Abstract Syntax

Can write entire compiler in ML-YACC specification.
- Semantic actions would perform type checking and translation to assembly.
- Disadvantages:
 1. File becomes too large, difficult to manage.
 2. Program must be processed in order in which it is parsed. Impossible to do global/inter-procedural optimization.
Alternative: Separate parsing from remaining compiler phases.

Parse Trees

- We have been looking at concrete parse trees.
 - Each internal node labeled with non-terminal.
 - Children labeled with symbols in RHS of production.
- Concrete parse trees inconvenient to use! Tree is cluttered with tokens containing no additional information.
 - Punctuation needed to specify structure when writing code, but
 - Tree structure itself cleanly describes program structure.

Parse Tree Example

\[
\begin{align*}
P & \rightarrow (\, S \,) \\
S & \rightarrow S \, ; \, S \\
E & \rightarrow \text{ID} \\
S & \rightarrow \text{ID} \, := \, E \\
E & \rightarrow \text{NUM} \\
E & \rightarrow E \, + \, E \\
E & \rightarrow E \, * \, E \\
E & \rightarrow E \, / \, E \\
E & \rightarrow E - E \\
E & \rightarrow E \\
\end{align*}
\]

(\text{a} := 4 \, ; \, \text{b} := 5)

Type checker does not need "(" or "")" or ";"
Parse Tree Example

Solution: generate *abstract parse tree* (abstract syntax tree) - similar to concrete parse tree, except redundant punctuation tokens left out.

```
CompoundStmt
    AssignStmt
        ID("a") NUM(4)
    AssignStmt
        ID("b") NUM(4)
```

Semantic Analysis: Symbol Tables

- Semantic Analysis Phase:
 - Type check AST to make sure each expression has correct type
 - Translate AST into IR trees
- Main data structure used by semantic analysis: *symbol table*
 - Contains entries mapping identifiers to their bindings (e.g. type)
 - As new type, variable, function declarations encountered, symbol table augmented with entries mapping identifiers to bindings.
 - When identifier subsequently used, symbol table consulted to find info about identifier.
 - When identifier goes out of scope, entries are removed.

Symbol Table Example

```
function f(b:int, c:int) =
  (print_int(b+c);
  let
    var j := b
    var a := "x"
  in
    print(a)
    print(j)
  end
  print_int(a)

σ₀ = {a → int}
σ₁ = {b → int, c → int, a → int}
σ₂ = {j → int, b → int, c → int, a → int}
σ₃ = {a → string, j → int, b → int, c → int, a → int}
σ₄ = {b → int, c → int, a → int}
σ₅ = {a → int}
```

Symbol Table Implementation

- Imperative Style: (side effects)
 - Global symbol table
 - When beginning-of-scope entered, entries added to table using side-effects. (old table destroyed)
 - When end-of-scope reached, auxiliary info used to remove previous additions. (old table reconstructed)
- Functional Style: (no side effects)
 - When beginning-of-scope entered, new environment created by adding to old one, but old table remains intact.
 - When end-of-scope reached, retrieve old table.
Symbol tables must permit fast lookup of identifiers.
- **Hash Tables** - an array of buckets
- **Bucket** - linked list of entries (each entry maps identifier to binding)

Suppose we wish to lookup entry for id \(i \) in symbol table:
1. Apply *hash function* to key \(i \) to get array element \(j \in [0, n - 1] \).
2. Traverse bucket in table[\(j \)] in order to find binding \(b \).
 (table[\(x \)]: all entries whose keys hash to \(x \))

Better method: use *binary search trees (BSTs)*.
- Functional additions easy.
- Need “less than” ordering to build tree.
 - Each node contains mapping from identifier (key) to binding.
 - Use string comparison for “less than” ordering.
 - For all nodes \(n \in L \), key(\(n \)) \(<\) key(\(l \))
 For all nodes \(n \in R \), key(\(n \)) \(\geq\) key(\(l \))
Insert:

insert z \rightarrow \text{int}, create node z, copy all ancestors of z: