Type analysis

Lennart Beringer

COS320, Compiling Techniques, Spring 2011
See cos320/typelecture.pdf

February 2011

Where are we?

Syntactic
Semantic analysis
Backend
analysis

language specific, may reject programs

- Purpose \& core challenges of type analysis
- Step-by-step development of type system for FUN-like (but slightly different) language

Motivation

Purpose of type systems (I)

For programmers:

Motivation

Purpose of type systems (I)

For programmers:

- help to eliminate common programming mistakes, particularly those that may lead to runtime errors
- provide abstraction and modularization discipline: can substitute code with code of equal type without breaking surrounding code (interface/signature types)
For language designers:

Motivation

Purpose of type systems (I)

For programmers:

- help to eliminate common programming mistakes, particularly those that may lead to runtime errors
- provide abstraction and modularization discipline: can substitute code with code of equal type without breaking surrounding code (interface/signature types)
For language designers:
- structuring principle for programs
- basis for studying (interaction between) language features such as exceptions, references, IO-side effects,...
- formal basis for reasoning about program behaviour (verification, security analysis,...)

Motivation

Purpose of type systems (II)

For compiler writers:

Motivation

Purpose of type systems (II)

For compiler writers:

- provide information for later phases:
- does value v fit into a single register? (size of data types)
- how should stack frame for function f be organized? (number and types of parameters and return value)
- support generation of efficient code: less code for error-handling (casting) needs to be inserted, sharing of representations (source of confusion eliminated by types)
- post-Y2k-compilers: typed intermediate languages: model each intermediate code representations as separate language, use types to communicate structural code invariants and analysis results between compiler phases (example: different types for caller/callee-registers)
- "refined" type systems: provide alternative formalism for program analysis and optimization

Motivation

Language level errors

Can eliminate many programmer mistakes, and ensure "good" (safe!) runtime behaviour:
Memory safety: can't dereference anything that's not a pointer (can't forge pointers), including nullPtr
Control flow safety: can't jump to address that doesn't contain code, can't overwrite code (e.g. return address)
Type safety: typing predictions come true at run time ("this expression will produce a string"), so operator-operand mismatches eliminated
Contrast this with C , where lots of (implicit) casting happens, and lots of errors ensue (out of bounds, buffer overflows, seg faults, security violations,...).

Type systems: limitations

Static type systems are usually:

- unable to eliminate all runtime errors:
- division by zero
- exception behaviour often not modeled/enforced
- conservative, i.e. will reject some legal programs due to undecidability. Example:
if $f(x)$ then 1 else $(5+\mathbf{t t})$
where f is some function that takes long to compute but always returns tt.
Nevertheless useful, even for more complex properties:
- termination, security
- resource consumption, adherence to usage protocols

Dynamic type systems not considered in this lecture.

Fundamental \& algorithmic tasks

Practical tasks (compiler writer): develop algorithms for type inference: given an expression e, calculate whether there is some type τ such that $e: \tau$ holds. If so, return the best such type, or (a representation of) all fitting types. May need program annotations.
type checking: given a fully type-decorated program, check that the decoration indeed respects the typing rules
Theoretical tasks (language designer):
uniqueness of typings, existence of best types
decidability \& complexity of above tasks/algorithms
type soundness: give precise definition of "good behaviour" (runtime model, error model), and prove that well-typed programs don't do wrong.
Common formalism: derivation system (cf. formal logic), i.e. set of judgments and typing rules, tree-shaped derivations

Type system for simple expressions (I)

Starting point: abstract syntax

Type system for simple expressions (I)

Starting point: abstract syntax

Step 1: define notion of types
Aim: separate integer expressions from boolean expressions, to prevent operations like $5+\mathbf{t t}$.
Thus: $\tau::=$ bool | int

Type system for simple expressions (I)

Starting point: abstract syntax

Step 1: define notion of types
Aim: separate integer expressions from boolean expressions, to prevent operations like $5+\mathbf{t t}$.
Thus: $\tau::=$ bool | int
Next: define derivation system

Derivation systems

Judgments J: logical statement (claim) that may or may not be true. Truth can only be determined once an interpretation is defined (we use intuition...).
Inference rules: Axioms: Name $\quad J \quad S C$
Rules : Name $\frac{J_{H y p_{0}} \quad \ldots J_{H y p_{n}}}{J_{\text {Concl }}} S C$
Derivation system: inductive interpretation of rules, i.e. finite trees where nodes are rule instantiations (axioms in leaves), root is overall conclusion

Derivation systems

Judgments J: logical statement (claim) that may or may not be true. Truth can only be determined once an interpretation is defined (we use intuition...).
Inference rules: Axioms: Name $\quad J \quad S C$
Rules: Name $\frac{J_{H y p_{0}} \quad \cdots J_{H y p_{n}}}{J_{\text {Concl }}} S C$
Derivation system: inductive interpretation of rules, i.e. finite trees where nodes are rule instantiations (axioms in leaves), root is overall conclusion

Type inference: construct a proof tree for the root judgment Type checking: check well-formedness of a purported proof tree Type soundness: given an interpretation of judgments, prove that derivability implies validity. Proof typically by induction: axioms establish valid judgments, non-axioms preserve validity (assuming side conditions)

Type system for simple expressions (II)

Step 2: decide on forms of judgments

$$
\vdash e: \tau
$$

Intuitive interpretation: "evaluating expression e yields value of type τ."

Type system for simple expressions (II)

Step 2: decide on forms of judgments

$$
\vdash e: \tau
$$

Intuitive interpretation: "evaluating expression e yields value of type τ."
Step 3: define inference rules, ideally syntax-directed: one rule/axiom for each syntax former

Type system for simple expressions (II)

Step 2: decide on forms of judgments

$$
\vdash e: \tau
$$

Intuitive interpretation: "evaluating expression e yields value of type τ."
Step 3: define inference rules, ideally syntax-directed: one rule/axiom for each syntax former

Axioms (for atomic expressions):

$$
\begin{aligned}
& \mathrm{TT} \overline{\vdash \mathbf{t t}: \text { bool }} \quad \mathrm{FF} \overline{\vdash \mathbf{f f}: \text { bool }} \\
& \mathrm{NUM} \frac{\vdash n: \text { int }}{} n \in\{\ldots,-1,0,1, \ldots\}
\end{aligned}
$$

Type system for simple expressions (III)

Rules for non-atomic expressions: one hypothesis for each subexpression.

Type system for simple expressions (III)

Rules for non-atomic expressions: one hypothesis for each subexpression.
Built-in operators: prevent application of built-in operators to wrong kinds of arguments.

Type system for simple expressions (III)

Rules for non-atomic expressions: one hypothesis for each subexpression.
Built-in operators: prevent application of built-in operators to wrong kinds of arguments.

$$
\begin{gathered}
\text { IOp } \frac{\vdash e_{1}: \text { int } \vdash e_{2}: \text { int }}{\vdash e_{1} \oplus e_{2}: \text { int }} \oplus \in\{+,-, \times\} \\
\text { BOP } \frac{\vdash e_{1}: \text { bool } \vdash e_{2}: \text { bool }}{\vdash e_{1} \oplus e_{2}: \text { bool }} \oplus \in\{\wedge, \vee\} \\
\mathrm{COP} \frac{\vdash e_{1}: \text { int } \vdash e_{2}: \text { int }}{\vdash e_{1} \oplus e_{2}: \text { bool }} \oplus \in\{<,=\}
\end{gathered}
$$

Type system for simple expressions (III)

Rules for non-atomic expressions: one hypothesis for each subexpression.
Built-in operators: prevent application of built-in operators to wrong kinds of arguments.

$$
\begin{gathered}
\text { IOp } \frac{\vdash e_{1}: \text { int } \vdash e_{2}: \text { int }}{\vdash e_{1} \oplus e_{2}: \text { int }} \oplus \in\{+,-, \times\} \\
\mathrm{BOP} \frac{\vdash e_{1}: \text { bool } \vdash e_{2}: \text { bool }}{\vdash e_{1} \oplus e_{2}: \text { bool }} \oplus \in\{\wedge, \vee\} \\
\mathrm{COP} \frac{\vdash e_{1}: \text { int } \vdash e_{2}: \text { int }}{\vdash e_{1} \oplus e_{2}: \text { bool }} \oplus \in\{<,=\}
\end{gathered}
$$

Conditionals: branch condition should be boolean, arms should agree on their type (τ), and overall type is τ, too

Type system for simple expressions (III)

Rules for non-atomic expressions: one hypothesis for each subexpression.
Built-in operators: prevent application of built-in operators to wrong kinds of arguments.

$$
\begin{gathered}
\text { IOp } \frac{\vdash e_{1}: \text { int } \vdash e_{2}: \text { int }}{\vdash e_{1} \oplus e_{2}: \text { int }} \oplus \in\{+,-, \times\} \\
\mathrm{BOP} \frac{\vdash e_{1}: \text { bool } \vdash e_{2}: \text { bool }}{\vdash e_{1} \oplus e_{2}: \text { bool }} \oplus \in\{\wedge, \vee\} \\
\mathrm{COP} \frac{\vdash e_{1}: \text { int } \vdash e_{2}: \text { int }}{\vdash e_{1} \oplus e_{2}: \text { bool }} \oplus \in\{<,=\}
\end{gathered}
$$

Conditionals: branch condition should be boolean, arms should agree on their type (τ), and overall type is τ, too

$$
\text { ITE } \frac{\vdash e_{1}: \text { bool } \vdash e_{2}: \tau \vdash e_{3}: \tau}{\vdash \text { if } e_{1} \text { then } e_{2} \text { else } e_{2}: \tau}
$$

Type system for simple expressions (IV)

Inference can happen top-down or bottom-up.

Exercise

Perform syntax-directed inference for the expressions

- $3+($ if $(3<5) \wedge((2+2)=5)$ then 7 else $(2 * 5))$
- $3+($ if $(3<5) \wedge((2+2)=5)$ then 7 else $(5+\mathbf{t t}))$.

Are the derivations/final judgments unique?

Type system for simple expressions (IV)

Inference can happen top-down or bottom-up.

Exercise

Perform syntax-directed inference for the expressions

- $3+($ if $(3<5) \wedge((2+2)=5)$ then 7 else $(2 * 5))$
- $3+(i f(3<5) \wedge((2+2)=5)$ then 7 else $(5+\mathbf{t t})$).

Are the derivations/final judgments unique?

Exercise (homework)

Define a simple type system for above expressions e that counts the number of atomic subexpressions.

Type system for simple expressions (IV)

Inference can happen top-down or bottom-up.

Exercise

Perform syntax-directed inference for the expressions

- $3+($ if $(3<5) \wedge((2+2)=5)$ then 7 else $(2 * 5))$
- $3+($ if $(3<5) \wedge((2+2)=5)$ then 7 else $(5+\mathbf{t t})$).

Are the derivations/final judgments unique?

Exercise (homework)

Define a simple type system for above expressions e that counts the number of atomic subexpressions.

Next: type system for languages with variables, functions, references, and products/records. These features require new types, judgment forms, and rules

Adding variables (I)

Starting point (absyn): extend syntax of expressions:

$$
e::=\ldots \mid x
$$

where x ranges over identifiers
Step 1 (types): no changes - still only booleans and integers

Adding variables (I)

Starting point (absyn): extend syntax of expressions:

$$
e::=\ldots \mid x
$$

where x ranges over identifiers
Step 1 (types): no changes - still only booleans and integers Step 2 (judgments): expressions can contain variables, hence we can only associate types with expressions if we are given the types of the variables (assumptions).

Contexts

Adding variables (I)

Starting point (absyn): extend syntax of expressions:

$$
e::=\ldots \mid x
$$

where x ranges over identifiers
Step 1 (types): no changes - still only booleans and integers Step 2 (judgments): expressions can contain variables, hence we can only associate types with expressions if we are given the types of the variables (assumptions).

Contexts

A (typing) context Γ is a partial function mapping variables to types, usually written in the form $x_{0}: \tau_{0}, \ldots x_{n}: \tau_{n}$, where all the x_{i} are distinct. Note: not all identifiers are required to occur.

Example: $\Gamma=x:$ int, y : bool, z : int

Variables (II)

Step 2 (ctd'): judgments with contexts: $\Gamma \vdash e: \tau$

Variables (II)

Step 2 (ctd'): judgments with contexts: $\Gamma \vdash e: \tau$
Step 3.1 (axioms): essentially no changes for constant expressions (just add Γ):

$$
\begin{aligned}
& \mathrm{TT} \overline{\Gamma \vdash \mathbf{t t}: \text { bool }} \quad \mathrm{FF} \overline{\Gamma \vdash \mathbf{f f}: \text { bool }} \\
& \mathrm{NUM} \overline{\Gamma \vdash n: \text { int }} n \in\{\ldots,-1,0,1, \ldots\}
\end{aligned}
$$

Variables (II)

Step 2 (ctd'): judgments with contexts: $\Gamma \vdash e: \tau$
Step 3.1 (axioms): essentially no changes for constant expressions (just add Γ):

$$
\begin{aligned}
& \mathrm{TT} \overline{\Gamma \vdash \mathbf{t t}: \text { bool }} \quad \mathrm{FF} \overline{\Gamma \vdash \mathbf{f f}: \mathbf{b o o l}} \\
& \mathrm{NUM} \overline{\Gamma \vdash n: \text { int }} n \in\{\ldots,-1,0,1, \ldots\}
\end{aligned}
$$

Novel rule (context lookup): VAR $\frac{x: \tau \in \Gamma}{\Gamma \vdash x: \tau}$

Variables (II)

Step 2 (ctd'): judgments with contexts: $\Gamma \vdash e: \tau$
Step 3.1 (axioms): essentially no changes for constant expressions (just add Γ):

$$
\begin{aligned}
& \mathrm{TT} \overline{\Gamma \vdash \mathbf{t t}: \text { bool }} \quad \mathrm{FF} \overline{\Gamma \vdash \mathbf{f f}: \text { bool }} \\
& \mathrm{NUM} \overline{\Gamma \vdash n: \text { int }} n \in\{\ldots,-1,0,1, \ldots\}
\end{aligned}
$$

Novel rule (context lookup): VAR $\frac{x: \tau \in \Gamma}{\Gamma \vdash x: \tau}$
Step 3.2 (rules for composite expressions): essentially no changes (just add Γ everywhere)
Shortcoming?

Variables (II)

Step 2 (ctd'): judgments with contexts: $\Gamma \vdash e: \tau$
Step 3.1 (axioms): essentially no changes for constant expressions (just add Γ):

$$
\begin{aligned}
& \text { TT } \overline{\Gamma \vdash \mathbf{t t}: \text { bool }} \quad \mathrm{FF} \overline{\Gamma \vdash \mathbf{f f}: \text { bool }} \\
& \text { NUM } \overline{\Gamma \vdash n: \mathbf{i n t}} n \in\{\ldots,-1,0,1, \ldots\}
\end{aligned}
$$

Novel rule (context lookup): VAR $\frac{x: \tau \in \Gamma}{\Gamma \vdash x: \tau}$
Step 3.2 (rules for composite expressions): essentially no changes (just add Γ everywhere)
Shortcoming? cannot add a binding to variables.

Variables (III)

Extension by let-binding (ML-style)
Step 1: add new composite expression former:

$$
e::=\ldots \mid \text { let } x=e \text { in } e \text { end }
$$

Variables (III)

Extension by let-binding (ML-style)
Step 1: add new composite expression former:

$$
e::=\ldots \mid \text { let } x=e \text { in } e \text { end }
$$

Step 2: define update operation $\Gamma[x: \tau]$ on contexts: delete any binding for x in Γ (if existent), then add binding $x: \tau$. No changes in format of judgments
Step 3: new typing rule:

Variables (III)

Extension by let-binding (ML-style)
Step 1: add new composite expression former:

$$
e::=\ldots \mid \text { let } x=e \text { in } e \text { end }
$$

Step 2: define update operation $\Gamma[x: \tau]$ on contexts: delete any binding for x in Γ (if existent), then add binding $x: \tau$. No changes in format of judgments
Step 3: new typing rule:

$$
\operatorname{LET} \frac{\Gamma \vdash e_{1}: \sigma \quad \Gamma[x: \sigma] \vdash e_{2}: \tau}{\Gamma \vdash \text { let } x=e_{1} \text { in } e_{2} \text { end }: \tau}
$$

Variables (III)

Extension by let-binding (ML-style)
Step 1: add new composite expression former:

$$
e::=\ldots \mid \text { let } x=e \text { in } e \text { end }
$$

Step 2: define update operation $\Gamma[x: \tau]$ on contexts: delete any binding for x in Γ (if existent), then add binding $x: \tau$. No changes in format of judgments
Step 3: new typing rule:

$$
\operatorname{LET} \frac{\Gamma \vdash e_{1}: \sigma \quad \Gamma[x: \sigma] \vdash e_{2}: \tau}{\Gamma \vdash \text { let } x=e_{1} \text { in } e_{2} \text { end }: \tau}
$$

Exercise

Perform inference (i.e. find τ if existent) for

- b: bool \vdash if b then let $x=3$ in x end else 4: τ
- x : int, y : int \vdash let $x=x<y$ in if x then y else 0 end : τ
- x : int, y : int \vdash let $x=x<y$ in if x then y else x end : τ

Functions (I)

Starting point (absyn): two characteristic operations:

Functions (I)

Starting point (absyn): two characteristic operations:

Function formation

$$
e::=\ldots \mid \text { fun } f(x)=e_{1} \text { in } e_{2} \text { end }
$$

declares function f with formal parameter x and body e_{1}. Name f may be referred to in e_{1} (recursion) and e_{2}. Name x only in e_{1}.

Functions (I)

Starting point (absyn): two characteristic operations:
Function formation

$$
e::=\ldots \mid \text { fun } f(x)=e_{1} \text { in } e_{2} \text { end }
$$

declares function f with formal parameter x and body e_{1}. Name f may be referred to in e_{1} (recursion) and e_{2}. Name x only in e_{1}.

Function application

Denoted by juxtaposition : e ::=... |e e

Functions (I)

Starting point (absyn): two characteristic operations:
Function formation

$$
e::=\ldots \mid \text { fun } f(x)=e_{1} \text { in } e_{2} \text { end }
$$

declares function f with formal parameter x and body e_{1}. Name f may be referred to in e_{1} (recursion) and e_{2}. Name x only in e_{1}.

