Topic 3: Parsing and Yaccing

COS 320

Compiling Techniques

Princeton University
Spring 2018

Prof. David August

Syntactical Analysis

Front End:
e Lexical Analysis - Break source into fokens.
e Syntax Analysis - Parse phrase structure.
e Semantic Analysis - Calculate meaning.
Our Compiler:

Stream of Abstract
Source Tokens Syntax Tree R Target
e e

Lexer Parser FE” Back End

Parser Functions:
e Verify that token stream is valid.
e If it is not valid, report syntax error and recover.

e Build Abstract Syntax Tree (AST).

Syntactical Analysis

e Every programming language has a set of rules that describe syntax of well-formed
programs in language.

o Syntax Analysis (Parsing) - Determine if source program satisfies these rules.
e Source program constructs may have recursive structure:

digits = [0-9]+
expr = {digits} | "(" {expr} "+" {expr} ")"

e Finite Automata cannot recognize recursive constructs. (A machine with NV states
cannot remember a parenthesis-nesting depth greater than N.)

‘We need a more powerful formalism: Context-Free Grammar

Context-Free Grammar

Regular Expressions - describe lexical structure of tokens.

Regular Lexer
Expressions

——= Lexer
Generator

(ML-LEX)

Context-Free Grammars - describe syntactic nature of programs.

Context-Free Parser)
Grammar Generator Parser
(ML-YACC)

Definitions

e Language - set of strings
e String - finite sequence of symbols taken from finite alphabet
— Regular Expressions describe a language.
— Context-Free Grammar also describes a language.
| Lexical Analysis | Syntax Analysis
language | set of tokens set of source programs

string token source program
symbol [ASCII character |token

Context-Free Grammar

e Also known as BNF (Backus-Naur Form).
e Context-free grammars are more powerful than regular expressions.

— Any language that can be generated using regular expressions can be generated
by a context-free grammar.

— There are languages that can be generated by a context-free grammar that cannot
be generated by any regular expression.

e Examples:

— Matching parentheses
— Nested comments

Context-Free Grammars

e Context-Free Grammars consist of a set of productions.
symbol — symbol symbol ... symbol

e Symbol types:
— terminal that corresponds to a token-type.

— non-terminal that denotes a set of strings.
o Left-Hand Side (LHS) - non-terminal.
e Right-Hand Side (RHS) - terminals or non-terminals
o Start Symbol - A special non-terminal.

e Each production specifies how terminals and non-terminals may be combined to
form a substring in language.

e Easy to specity recursion:

stmt — IF exp THEN stmt ELSFE stmt

Start Symbol

e String of token-types is in language described by grammar if it can be derived from
start symbol
e Derivations:
1. begin with start symbol
2. while non-terminals exist, replace any non-terminal with RHS of production
e Multiple derivations exist for given sentence
— Left-most derivation - replace left-most non-terminal in each step.

— Right-most derivation - replace right-most non-terminal in each step.

Example

Non-Terminals:

stmt : Statement stmt — stmt; stmt
expr : Expression stmt — ID = expr
expr_list : Expression List stmt — PRINT (exprlist)

Terminals (tokens):

n.n expr — ID
i ; GIPF - x\r[:;\[
ZI-\];SIGN LEEL erpr — expr+ erpr
LPAREN " (; expr — (. stmt, expr)
RPAREN)" expr_list — expr
I;[L]?IS nyn expr_list — expr_list, expr

PRINT "print"
COMMA ", "

Example: Leftmost Derivation

Show that expression can be derived from start symbol.

ID := NUM; PRINT (NUM)

a := 12; print(23)

Example: Rightmost Derivation

Show that expression can be derived from start symbol.

ID := NUM; PRINT (NUM)

a := 12; print (23)

Parse Trees

e Parse Trees - Graphical representation of derivation.
e Each internal node 1s labeled with a non-terminal.
e Each leaf node 1s labeled with a terminal.

o Parse Tree of the example using right-most derivation production:

Ambiguous Grammars

A grammar is ambiguous if it can derive a string of tokens with two or more different
parse trees.

Consider: 4 + 5% 6
NUM (4) PLUS IETUM(S) MULT NUM (6)

expr : Expression /N

Non-Terminals:

Terminals (tokens): E + E
ID NUM®#) E * E
NUM ‘ ‘
PLUS "+4" NUM(5) NUM(6)
MULT """
E
expr — ID P
expr — NUM E * E
expr — expr + expr e
expr — expr k exrpr]": + E NUM(6)
NUM#4) NUM(S)

Ambiguous Grammars

e Problem: compilers use parse trees to interpret meaning of parsed expressions.
— Different parse trees may have different meanings, resulting in different inter-
preted results.
— For example, does 4 + 5 * 6 equal 34 or 54?
e Solution: rewrite grammar to eliminate ambiguity.
— If language doesn’t have unambiguous grammar, then you have a bad program-
ming language.
— Operators have a relative precedence. We say some operands bind tighter than
others. (“*” binds tighter than “+)

— Operators with the same precedence must be resolved by associativity. Some
operators have /eft associativity, others have right associativity.

