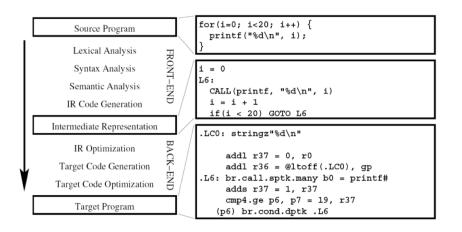
Topic 1: Introduction

COS 320

Compiling Techniques

Princeton University Spring 2018

Prof. David August


The Usual Suspects

- Me: Prof. David August, 221 CS Building august@ Office Hours: Tu/Th after class <u>and</u> by appointment
- TA: Sotiris Apostolakis, 226 CS Building sapostolakis@Office Hours: M/W 1-2PM and by appointment

What is a Compiler?

- A *compiler* is a program that takes a program written in a *source language* and translates it into a functionally equivalent program in a *target language*.
- Source Languages: C, C++, Swift, FORTRAN,...
- Target Languages: x86 Assembly, Arm, Assembly, C,...
- Compiler can also:
 - Report errors in source
 - Warn of potential problems in source
 - Optimize program

What is a Compiler?

Why Learn About Compilers?

Compiler technology everywhere.

- C++ \rightarrow Assembly
- Assembly → Machine Code
- Microcode → microcode binary
- Interpreters: Perl, Python, Java, ...
- JITs: Android Dalvik VM, Java VM, ...
- Publishing: Latex \rightarrow PDF \rightarrow Print on Paper
- Hardware Design: HW Description → Circuit/FPGA
- SPAM → /dev/null
- Automation: Water Fountain DL → Water Display
- Next Revolution in Processors

Why Learn About Compilers?

Almost all code goes through a compiler.

Linux

- C = 2,558,100 lines
- x86 assembly = 12,164 lines

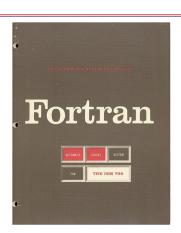
99.5% of Linux source goes through a compiler!

Compilers teach us about:

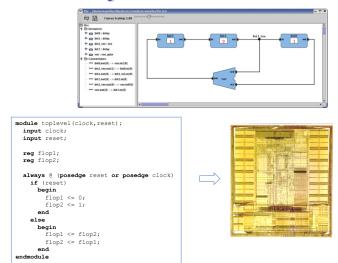
- Programming Languages
- Computer Architectures

Bellagio, Las Vegas

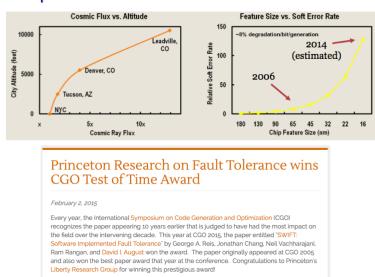
```
sum = 0;
for(i = 0; i < 1000000; i++)
{
    sum = sum + big_array[i];
    }
    sum = sum + big_array[i+1];
    sum = sum + big_array[i+2];
    sum = sum + big_array[i+3];
}</pre>
```

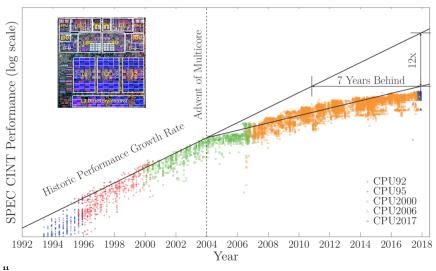

Why Learn About Compilers?

• IBM developed the first FORTRAN compiler in 1957

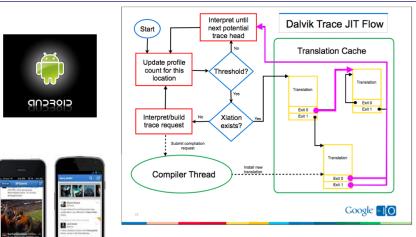

7

8

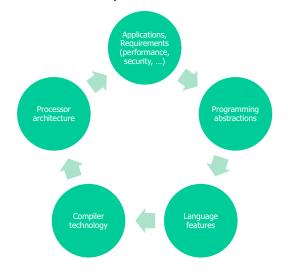

- Took 18 person-years of effort
- You will be able to do it in less than a week!