Function application

Denoted by juxtaposition : e::=...|ee
Step 1 (types): Function/arrow type:

$$
\tau::=\ldots \mid \tau_{1} \rightarrow \tau_{2}
$$

models functions with argument type τ_{1} and return type τ_{2}

Functions (I)

Starting point (absyn): two characteristic operations:
Function formation

$$
e::=\ldots \mid \text { fun } f(x)=e_{1} \text { in } e_{2} \text { end }
$$

declares function f with formal parameter x and body e_{1}. Name f may be referred to in e_{1} (recursion) and e_{2}. Name x only in e_{1}.

Function application

Denoted by juxtaposition : e::= .. |ee
Step 1 (types): Function/arrow type:

$$
\tau::=\ldots \mid \tau_{1} \rightarrow \tau_{2}
$$

models functions with argument type τ_{1} and return type τ_{2}
Step 2 (judgment form): no change

Functions (II)

Aim: prevent application of functions to arguments of wrong type. And prevent applications $e e^{\prime}$ where e is not a function. Step 3: Rule for function formation:

Functions (II)

Aim: prevent application of functions to arguments of wrong type. And prevent applications $e e^{\prime}$ where e is not a function.

Step 3: Rule for function formation:

$$
\begin{gathered}
\Gamma\left[f: \tau_{1} \rightarrow \tau_{2}\right]\left[x: \tau_{1}\right] \vdash e_{1}: \tau_{2} \\
\Gamma\left[f: \tau_{1} \rightarrow \tau_{2}\right] \vdash e_{2}: \tau \\
\operatorname{FuN} \frac{\Gamma \vdash \text { fun } f(x)=e_{1} \text { in } e_{2} \text { end }: \tau}{\Gamma}
\end{gathered}
$$

First hypothesis verifies construction/declaration of f. Second hypothesis verifies its use. Note that types τ_{1} and τ_{2} have to be guessed. Rule for function application:

Functions (II)

Aim: prevent application of functions to arguments of wrong type. And prevent applications $e e^{\prime}$ where e is not a function.

Step 3: Rule for function formation:

$$
\begin{gathered}
\Gamma\left[f: \tau_{1} \rightarrow \tau_{2}\right]\left[x: \tau_{1}\right] \vdash e_{1}: \tau_{2} \\
\Gamma\left[f: \tau_{1} \rightarrow \tau_{2}\right] \vdash e_{2}: \tau \\
\operatorname{FuN}^{\Gamma \vdash \text { fun } f(x)=e_{1} \text { in } e_{2} \text { end }: \tau}
\end{gathered}
$$

First hypothesis verifies construction/declaration of f. Second hypothesis verifies its use. Note that types τ_{1} and τ_{2} have to be guessed. Rule for function application:

$$
\operatorname{APP} \frac{\Gamma \vdash e_{1}: \tau_{1} \rightarrow \tau_{2} \quad \Gamma \vdash e_{2}: \tau_{1}}{\Gamma \vdash e_{1} e_{2}: \tau_{2}}
$$

Functions (II)

Aim: prevent application of functions to arguments of wrong type. And prevent applications $e e^{\prime}$ where e is not a function. Step 3: Rule for function formation:

$$
\begin{gathered}
\Gamma\left[f: \tau_{1} \rightarrow \tau_{2}\right]\left[x: \tau_{1}\right] \vdash e_{1}: \tau_{2} \\
\Gamma\left[f: \tau_{1} \rightarrow \tau_{2}\right] \vdash e_{2}: \tau \\
\operatorname{FuN}^{\Gamma \vdash \text { fun } f(x)=e_{1} \text { in } e_{2} \text { end }: \tau}
\end{gathered}
$$

First hypothesis verifies construction/declaration of f. Second hypothesis verifies its use. Note that types τ_{1} and τ_{2} have to be guessed. Rule for function application:

$$
\operatorname{App} \frac{\Gamma \vdash e_{1}: \tau_{1} \rightarrow \tau_{2} \quad \Gamma \vdash e_{2}: \tau_{1}}{\Gamma \vdash e_{1} e_{2}: \tau_{2}}
$$

Exercise (homework)

Define an expression that declares and uses the factorial function, and write down its typing derivation.