Ambiguous Grammars

Non-Terminals:

expr : Expression 14+5%6
term : Term (add) NUM (4) PLUS IEIUM(S) MULT NUM (6)

fact : Factor (mult) M
Terminals (tokens):

E
expr — expr + term ‘ /’\
F

expr — term T‘ |
NUM(4) F

term — fact |

fact — ID NUM(S)
fact — NUM

term — term* fact

End-Of-File Marker

e Parse must also recognize the End-of-File (EOF).
e EOF marker in the grammar is “$”

e Introduce new start symbol and the production £’ — E$

Grammars and Lexical Analysis

e Grammars can also describe token structure:
(a | b)* abb
W — oW
W — bW
W — aX
X —bY
Y = b7
Z — ¢

e Can combine lexical analysis and syntax analysis into one module.
e Disadvantages:
— Regular expression specification is more concise.

— Separating phases increases compiler modularity.

Context-Free Grammars and REs

e Context-free grammars are more powerful than regular expressions.

— Any language that can be generated using regular expressions can be generated
by a context-free grammar.
— There are languages that can be generated by a context-free grammar that cannot
be generated by any regular expression.
e As a corollary, CFGs are strictly more powerful than DFAs and NFAs.
e The proofis in two parts:
— Given a regular expression R , we can generate a CFG G such that L(R) =— L(G).

— We can define a grammar G for which there there is no FA F such that L(F) ==
L(G).

Context Free Grammars and REs

Base Cases:
e Symbol (a):
RE — a
e Epsilon (e):
RE — ¢
Inductive Cases:

e Alternation (M
RE — M
RE — N

;‘\Y)Z

e Concatenation (M N):
RE — M N

e Kleen closure (M):
RE — M RE
RE — ¢

Context-Free Grammar with no RE/FA

S — (8)

S — €

e FAs have a FINITE number of states, [NV

e FA must “remember” number of “(”’s, to generate ©)’s

e Atorbefore NV + 1 “(”s FA will revisit a state.

o That state represents two different counts of *“)”’s.

e Both counts must now be accepted.

e One count will be invalid.
Representations

e Regular, right-linear, finite-state grammars: FAs

e Context-free grammars: Push-Down Automata

Further Exploration

We have been talking about Context-Free Grammars.

What is a context-sensitive grammar?

Parsing

Front End:
e Lexical Analysis - Break source into rokens.
e Syntax Analysis - Parse phrase structure.
e Semantic Analysis - Calculate meaning.
Our Compiler:

Stream of Abstract
Source Tokens Syntax Tree IR Target
— e

Lexer Parser FE” Back End

Parser Functions:
e Verity that token stream is valid.
o If it is not valid, report syntax error and recover.

e Build Abstract Syntax Tree (AST).

Outline

Recursive Descent Parsing
Shift-Reduce Parsing

ML-Yacc

Recursive Descent Parser Generation

Recursive Descent Parsing

e Recall discussion on Context-Free Grammars: symbols (terminal, non-terminal),
productions, derivations, etc.

e Can parse many grammars using algorithm called recursive descent parsing.

— A KA. predictive parsing

— AK.A.: top-down parsing

- AKA.: LL(]) - Left-to-right parse, Leftmost-derivation, 1-symbol lookahead.
¢ One recursive function for each non-terminal.

e Each production becomes clause in function.

Example

Grammar:
non-terminals: S, L, E

terminals: IF (if) , THEN (then) , ELSE (else), BEGIN (begin) ,
PRINT (print) , END (end) , SEMI (;), NUM, EQ(=)

S — if'E then S else S
S — begin SL
datatype token = EOF | IF | THEN | ELSE | BEGIN |

S — printE
L — end PRINT | END | SEMI | NUM | EQ
L— SL val tok = ref (getToken())
E — num = num fun advance() = tok := getToken()
fun eat(t) = if (!tok = t) then advance() else error()
fun S() = case !tok of
IF => (eat(IF); E(); eat (THEN); S();
eat (ELSE) ; S())
BEGIN => (eat (BEGIN); S(); L())
PRINT => (eat (PRINT); E())
and L() = case !tok of
END => (eat(END))
SEMI => (eat(SEMI); S(); L())
and E() = (eat (NUM) ; eat (EQ); eat (NUM))

Another Example

Grammar:
A — SEOF b= id
S id—F E — num
S — print (L) L—E
L—LE
fun A() = (s(); eat (EOF))
and S() = case !tok of
1D => (eat (ID); eat (ASSIGN); E())
PRINT => (eat (PRINT); eat (LPAREN) ;
L(); eat (RPAREN))
and E() = casge !tok of
ID => (eat (ID))
NUM => (eat (NUM))
and L() = case !tok of
ID => (?2?2727?27?)
NUM => (?22?2?2?)

The Problem

o [f Itok = ID, parser cannot determine which production to use:
L—E (E could be ID)
L—LE (L could be ID)

e Predictive parsing only works for grammars where first terminal symbol of each
subexpression provides enough information to choose which production to use.

e Can write predictive parser by eliminating /eff recursion.

