Topic 4. Abstract Syntax
Semantic Analysis

COS 320

Compiling Techniques

Princeton University
Spring 2018

Prof. David August

Abstract Syntax

Can write entire compiler in ML-YACC specification.
e Semantic actions would perform type checking and translation to assembly.
e Disadvantages:

1. File becomes too large, difficult to manage.
2. Program must be processed in order in which it is parsed. Impossible to do
global/inter-procedural optimization.

Alternative: Separate parsing from remaining compiler phases.

Stream of Abstract

Source Tokens Syntax Tree | Semantic R Target
Lexer Parser |— . Back End———+
Analysis

Parse Trees

e We have been looking at concrete parse trees.

— Each internal node labeled with non-terminal.

— Children labeled with symbols in RHS of production.

e Concrete parse trees inconvenient to use! Tree is cluttered with tokens containing
no additional information.

— Punctuation needed to specify structure when writing code, but

— Tree structure itself cleanly describes program structure.

Parse Tree Example

P—(9) E — 1D E—FE-F
S—5:;9 E — NUM E—E*FE
S—ID:=F F—FE+F F—FE/FE
(a :=4 ; b :=5)
P
T
(,,,/S\,\,)
S ;
ID("/‘w;’) = E ID("b") = E
|
NUM(4) NUM4)

[T}

Type checker does not need “(” or)” or *;

Parse Tree Example

Solution: generate abstract parse tree (abstract syntax tree) - similar to concrete parse
tree, except redundant punctuation tokens left out.

CompoundStm

AssignStm

ID("a") NUM®#) ID(b") NUM(4)

Semantic Analysis: Symbol Tables

Stream of Abstract

Source Tokens Syntax Tree | Semantic IR Target
Lexer Parser |- . ‘ Back End =
Analysis ‘

e Semantic Analysis Phase:

— Type check AST to make sure each expression has correct type
— Translate AST into IR trees

e Main data structure used by semantic analysis: symbol table

— Contains entries mapping identifiers to their bindings (e.g. type)

— As new type, variable, function declarations encountered, symbol table aug-
mented with entries mapping identifiers to bindings.

— When identifier subsequently used, symbol table consulted to find info about
identifier.

— When identifier goes out of scope, entries are removed.

Symbol Table Example

. . 0y = {a — int}
function f (b:int,

c:int) =
(print int (b+c) ; oy = {b— int,c— int,a — int}
_ i
let
var j := b 0y = {j — int,b— int,c— int,a— int}
var a := "x" o3 = {a — string, j — int,b — int, c— int,a — int}
in
print(a)
print (3j)
end
. . oy = {b— int,c— int,a — int}
print int(a)

)

0y = {a — int}

Symbol Table Implementation

e Imperative Style: (side effects)
— Global symbol table

— When beginning-of-scope entered, entries added to table using side-effects. (old
table destroyed)

— When end-of-scope reached, auxiliary info used to remove previous additions.
(old table reconstructed)

e Functional Style: (no side effects)

— When beginning-of-scope entered, new environment created by adding to old
one, but old table remains intact.

— When end-of-scope reached, retrieve old table.

Imperative Symbol Tables

Symbol tables must permit fast lookup of identifiers.
e Hash Tables - an array of buckets

e Bucket - linked list of entries (each entry maps identifier to binding)

e Suppose we with to lookup entry for id i in symbol table:

1. Apply hash fumction to key i to get array element j € [0, — 1].

2. Traverse bucket in table[j] in order to find binding b.
(table[]: all entries whose keys hash to x)

Functional Symbol Tables

Hash tables not efficient for functional symbol tables.
Inserta — string = copy array, share buckets:

Old Symbol Table Array New Symbol Table Array
i i

Not feasible to copy array each time entry added to table.

Functional Symbol Tables

Better method: use binary search trees (BSTs).
e Functional additions easy.
e Need “less than™ ordering to build tree.

— Each node contains mapping from identifier (key) to binding.
— Use string comparison for “less than” ordering.

— For all nodes n € L, key(n) < key(l)
For all nodes n € R, key(n) >= key(/)

“/'»7-
\Q

Functional Symbol Table Example

Lookup:

Functional Symbol Table Example

Insert:

insert z — int, create node z, copy all ancestors of z:
f>int