References

Starting point (absyn): three characteristic operations:

References

Starting point (absyn): three characteristic operations:
Allocation, read, write (assign)

$$
e::=\ldots \mid \text { alloc } e|!e| e:=e
$$

References

Starting point (absyn): three characteristic operations:
Allocation, read, write (assign)

$$
e::=\ldots \mid \text { alloc } e|!e| e:=e
$$

Step 1 (types): $\tau::=\ldots \mid$ ref $\tau \mid$ unit
Type ref τ models locations that can hold values of type τ.
Step 2 (judgment form): no change
Step 3 (rules): Alloc

References

Starting point (absyn): three characteristic operations:

Allocation, read, write (assign)

$$
e::=\ldots \mid \text { alloc } e|!e| e:=e
$$

Step 1 (types): $\tau::=\ldots \mid$ ref $\tau \mid$ unit
Type ref τ models locations that can hold values of type τ.
Step 2 (judgment form): no change
Step 3 (rules): ALLOc $\frac{\Gamma \vdash e: \tau}{\Gamma \vdash \text { alloc } e: \mathbf{r e f} \tau}$ READ

References

Starting point (absyn): three characteristic operations:

Allocation, read, write (assign)

$$
e::=\ldots \mid \text { alloc } e|!e| e:=e
$$

Step 1 (types): $\tau::=\ldots \mid$ ref $\tau \mid$ unit
Type ref τ models locations that can hold values of type τ.
Step 2 (judgment form): no change
Step 3 (rules): ALLOC $\frac{\Gamma \vdash e: \tau}{\Gamma \vdash \mathbf{a l l o c} e: \operatorname{ref} \tau} \operatorname{READ} \frac{\Gamma \vdash e: \operatorname{ref} \tau}{\Gamma \vdash!e: \tau}$

Write

References

Starting point (absyn): three characteristic operations:

Allocation, read, write (assign)

$$
e::=\ldots \mid \text { alloc } e|!e| e:=e
$$

Step 1 (types): $\tau::=\ldots \mid$ ref $\tau \mid$ unit
Type ref τ models locations that can hold values of type τ.
Step 2 (judgment form): no change
Step 3 (rules): ALLOC $\frac{\Gamma \vdash e: \tau}{\Gamma \vdash \mathbf{a l l o c} e: \mathbf{r e f} \tau} \operatorname{READ} \frac{\Gamma \vdash e: \mathbf{r e f} \tau}{\Gamma \vdash!e: \tau}$

$$
\text { WRITE } \frac{\Gamma \vdash e_{1}: \text { ref } \tau \quad \Gamma \vdash e_{2}: \tau}{\Gamma \vdash e_{1}:=e_{2}: \text { unit }}
$$

Exercise (homework)
Redo factorial, but use a reference to hold the result.

Products

Starting point (absyn): two characteristic operations:

Products

Starting point (absyn): two characteristic operations:
Product formation, projections

$$
e::=\ldots\left|\left\langle e_{1}, \ldots, e_{n}\right\rangle\right| \#_{n} e
$$

Products

Starting point (absyn): two characteristic operations:
Product formation, projections

$$
e::=\ldots\left|\left\langle e_{1}, \ldots, e_{n}\right\rangle\right| \#_{n} e
$$

Step 1 (types): $\tau::=\ldots \mid\left\langle\tau_{1}, \ldots, \tau_{n}\right\rangle \quad(n=0$ amounts to unit)
Step 2 (judgment form): no change
Step 3 (rules): PROD

Products

Starting point (absyn): two characteristic operations:
Product formation, projections

$$
e::=\ldots\left|\left\langle e_{1}, \ldots, e_{n}\right\rangle\right| \#_{n} e
$$

Step 1 (types): $\tau::=\ldots \mid\left\langle\tau_{1}, \ldots, \tau_{n}\right\rangle \quad(n=0$ amounts to unit)
Step 2 (judgment form): no change
Step 3 (rules): $\operatorname{PROD} \frac{\Gamma \vdash e_{1}: \tau_{1} \quad \ldots \quad \Gamma \vdash e_{n}: \tau_{n}}{\Gamma \vdash\left\langle e_{1}, \ldots, e_{n}\right\rangle:\left\langle\tau_{1}, \ldots, \tau_{n}\right\rangle}$

ProJ

Products

Starting point (absyn): two characteristic operations:
Product formation, projections

$$
e::=\ldots\left|\left\langle e_{1}, \ldots, e_{n}\right\rangle\right| \#{ }_{n} e
$$

Step 1 (types): $\tau::=\ldots \mid\left\langle\tau_{1}, \ldots, \tau_{n}\right\rangle \quad(n=0$ amounts to unit)
Step 2 (judgment form): no change
Step 3 (rules): $\operatorname{PrOD} \frac{\Gamma \vdash e_{1}: \tau_{1} \quad \ldots \quad \Gamma \vdash e_{n}: \tau_{n}}{\Gamma \vdash\left\langle e_{1}, \ldots, e_{n}\right\rangle:\left\langle\tau_{1}, \ldots, \tau_{n}\right\rangle}$

$$
\operatorname{PROJ} \frac{\Gamma \vdash e:\left\langle\tau_{1}, \ldots, \tau_{n}\right\rangle}{\Gamma \vdash \#_{k} e: \tau_{k}} 1 \leq k \leq n
$$

Subtyping

Motivating observation

Expressions of type $\left\langle\tau_{1}, \ldots, \tau_{n}\right\rangle$ can be used as values of type $\left\langle\tau_{1}, \ldots, \tau_{m}\right\rangle$ for any $m \leq n$. Simply forget additional entries.