L—EM
L—E
L—-LE — M-—,EM
M— e
and L() = case !tok of
1D => (EQ(); M())
NUM => (EQ); M(O))
and M() = case !tok of
COMMA => (eat(COMMA); E(); M())

RPAREN => ()

Another Option: Shift-Reduce Parsing

o Given next input token, predictive parser must predict which production to use.

o Shift-reduce parsing delays decision until it has seen input token corresponding to
entire RHS of production.

— AK.A.: bottom-up parsing
— AKA.: LR(k) - Left-to-right parse, Rightmost derivation, k-token lookahead

e Shift-reduce parsing can parse more grammars than predictive parsing.
e Parser has srack.
¢ Based on stack contents and next input token, one of two action performed:

1. Shift - push next input token onto top of stack.
2. Reduce - choose production (X — ABC); pop oft RHS (C, B, A); push LHS (X).

e Stack is initially empty.
o Parser points to beginning of input stream.

o If $ is shifted, then input stream has been parsed successfully.

Shift-Reduce Parsing

How does parser know when to shift or reduce?

o DFA: applied to stack contents, not input stream
e Each state corresponds to contents of stack at some point in time.

e Edges labelled with terms/non-terms that can appear on stack.

Example

Grammar:
1A — SEOF
2S— (L)

3S —id =num
4L —1L1;S
5L—S

Input:
(a=4b=5)— (ID, = NUMy IDy= NUDM;)

input: (ID = NUM ; ID = NUM)

stack:
action: shift

30

Example

input: (ID = NUM ; ID = NUM
stack: (
action: shift
input: (ID = NUM ; ID = NUM
5 |
stack: (ID
action: shift
input: (ID = NUM ; ID = NUM
3 |
stack: (ID =
action: shift
input: (ID = NUM ; ID = NUM
4 |
stack: (ID = NUM
action: reduce 3
31
Example
input: (ID = NUM ; ID = NUM
|
N stack: (S
action: reduce 5
input: (ID = NUM ; ID = NUM
|
6 stack: (L
action: shift
input: (ID = NUM ; ID = NUM
- |
stack: (L ;
action: shift
input: (ID = NUM ; ID = NUM
8
stack: (L; ID
action: shift
32
Example
input: (ID = NUM ; ID = NUM
stack: (L ; ID =
action: shift
input: (ID = NUM ; ID = NUM
10
stack: (L ; ID = NUM
action: reduce 3
input: (ID = NUM ; ID = NUM
1 stack: (L ; S
action: reduce 4
input: (ID = NUM ; ID = NUM
12 stack: (L
action: shift

33

Example

NUM ; ID = NUM)

input: (ID
13 stack: (L)

action: reduce 2

input: (ID = NUM ; ID = NUM)

14 stack: S
action: ACCEPT

34

The Dangling Else Problem

e Valid Program: if a then if'b then S1 else S2

1S — ifEthen S else S
2S — ifE then S
3 S — OTHER
e 2 interpretations: if a then [if b then S1 else S2]
if a then [if b then S1] else S2
e Want first behavoir, but parse will report shifi-reduce conflict when S1 is on top
stack.

e Eliminate Ambiguity by modifying grammar (matched/unmatched):
1S—M
2S—~U
3M — if E then M else M
4 M — OTHER
5U — ifE then S
6 U — ifE then M else U

35

ML-YACC (Yet Another Compiler-Compiler)

Context-Free Parser p
— ——= Parser
Grammar Generator
(ML-YACC)
Stream of Abstract
Source Tokens Syntax Tree . R Target
——= Lexer Parser . FE Back End[— e

e Input to ml-yacc is a context-free grammar specification.

e Output from ml-yacc is a shift-reduce parser in ML.

36

Context-Free Grammar Specification

o CFG specification consists of 3 parts:

User Declarations

)
)

ML-YACC Definitions

)
%%

Rules

e User Declarlarions: define various values that are available to rules section.

e ML-YACC Definitions: declare terminal and non-terminal symbols; declare prece-
dences for terminals that help resolve shift-reduce conflicts.

o Rules: specify productions of grammar and semantic actions associated with pro-
ductions.

37

ML-YACC Declarations

e Need to specify type associated with positions of tokens in input file
%pos int
e Need to specify terminal and non-terminal symbols (no symbols can be in both lists)

$term IF | THEN | ELSE |...
$nonterm prog | stmt | expr |...

e Optionally specify end-of-parse symbol - terminals which may follow start symbol

%eop EOF

e Optionally specify start symbol - otherwise, LHS non-terminal of first rule is taken
as start symbol

$start prog

38

Attribute Grammar

o ML-YACC employs attribute grammar scheme

— Each terminal or non-terminal symbol may have associated attribute/value.

— When parser reduces using production A — e, semantic action associated with

production is exectued in order to compute value for A based on the values of
symbols in .

— Parser returns value associated with start symbol. (If no attribute, () 1s returned.)
o Can specify fypes of atttributes associtated with symbols.

