Abstract Syntax

Can write entire compiler in ML-YACC specification.

- Semantic actions would perform type checking and translation to assembly.
- Disadvantages:
 1. File becomes too large, difficult to manage.
 2. Program must be processed in order in which it is parsed. Impossible to do global/inter-procedural optimization.

Alternative: Separate parsing from remaining compiler phases.

Parse Trees

- We have been looking at concrete parse trees.
 - Each internal node labeled with non-terminal.
 - Children labeled with symbols in RHS of production.
- Concrete parse trees inconvenient to use! Tree is cluttered with tokens containing no additional information.
 - Punctuation needed to specify structure when writing code, but
 - Tree structure itself cleanly describes program structure.
Parse Tree Example

\[
\begin{align*}
P & \rightarrow (\ S \) \\
S & \rightarrow \ S \ ; \ S \\
S & \rightarrow \ \text{ID} := \ E \\
E & \rightarrow \ \text{ID} \\
E & \rightarrow \ \text{NUM} \\
E & \rightarrow \ E \ + \ E \\
E & \rightarrow \ E \ * \ E \\
E & \rightarrow \ E \ / \ E
\end{align*}
\]

\[
(\ a \ := \ 4 \ ; \ b \ := \ 5 \)
\]

\[
\begin{tikzpicture}
 \node {P}
 \child {S}
 \child {\text{ID}(\text{"a")(:=}\ E}
 \child {\text{ID}(\text{"b")(:=}\ E}
 \child {\text{NUM}(4)}
 \child {\text{NUM}(4)}
\end{tikzpicture}
\]

Type checker does not need "(" or ")" or ",;"

Parse Tree Example

Solution: generate abstract parse tree (abstract syntax tree) - similar to concrete parse tree, except redundant punctuation tokens left out.

\[
\begin{tikzpicture}
 \node {\text{CompoundStmt}}
 \child {\text{AssignStmt}}
 \child {\text{ID}(\text{"a")}}
 \child {\text{NUM}(4)}
 \child {\text{AssignStmt}}
 \child {\text{ID}(\text{"b")}}
 \child {\text{NUM}(4)}
\end{tikzpicture}
\]

Semantic Analysis: Symbol Tables

- Semantic Analysis Phase:
 - Type check AST to make sure each expression has correct type
 - Translate AST into IR trees
- Main data structure used by semantic analysis: symbol table
 - Contains entries mapping identifiers to their bindings (e.g. type)
 - As new type, variable, function declarations encountered, symbol table augmented with entries mapping identifiers to bindings.
 - When identifier subsequently used, symbol table consulted to find info about identifier.
 - When identifier goes out of scope, entries are removed.
Symbol Table Example

```haskell
function f(b:int, c:int) =
  (print_int (b+c));
let
  var j := b
  var a := "x"
in
  print(a)
  print(j)
end
print_int(a)
```

\(\sigma_2 = \{a \rightarrow \text{int}\} \)

\(\sigma_3 = \{b \rightarrow \text{int}, c \rightarrow \text{int}, a \rightarrow \text{int}\} \)

\(\sigma_4 = \{j \rightarrow \text{int}, b \rightarrow \text{int}, c \rightarrow \text{int}, a \rightarrow \text{int}\} \)

\(\sigma_5 = \{a \rightarrow \text{string}, j \rightarrow \text{int}, b \rightarrow \text{int}, c \rightarrow \text{int}, a \rightarrow \text{int}\} \)

\(\sigma_6 = \{b \rightarrow \text{int}, c \rightarrow \text{int}, a \rightarrow \text{int}\} \)

\(\sigma_7 = \{a \rightarrow \text{int}\} \)

Symbol Table Implementation

- Imperative Style: (side effects)
 - Global symbol table
 - When beginning-of-scope entered, entries added to table using side-effects. (old table destroyed)
 - When end-of-scope reached, auxiliary info used to remove previous additions. (old table reconstructed)
- Functional Style: (no side effects)
 - When beginning-of-scope entered, new environment created by adding to old one, but old table remains intact.
 - When end-of-scope reached, retrieve old table.

Imperative Symbol Tables

Symbol tables must permit fast lookup of identifiers.

- **Hash Tables** - an array of **buckets**
- **Bucket** - linked list of entries (each entry maps identifier to binding)

```
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>n-1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a→int</td>
<td></td>
<td></td>
<td>b→int</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c→string</td>
<td></td>
<td>d→int</td>
</tr>
</tbody>
</table>
```

- Suppose we wish to lookup entry for id \(i \) in symbol table:
 1. Apply hash function to key \(i \) to get array element \(j \in [0, n-1] \).
 2. Traverse bucket in \(\text{table}[j] \) in order to find binding \(b \).

(\(\text{table}[x] \): all entries whose keys hash to \(x \))
Hash tables not efficient for functional symbol tables.

Insert $a \rightarrow \text{string} \Rightarrow$ copy array, share buckets:

Old Symbol Table Array

New Symbol Table Array

Not feasible to copy array each time entry added to table.

Functional Symbol Tables

Better method: use binary search trees (BSTs).

- Functional additions easy.
- Need “less than” ordering to build tree.
 - Each node contains mapping from identifier (key) to binding.
 - Use string comparison for “less than” ordering.
 - For all nodes $n \in L$, $\text{key}(n) < \text{key}(l)$
 - For all nodes $n \in R$, $\text{key}(n) \geq \text{key}(l)$

Functional Symbol Table Example

Lookup:
Insert:

insert \(z \) \(\mapsto \) \text{int}, create node \(z \), copy all ancestors of \(z \):

![Diagram of functional symbol table example]

- \(f \mapsto \text{int} \)
- \(e \mapsto \text{int} \)
- \(d \mapsto \text{int} \)
- \(c \mapsto \text{int} \)
- \(s \mapsto \text{int} \)
- \(t \mapsto \text{int} \)
- \(z \mapsto \text{int} \)