Indeed: any operation we may perform on an expression of the latter type (i.e. a projection $\# k e$, which is only well-typed if $k \leq m)$ is also legal on expressions of the former type.

Subtyping

Motivating observation

Expressions of type $\left\langle\tau_{1}, \ldots, \tau_{n}\right\rangle$ can be used as values of type $\left\langle\tau_{1}, \ldots, \tau_{m}\right\rangle$ for any $m \leq n$. Simply forget additional entries.

Indeed: any operation we may perform on an expression of the latter type (i.e. a projection $\#_{k} e$, which is only well-typed if $k \leq m)$ is also legal on expressions of the former type.

General idea

Type τ is a subtype of σ if all values of type τ may also count as values of type σ. Operations that handle arguments of type σ must also handle arguments of type τ.

Axiomatize this idea in new judgment form subtyping: $\tau<: \sigma$. Again, we justify the axiomatization only informally.

Subtyping (II)

How to use subtyping: subsumption rule

Subtyping (II)

How to use subtyping: subsumption rule

$$
\operatorname{SuB} \frac{\Gamma \vdash e: \tau}{\Gamma \vdash e: \sigma} \tau<: \sigma
$$

Models the intuition that a τ-value may be provided whenever a σ-value is expected, i.e. interpretation as subset of values.

Subtyping (II)

How to use subtyping: subsumption rule

$$
\operatorname{SuB} \frac{\Gamma \vdash e: \tau}{\Gamma \vdash e: \sigma} \tau<: \sigma
$$

Models the intuition that a τ-value may be provided whenever a σ-value is expected, i.e. interpretation as subset of values.

How to establish subtyping: Separate derivation system.

Subtyping (II)

How to use subtyping: subsumption rule

$$
\operatorname{SuB} \frac{\Gamma \vdash e: \tau}{\Gamma \vdash e: \sigma} \tau<: \sigma
$$

Models the intuition that a τ-value may be provided whenever a σ-value is expected, i.e. interpretation as subset of values.

How to establish subtyping: Separate derivation system.
Pre-order rules

$$
\operatorname{SREFL} \overline{\tau<: \tau} \quad \text { STRANS } \frac{\tau_{1}<: \tau_{2} \quad \tau_{2}<: \tau_{3}}{\tau_{1}<: \tau_{3}}
$$

These two rules deal with the base types int, bool, unit.
Next slides: rules that propagate subtpying through the various type formers.

Subtyping (III): propagation through products

Products (width): may truncate products

Subtyping (III): propagation through products

Products (width): may truncate products

$$
\operatorname{SPROD} \overline{\left\langle\tau_{1}, \ldots, \tau_{n}\right\rangle<:\left\langle\tau_{1}, \ldots, \tau_{m}\right\rangle} m<n
$$

Thought experiment: suppose $n<m$ instead. Take some e with, say, $\Gamma \vdash e:\langle i n t$, bool \rangle. By (hypothetical) rule SPROD and Sub, have $\Gamma \vdash e$: 〈int, bool, int). So $\Gamma \vdash \#{ }_{3} e$: int is well-typed. But this will crash!

Products: depth

Subtyping (III): propagation through products

Products (width): may truncate products

$$
\operatorname{SPROD} \overline{\left\langle\tau_{1}, \ldots, \tau_{n}\right\rangle<:\left\langle\tau_{1}, \ldots, \tau_{m}\right\rangle} m<n
$$

Thought experiment: suppose $n<m$ instead. Take some e with, say, $\Gamma \vdash e:\langle i n t$, bool \rangle. By (hypothetical) rule SPROD and Sub, have $\Gamma \vdash e$: 〈int, bool, int \rangle. So $\Gamma \vdash \#{ }_{3} e$: int is well-typed. But this will crash!