Sterm ID of string | NUM of int | IF | THEN |
$nonterm prgm | stmt | expr of int |

39

Rules

symboly = symboly symboly ... symbol, (semantic_action)
¢ Semantic action typically builds piece of AST corresponding to derived string

e Can access attribute/value of RHS symbol X using X<n>>, where n specifies a par-
ticular occurrence of X on RHS.

Sterm PLUS | MINUS | NUM of int |
%nonterm exp of int |

exp: exp PLUS exp (expl + exp2)
| exp MINUS exp (expl - exp2)
| NUM (NUM)

e Type of value computed by semantic action must match type of value associated
with LHS non-terminal.

Example

o
ow

Sterm ID | NUM PLUS MINUS MULT DIV EOF
%nonterm expr

%pos int

$start expr

%eop EOF

$verbose

ae
oe

expr : ID ()
| NUM (0
expr PLUS expr ()
| exp p
expr MINUS expr ()
| exp p
| expr MULT expr 0
expr DIV expr ()
| exp p

ML-YACC and Ambiguous Grammars

e A grammar is ambiguous if it can derive a string of tokens with two or more difterent
parse trees.

e Consider: 4 +5 %6, NUM (4) PLUS NUM(5) MULT NUM(6)

E
E + E
T
expr — ID NUM(4)]|5 E
expr — NUM NUMG) NUM(6)
expr — expr + expr
expr — expr k expr) % §
E * E
] \
E N E NUM(6)
|
NUM(®4) NUM(S)

e We perfer to bind “*” tighter than “+”.

ML-YACC and Ambigous Grammars

o Similarly Consider: 4 + 5+ 6, NUM (4) PLUS NUM(5) PLUS NUM(6)
e We perfer to bind left “+” first.

o ML-YACC will report shift-redice conflicts when parsing strings.
—4+5%6,NUM(4) PLUS NUM(5) MULT NUM (6)

+ At some point, E + E will be on top of stack, “* will be the current token-type
in stream.

+ Parser can reduce by rule E — E + E, or shift. Prefer shifi.
—4+4+5406,NUM(4) PLUS NUM(5) PLUS NUM(6)

+ At some point, E + E will be on top of stack, “+” will be the current token-type
in stream.

« Parser can reduce by rule E — E + E, or shift. Prefer reduce.

3

Directives

Three Solutions:

1. Let YACC complain, but demonstrate that its choice (to shift) was correct.

2. Rewrite grammar to eliminate ambiguity.

3. Keep grammar, but add precedence directives which enable conflicts to be resolved.
Use $left, %right, $%nonassoc

e For this grammar:
%¥left PLUS MINUS
%¥left MULT DIV
e PLUS, MINUS are left associative, bind equally tightly

o MULT, DIV are left associative, bind equally tightly
e MULT, DIV bind tighter than PLUS, MINUS

44

Directives

e Given directives, ML-YACC assigns precedence to each terminal and rule
— Precedence of terminal based on order in which associativity specified

— Precedence of rule is the precedence of right-most terminal. For example, prece-
dence(E — E + E) = precedence(PLUS).

e Given shift-reduce conflict, ML-YACC performs the following:
1. Find precedence of rule to be reduced, terminal to be shifted.
2. prec(terminal) > prec(rule) = shift.
3. prec(rule) > prec(terminal) = reduce.
4. prec(terminal) = prec(rule), then:
— assoc(terminal) = left = reduce.
— assoc(terminal) = right = shift.
— assoc(terminal) = nonassoc = report as error.

45

Precedence Examples

input: 4 + 5 * 6

1 stack: 4 + 5
action: prec(*) > prec(+) -> shift
input: 4 * 5 + 6
2 stack: 4 * 5
action: prec(*) > prec(+) -> reduce
input: 4 + 5 + 6
3 |

stack: 4 + 5
action: assoc(+) = left -> reduce

a6

Default Behavior

‘What if directives not specified?

o shift-reduce: report error, shift by default.

e reduce-reduce: report error, reduce by rule that occurs first.
‘What to do:

o shift-reduce: acceptable in well defined cases (dangling else).

e reduce-reduce: unnacceptable. Rewrite grammar.

47

Direct Rule Precedence Specification

Can assign specific precedence to rule, rather than precedence of last terminal.
e Use the %oprec directive.
o Commonly used for the unary minus problem.
%left PLUS MINUS
$left MULT DIV
o Consider —4 * 6, MINUS NUM (4) MULT NUM (6)
o We perfer to bind left unary minus (“-”) tighter. Here, precedence of MINUS is
lower than MULT, so we get — (4 % 6), not (—4) % G.
¢ Solution:

%left PLUS MINUS
$left MULT DIV
$left UMINUS

exp : MINUS expr $%$prec UMINUS ()
| expr PLUS expr ()...

48

Syntax vs. Semantics

Consider language with two classes of expressions
e Arithmetic expressions (ae)
ae : ae PLUS ae ()
| D 0
® Boolean expressions (be)

be : be AND be ()
| be OR be ()
| be EQ be ()
| D ()
e Consider: a := b, ID(a) ASSIGN ID(b):
— Reduce-reduce conflict - parser can’t choose between be — ID or ae — ID.