Why Learn About Compilers? Hardware Design

Why Learn About Compilers? Computer Architecture



Why Learn About Compilers?


Your chosen field of computer architecture effectively dead?

Why Learn About Compilers?

Why Learn About Compilers?

Your chosen field of computer architecture effectively dead?

13

Why Take 320 Seriously?

Why Take 320 Seriously?

Dear Professor August,

Having had almost a year to digest COS 320, I wanted to add to my course review:

Last summer, a significant portion of my internship was based around compilers. We had a "language" that we provided to non-CS people, and when they inserted it into their work, it turned into complicated diagrams and pictures. We could also reuse nodes, building what was essentially ASTs. I actually really enjoyed that component of my work, and I thought it was a very efficient way of structuring our code.

I appreciated COS 320, and I'm glad I took it. Thank you for providing the opportunity.

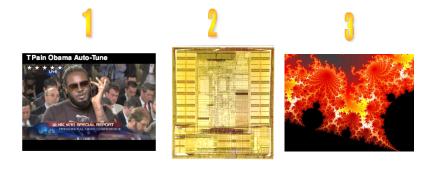
Why Take 320 Seriously?

Grading

Assignments	50%
Exams	50%
Quizzes	Extra Credit
Participation	Extra Credit

17

Exams


- Exams cover concepts presented in the lecture material, homework assignments, and/or required readings
- One double sided 8.5x11 page of notes allowed

Midterm Exam

- Thursday before break
- In class

Final Exam

- The final exam will be cumulative, three hours in length
- Time/Place determined by the Registrar

If the random number is the picture of a "processor", then we have a quiz.

19

Quizzes

- Chance quiz at the beginning of each Tuesday class
- Not intended as a scare tactic liberally graded
- Helps assess progress of class
- Just one question usually

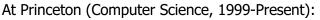
Participation

Negatives

- Class disruptions (snoring, email, reading a book, etc.)
- Mistreatment of TAs

Positives

- Contribute questions and comments to class
- Participate in discussions
- Feedback
- Stop by office hours to introduce yourself


Reading

- Optional: Jeffrey D. Ullman, Elements of ML Programming, 2nd Edition, Prentice Hall.
- Required: Andrew W. Appel, Modern Compiler Implementation in ML. Cambridge University Press.
- CHECK ERRATA ON BOOK WEB SITES!
- Course Web Page Off of CS page
 - Lecture Notes
 - Project Assignments
 - Course Announcements

22

Who Am I?

- Professor
- Compiler and computer architecture research
- Liberty Research Group

Education (Ph.D. in 2000):

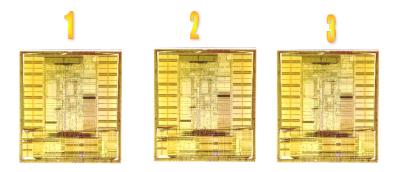
- Ph.D. Electrical Engineering from University of Illinois
- Thesis Topic: Predication
- The IMPACT Compiler Research Group

23

Who Am I?

Professional Experience:

- Intel (Oregon) P6 multiprocessor validation
- Hewlett-Packard (San Jose, CA) research compiler
- Intel (Santa Clara, CA) IA-64 design
- Startups inspired by compiler technology
- Consulting for Intel, Google, LG, Samsung, Amazon, etc.



Our Pledge to You

- Quick response to questions and issues
- Reasonable late policy
 - Up to 3 days late for any single assignment without penalty
 - Up to 7 days late total across all assignments
 - Contact me prior to deadline for special circumstances
- Fast turn-around on grading

END OF ADMINISTRATIVE STUFF

It's Tuesday: Pick a number 1,2,3

26

Quiz 0: Background (use index cards)

Front:

- 1. Full name and Email Address above the red line
- 2. Major/UG or G/Year (immediately below the red line)
- 3. Area (G: Research Area/UG: Interests)
- 4. Level of interest in "Research Project"
- 5. Briefly describe any ML experience.
- 6. Briefly describe any C/C++ experience.
- 7. Briefly describe any compiler experience.
- 8. In which programming languages are you fluent? Back:
- 1. Why do processors have registers?
- 2. What is an instruction cache?
- 3. Can one always convert an NFA to a DFA? (yes, no, or
- what?)

27