Products: depth

$$
\operatorname{PPROD} \frac{\Gamma \vdash e:\left\langle\tau_{1}, \ldots, \tau_{n}\right\rangle}{\Gamma \vdash e:\left\langle\sigma_{1}, \ldots, \sigma_{n}\right\rangle} \forall i . \tau_{i}<: \sigma_{i}
$$

Subtyping (IV): propagation through function type

Propagation of subtyping through functions

Subtyping (IV): propagation through function type

Propagation of subtyping through functions

$$
\text { PFUN } \frac{\Gamma \vdash e: \tau_{1} \rightarrow \tau_{2}}{\Gamma \vdash e: \sigma_{1} \rightarrow \sigma_{2}} \sigma_{1}<: \tau_{1}, \tau_{2}<: \sigma_{2}
$$

Return position covariant: weaker guarantee on result
Argument position contravariant: stronger constraint on arguments (e.g. longer products),

Subtyping (IV): propagation through function type

Propagation of subtyping through functions

$$
\text { PFUN } \frac{\Gamma \vdash e: \tau_{1} \rightarrow \tau_{2}}{\Gamma \vdash e: \sigma_{1} \rightarrow \sigma_{2}} \sigma_{1}<: \tau_{1}, \tau_{2}<: \sigma_{2}
$$

Return position covariant: weaker guarantee on result
Argument position contravariant: stronger constraint on arguments (e.g. longer products),

Example: $f(x)=$ let $z=\#_{1} x$ in $\langle\operatorname{even}(z), z\rangle$ end.
Have PFuN $\frac{\Gamma \vdash f:\langle\text { int }\rangle \rightarrow\langle\text { bool, int }\rangle}{\Gamma \vdash f:\langle\text { int }, \text { int }\rangle \rightarrow\langle\text { bool }\rangle}$.
Rule thus correctly sanctions the application let $\arg =\langle 3,4\rangle$ in let res $=f$ arg in $\#_{1} r e s$ end end.

Subtyping (V): interaction with references

Guess

$$
\operatorname{PREF} \frac{\Gamma \vdash e: \operatorname{ref} \tau}{\Gamma \vdash e: \operatorname{ref} \sigma} ? ? ?
$$

Subtyping (V): interaction with references

Guess

$$
\operatorname{PREF} \frac{\Gamma \vdash e: \operatorname{ref} \tau}{\Gamma \vdash e: \operatorname{ref} \sigma} ? ? ? \tau=\sigma \text { (invariance) }
$$

Reason: read/write yield conflicting conditions
Read motivates

Subtyping (V): interaction with references

Guess

$$
\operatorname{PREF} \frac{\Gamma \vdash e: \operatorname{ref} \tau}{\Gamma \vdash e: \operatorname{ref} \sigma} \text { ??? } \tau=\sigma \text { (invariance) }
$$

Reason: read/write yield conflicting conditions
Read motivates $\frac{\tau<: \sigma}{\text { ref } \tau<: \text { ref } \sigma}$: if e evaluates to a reference holding τ values, and any (τ-) value we extract from that location (i.e. !e) can also be interpreted as a σ-value, we should be allowed to consider e as holding σ-values, so that $\vdash!e: \sigma$.
Write motivates

Subtyping (V): interaction with references

Guess

$$
\operatorname{PREF} \frac{\Gamma \vdash e: \operatorname{ref} \tau}{\Gamma \vdash e: \operatorname{ref} \sigma} ? ? ? \tau=\sigma \text { (invariance) }
$$

Reason: read/write yield conflicting conditions
Read motivates $\frac{\tau<: \sigma}{\text { ref } \tau<: \operatorname{ref} \sigma}$: if e evaluates to a reference holding τ values, and any (τ-) value we extract from that location (i.e. !e) can also be interpreted as a σ-value, we should be allowed to consider e as holding σ-values, so that $\vdash!e: \sigma$.
Write motivates $\frac{\sigma<: \tau}{\text { ref } \tau<: \mathbf{r e f} \sigma}$: if e evaluates to a reference to which we may write a τ value (i.e. $\Gamma \vdash e: \operatorname{ref} \tau$), and if any σ-value (say $\Gamma \vdash e^{\prime}: \sigma$) may be considered a τ-value, then we should be able to assign e^{\prime} to e, i.e. allow $\Gamma \vdash e:=e^{\prime}:$ unit

HW 4: type inference/checking

Differences between FUN and above language:

- functions declared at top-level, annotated with argument and return types
- products start at 0

Challenge:

- subtyping destroys property that an expression has at most one type.
- rule Sub destroys syntax-directedness, and doesn't make the expression any smaller. Can apply SUB at any point.
Task:
- reformulate type system so that it is syntax-directed: modify the rules such that subtyping is integrated differently, BUT EXACTLY THE SAME JUDGMENTS SHOULD BE DERIVABLE using least common supertypes ("joins") and greatest common subtype ("meets"). Implement calculation of meets and joins.
- use these to implement syntax-directed inference