— For now ae and be should be aliased - let semantic analysis (next phase) determine
thata & b + cisatype error.

— Type checking cannot be done easily in context free grammars.

a9

Recursive Descent/Predictive/LL(1) Parser Generation

Grammar:

A — SEOF E—id

: . E — num

S—id:=E

S — print (L) L—E
P L-LE

fun A()
and S() = case !tok of
ID => (eat (ID); eat(ASSIGN); E())
PRINT => (eat (PRINT); eat (LPAREN) ;
L(); eat (RPAREN))
and E() = case !tok of

(s(); eat (EOF))

D => (eat (ID))

NUM => (eat (NUM))
and L() = case !tok of

ID => (?2?2?2??)

NUM => (?2?2?27?7?)

Problem

¢ Based on current function and next token-type in input stream, parser must predict
which production to use.

o [f Itok = ID, parser cannot determine which production to use:
L—E (E could be ID)
L—LE (L could be ID)

e Predictive parsing only works for grammars where first terminal symbol of each
subexpression provides enough information to choose which production to use.

Formal Techniques

Can use formal techniques to determine whether or not a predictive parser can be built
for a particular grammar.

o Let ~ be a string of terminal and non-terminal symbols
o Need to compute 3 values:

1. For each ~ corresponding to RHS of production, must determine if can derive
empty string (¢) = nullable.

2. For each ~ corresponding to RHS of production, must determine set of all termi-
nal symbols that can begin any string derived from -y = first(v).

3. For each non-terminal X' in grammar, must determine set of all terminal symbols
that can immediately follow X in a derivation = follow(X).

Computation of Nullable:

-~ 1s nullable if every symbol S € ~ is nullable.
— Check if every S can derive e.

Computation of First

o If 7' is a terminal symbol, then first(T") = {T'}.

o If X 1s a non-terminal and X — Y7Y5Y5...Y,, then
first(Y7) € first(X)
first(Y5) € first(X), 1f Y] 1s nullable
first(Y3) € first(X), 1f Y3, Y5 1s nullable

first(Y,) € first(X), if Y7, Y5, ... Y, 1s
nullable

o Let v =.5.5;...5%. Then,

first(Sy)
first(Sz), if Sy 1s nullable
first(v) = { first(Sy), if Sy, S» 1s nullable

first(S), 1f S1, 5o, ..., Sp—1 1s nullable

Computation of Follow

Let X, Y be non-terminals; 7, 1, and ~, be strings of terminals and non-terminals
e if grammar includes production: X — ~Y
= follow(X) € follow (Y).
e if grammar includes production: X — 1Y
= first (72) € follow (Y)
= follow (XX) € follow (Y"), if 72 1s nullable.
Perform iterative technique in order to compute nullable, first, and follow sets for each
non-terminal in grammar.

Building a Predictive Parser

7 — XYZ Y — ¢ X — a
Z — d Y —e€ X —DbYe
Initial:
nullable first follow
Z |no
Y |no
X|no

Examine each production in grammar, modifying nullable and adding to first and follow
sets, until no more changes can be made.

Iteration 1:
nullable first follow

no
no
no

> =< N

Building a Predictive Parser

7 — XYZ Y — ¢ X —a
Z — d Y —¢ X —DbYe

Iteration 1:

nullable first follow
Z |no
Y | yes
X |no
Iteration 2: Iteration 3:
nullable first follow nullable first follow
Z |no Z |no d,ab
Y |yes Y | ves c ed.ab
X |no X |no ab c¢dab
No Changes

Predictive Parsing Table

nullable first follow
Z [no d,a,b
Y |yes c e, d,ab
X |no ab cdab
Build predictive parsing table from nullable, first, and follow sets.
|a b c d e
ZI\Z—=XYZ Z—-XYZ Z —d
Y|V —e Y — € Y—-cY—¢eVY —e¢

XX —a X = bYe
e Enter S — ~ inrow S, column 7" for each 7" € first(y).
e If v is nullable, enter S — ~ in row S, column 7": for each 1" € follow(S).

e Entry in row S, column 7" tells parser which clause to execute if current function is
S() and next token-type is 7'

e Blank entries are syntax errors.

Predictive Parsing Table

It the predictive parsing table contains no duplicate entries, can build predictive parser
for grammar.
e Grammar is LL(1) (left-to-right parse, left-most derivation, 1 symbol lookahead).
e Grammar is LL(k) if its LL(k) predictive parsing table has no duplicate entries.
— Rows correspond to non-terminals, columns correspond to every possible se-
quence of k terminals.

— The first(y) = set of all k-length terminal sequences that can begin any string
derived from ~.

— LL(k) paring tables can be too large.
— Ambiguous grammars are not LL(k), V k.

