Statements
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Return statement should be of expected type. 

Control flow makes this interesting:



Declarations and Block Structure
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Each declaration has a scope, in a certain block. 

Blocks in C and Java correspond (roughly) to parts of code 
between curly brackets: {   }

Two principles regulate the use of variables: 
1.A variable declared in a block has its scope till the end of 
that block. 
2.A variable can be declared again in an inner block, but 
not otherwise. 



Declarations and Block Structure
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Stack of Contexts
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Context to deal with blocks:  Instead of a simple lookup 
table, Γ must be a stack of lookup tables.

Notation: 

where Γ1 is an old (i.e. outer) context and Γ2 an inner 
context. 

The innermost context is the top of the stack. 
Recall Symbol Table Discussion…



Declarations
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A declaration introduces a new variable in the current 
scope, checked to be fresh with respect to the context. 

Rules for sequences of statements, not just individual 
statements: 

A declaration extends the context used for checking the 
statements that follow: 



Example: If Statement Derivation/Proof
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Example: sizeof
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Example: Function 
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