Example
SN S— IFETHENAELSEA T — NUM
S—E E—E+T A— ID=NUM

S— IFETHENA FE—=T

Iteration 1: Iteration 2:

nullable first follow nullable first follow

S no S"no IF

S |no IF $ S |no IF $

E |no $, THEN, + E |no NUM $, THEN, +

T |no NUM $, THEN, + T |no NUM $, THEN, +

A |no D $, ELSE A [no D $, ELSE

Example
S — 5% S — IF E THEN A ELSE A T — NUM
S — FE E—-E+T A — ID=NUM
S— IFETHENA FE—T
Iteration 3: Iteration 4:

nullable first follow nullable first follow

S’ no IF S no IF, NUM
S |no IF, NUM $ S |no IF, NUM $
E [no NUM $, THEN, + E [no NUM $, THEN, +
T |no NUM $, THEN,+ 7 |no NUM $, THEN, +
A |no D $, ELSE A |no 1D $. ELSE

No futher changes

60

Predictive Parsing Table

nullable first follow
S’ no IF, NUM
S |no IF, NUM $
E |no NUM $, THEN, +
T |no NUM $, THEN, +
A |no ID $, ELSE
Build predictive parsing table from nullable, first, and follow sets.
IF THEN | ELSE |+ |NUM 1D =93
SS'— S S’ — S
~ [s —1F ETHEN A s
S S — IF E THEN A ELSE A S—oF
E—E+1
E E—T
T T — NUM
A A — ID=NUM

Table has duplicate entries = grammar 1s not LL(1)!

Problems

E—E+T

E—=1T

o first(E+T) = first(T)

e When in function E (), if next token is NUM, parser will get stuck.

1.

e Grammar is lefi-recursive - left-recursive grammars cannot be LL(1).
e Solution: rewrite grammar so that it is right-recursive.
E—TF
E' — ¢
E'— +TFE
X — X . . N " R . .
e In general, Y —a derives strings of form a~* (o doesn’t start with X).

These two productions can be rewritten as follows:
X — aX'

Problems

S — IF E THEN A
S — IF E THEN A ELSE A
e Two productions begin with same symbol.
o first(IF £ THEN A) = first(IF £ THEN A ELSE A)
e Solution: use lefi-factoring
S — IFETHEN AV

V—e

V' — ELSE A

Example

Show that modified grammar is LL(1).

S"— S$ V — ELSE A 7 — NUM

S — FE E —TFE A — ID=NUM
S— IFETHEN AV E' — ¢

V—e E'— +TE

Example

Show that the grammar 1s LL(1).

65

Example
Show that modified grammar 1s LL(1). Build predictive parsing table.
nullable first follow
S’ |no IENUM
S |no IENUM $
V |yes ELSE $
E |no NUM §, THEN
L' |yes + $, THEN
T |no NUM §, THEN, +
A |no 1D) $. ELSE
TF THEN |ELSE + NUM D 5
S =5
S |S—IFETHENAV S—F
v V — ELSE A Ve
E E—TE
E E —e E — +TE E —e
T T — NUM
A A — ID=NUM

Table does not have duplicate entries = modified grammar is LL(1)!

66

Outline

e LR(0)
e SLR

e LR(1)

e LALR(1)

67

Shift-Reduce, Bottom Up, LR(1) Parsing

& Shift-reduce parsing can parse more grammars than predictive parsing.
o Shifi-reduce parsing has stack and input.
« Based on stack contents and next input token, one of two action performed:

1. Shift - push next input token onto top of stack.
2. Reduce - choose production (X — ABC); pop off RHS (C, B, A); push LHS (X).

o If § is shifted, then input stream has been parsed successfully.

68

LR(K)

Can generalize to case where parser makes decision based on stack contents and next k
tokens. LR(k):

e Left-to-right parse
e right-most derivation
e k-symbol lookahead
LR(k) parsing, k& > 1, rarely used in compilation:
e DFA too large: need transition for every sequence of £ terminals.

e Most programming languages can be described by LR(1) grammars.

69

Shift Reduce Parsing DFA

Parser uses DFA to make shift/reduce decisions:
e Each state corresponds to contents of stack at some point in time.
e Edges labeled with terminals/non-terminals.

Rather than scanning entire stack to determine current DFA state, parser can remember
state reached for each stack element.

e Transition table for LR(1) or LR(0) DFA:
| Terminals (13, T,, 1)) |Non-Terminals (N1, No, . . .,] N,)

1 actions actions

2 sn — shift n 9z — goto z
3 rk — reduce k

: a — accept

n — error

Parsing Algorithm

Look up DFA state on top of stack, next terminal in input:

o shift(n):
— Advance input by one.
— Push input token on stack with 7 (the new state).

e reduce(k):
— Pop stack as many times as number of symbols on RHS of rule /.
—Let X be LHS of rule &
— In state now on top of stack, look up X to get goto(z)
— Push X on stack with = (the new state).

e accept — stop, report success.
e error — stop, report syntax error.

To understand LR(k) parsing, first focus on LR(0) parser construction using an example.

LR(0) Parsing

18 - 5% 39 - x 5L—L.S
28— (L) 4L — S

Initially, stack empty, input contains “S” string followed by a $”:

e Combination of production and . called LR(0) item.

g . S$ e ‘. specifies parser position.
S —=.(L) e Three items represent closure of: S" — .S'$
S — x
e Closure adds more items to a set when dot exists to left of

a non-terminal.

LR(0) States

LR(0) Parsing
AT 38— x 5L—L,S
25— (L) 4L — S

LR(0) states:

DFA Table Entry Computation

To compute transition table from state diagram perform the following:

o [S" = S.§|= table[i, $] = a.

o -2 , Terminal 7" = table[z, T] = sj.
o |2 |, Non-Terminal N = table[i, N]=gj.

. i = table[i, 7] = rk, for all terminals 7.

Transition Table

() X ., $ % S L

=B B e R R L

o

No duplicate entries = grammar is LR(0)

Using The Transition Table

158" —=5S%$ 35— x 5L— LS
28— (L) 4L — S
STACK INPUT ACTION
() x $19 S L 1 (x, x) $ shift 3
1s3 s2 29 1 (3 X x) $ shift 2
213 3 13 3 13 1 (3 x2 x) $ reduce 3
3|s3 s2 o5 g4 1 (3 s5 x) $ reduce 4
4 s6 s7 1 (3 L4 x) $ shift 7
514 14 14 4 14 1 (3 L4 ,7 x) $§ shift 2
612 12 122 12 12 1 (3 L4 ,7 %2) $ reduce 4
7|s3 s2 g8 1 (3 L4 ,7 S8) $ reduce 5
85 15 15 5 15 1 (3 L4) $ shift 6
9 a 1 (3 L4)6 $ reduce 2
1 S9 $ accept
76
Another Example
18 —=FES3 3E—T 47T — x
2E —-T+F
LR(0) states:
Another Example - SLR
Transition Table:
| + x $|9 ET
1 s3 g2 g4
2 a
3| 4 414
418513 13 13
5 s3 g6 g4
6| 12 12 12

Duplicate entries = grammar is NOT LR(0)
Can make grammar bottom-up parsable using more powerful parsing techniques: SLR
(Simple LR)

o Use same LR(0) states.
. Z = table[i,7"] = reduce(k), for all terminals 7" € follow(A)

Another Example — SLR

Transition Table:

T xS ET Follow Set Computation:
1 3 2 ¢4 -
) ® a & 8 |nullable first follow
o7
3 4 4w Z_ X
4|s5/13 13 13 T o A
5 s3 g6 g oo x
6] 2 1212
SLR Transition Table:
+ x $|8 E T
18 - ES$ 3E—T é 53 . g2 ¢4
2F—=T+FE 47T — x 3|4 o
41s5 13
5 s3 g6 g4
6 12
No duplicate entries = grammar is SLR.
Yet Another Example
Sometimes grammar can’t be parsed using SLR techniques.
18 —5% 38— FE 5V — x
28 =-V=E 4F -V 6V — *E

This grammar 1s not SLR. Need more powertul parsing algorithm = LR(1)

80

LR(1) Parsing

e LR(1) item consists of two components: (A — «.[3, X)
1. Production
2. Lookahead symbol (x)
e o 1s on top of stack, head of input 1s string derivable from 3 x.
LR(0) closure computation LR(1) closure computation
— Initial: A — 0. X[, z

— Add all items (X — .+, w) for
each w € first(5z)

—Imtial: A — . X
— Add all items X — .~

— Repeat closure computation .
— Repeat closure computation

« shift, goto, accept table entries computed same way as LR(0)/SLR.

o reduce entries computed differently:

l = table[i,z] = reduce(k)

81

Yet Another Example — LR(1)

15 —5%
28 -V=F

35 = F
4F -V

5V — x

6V — *E

LR(1) states:

82

Yet Another Example — LR(1)

= x * $|9 S5 L V
1 sIl s12 g2 gl0 g3
2 a
3 |s4 4
4 s7 s8 g5 g6
5 2
6 4
7 5
8 s7 s8 g9 g6
9 16
10 3
11|15 S
12 sl sl2 gl3 gl4
13{r6 6
14{r4 4

No duplicate entries = grammar i1s LR(1)

83

LALR(1)

o Problem with LR(1) parsers: tables too large!

— Can make smaller table by merging states whose items are identical except for
look-ahead sets = LALR(1) (Look-Ahead LR(1)).

— LALR(1) transition table may contain shift-reduce/reduce-reduce conflicts where
LR(1) table has none.

84

LALR(1)

85

Can make smaller table by merging states whose items are identical except for look-

ahead sets = LALR(1) (Look-Ahead LR(1)).

X 1SS L v
1 sl sl2 g2 gl0 g3
2 a
3 s4 4
4 s7 s8 25 26
5 2
6/14 |14 4
7/11 |15 S
8/12 s7/11 s8/12 g9/13 g6/14
9/13 |16 6
10 3

No conflicts = grammar is LALR(1).

Parsing Powe

r

86

Unambiguous Grammars

Ambiguous
Grammars

ML-YACC uses LALR(1) parsing because reasonable programming languages can be
specified by an LALR(1) grammar. (Figure from MCI in ML.)

Parsing Error Recovery

87

Syntax Errors:

e A Syntax Error occurs when stream of tokens 1s an invalid string.

¢ In LL(k) or LR(k) parsing tables, blank entries refer to syntax errors.

How should syntax errors be handled?

1. Report error, terminate compilation = not user friendly

2. Report error, recover from error, search for more errors = better

Error Recovery

Error Recovery: process of adjusting input stream so that parsing may resume after
syntax error reported.

e Deletion of token types from input stream
e Insertion of token types
e Substitution of token types
Two classes of recovery:
1. Local Recovery: adjust input at point where error was detected.
2. Global Recovery: adjust input before point where error was detected.

These may be applied to both LL and LR parsing techniques.

88

LL Local Error Recovery

Consider LL(1) parsing context:

7 — XYZ Y — ¢ X — a
Z — d Y —e X —=>bYe
nullable first follow
Z [no a,b.d
Y |yes c a,b,d.e
X |no ab abcd
|a b c d e
Z\Z—-XYZ Z—XYZ Z —d
Y|V —e€ Y —e€ Y—=cY—eY —e

XX —a X —bYe

89

LL Local Error Recovery

Local Recovery Technique: in function A(), delete token types from input stream until
token type in follow(A) found = synchronizing token types.

datatype token = a | b | ¢ | d | e;

val tok = ref (getToken()) ;

fun advance() = tok := getToken() ;
fun eat(t) = if(!tok = t) then advance() else error();
and X() = case !tok of
a => (eat(a))

| b => (eat(b); Y(); eat(e))

| ¢ => (print "error!"; skipTola,b,c,d])

| d => (print "error!"; skipTola,b,c,dl)

| e => (print "error!"; skipTola,b,c,d])

and skipTo (synchTokens) =
if member (!tok, synchTokens) then ()
else (eat(!tok); skipTo (synchTokens))

90

LR Local Error Recovery

Consider:
1E 1D 3E - (E) 5ES — ES:E
2F - E+FE 4FES —FE

e Match a sequence of erroneous input tokens using the error token (a terminal).

6 E — (error) 7TES —error; E

o In general, follow error with synchronizing lookahead token.
1. Pop stack (if necessary) until a state is reached in which the action for the error
token 1s shift.
2. Shift the error token.

3. Discard mnput symbols (if necessary) until a state is reached that has a non-error
action in the current state.

4. Resume normal parsing.

91

Global Error Recovery

Consider LLR(1) parsing:
let type a := intArray[10] of 0 in ... end

Local Recovery Techniques would:

1. report syntax error at “:=’

2. substitute ‘=’ for “:=

3. report syntax error at ‘[’

4. delete token types from input stream, synchronizing on ‘in’
Global Recovery Techniques would substitute ‘var’ for ‘type’:

e Actual syntax error occurs before point where error was detected.

e ML -Yacc uses global error recovery technique = Burke-Fisher

e Other Yacc versions employ local recovery techniques.

92

Burke-Fisher

Suppose parser gets stuck at 7" token in input stream.
ppose p g p

e Burke-Fisher repairer tries every single-token-type sertion, deletion, and substitu-
tion at all points between (n — %)™ and n™ token.

n-k n-k+1 n-1 n

o Best repair: one that allows parser to parse furthest past n'” token.

e [f languages has N token types, then:
total # of repairs = deletions + insertions + substitutions
total # of repairs = (k) + (A + 1) N + (k) (N — 1)

93

Burke-Fisher

In order to backup K tokens and reparse repaired input, 2 structures needed:

1. k-length buffer/queue - if parser currently processing n'" token, queue contains to-
kens (n — k) — (n —1). (ML-Yacc £ = 15)

2. old parse stack - if parser currently processing n"" token, old stack represents stack
. th
state when parser was processing (n — k)™ token.

e Whenever token shifted onto current stack, also put onto queue tail.
e Simultaneously, queue head removed, shifted onto old stack.

e Whenever token shifted onto either stack, appropriate reductions performed.

94

Burke-Fisher Example

6-token queue

e Semantic actions are only applied to old stack.

— Not desirable if semantic actions affect lexical analysis.
— Example: typedef in C.

(Figure from MCI/ML.)

95

Burke-Fisher

For each repair R that can be applied to token (n — k) — n:

1. copy queue, copy n'" token

2. copy old parse stack

3. apply R to copy of queue or copy of n'" token

4. reparse queue copy (and copy of n'" token) from old stack copy
5. evaluate R

Choose best repair R, and apply.

96

Burke-Fisher in ML-YACC

97

Semantic Values

e Insertions need semantic values

$value ID {"bogus"}
$value INT {1}
$value STRING { "STRING")

Programmer-Specified Substitutions
¢ Some single token insertions and deletions are common.

e Some multiple token insertions and deletions are common.

%change EQ -> ASSIGN | SEMICOLON ELSE -> ELSE
| -> IN INT END

