
COS 320: Spring 2017 Midterm Examination

March 16, 2017

Name:

You have 1:20 to answer the following questions. This midterm is closed book/closed
notes. For partial credit, show all work. Write your name on the bottom of every
page. Write out and sign the Honor Code pledge below before turning in the test.

“I pledge my honor that I have not violated the Honor Code during this examina-
tion.”

1

Problem 1: (20%)
Do the following:

A: For the alphabet a, b, c, give a compact regular expression for all strings con-
taining exactly one a.

B: If a Deterministic Finite Automaton (DFA) exists for your regular expression,
show one. If a DFA cannot exist, explain why not. Transitions can be labeled
with any number of symbols (understood as an alternation of symbols written as
“a,b,c” or “[a-c]”), but cannot otherwise contain regular expressions. Minimize
the number of states.

2

Problem 2: (35%)
Consider the following grammar:

A→ B B → x B
B → x B → y

A: Is this grammar in LL(1)? Prove it.

3

B: Is this grammar in LR(1)? Prove it.

C: Is this grammar in SLR? Prove it.

4

D: Is this grammar in LR(0)? Prove it.

E: Is this grammar in LALR(1)? Prove it.

5

Problem 3: (20%)

Consider the FUN language from the lectures on typing, as summarized below.

f ::= fun f(id : τ0) : τ1 = e

e ::= (e) | id | num | e0; e1 | e0 ⊕ e1 | 	 e | 〈e0, . . . , en〉 | e0(e1)
| e : τ | if e0 then e1 else e2 | if e0 then e1 | while e0 do e1

| let id = e0 in e1 | ref e
⊕ ::= + | − | ∗ | & | || | < | = | :=

	 ::= − | not | ! | #i
τ ::= int | 〈τ0, . . . , τn〉 | τ0 → τ1 | τ ref | (τ)

Γ ` id : Γ(id)
ID

n ∈ {. . . ,−1, 0, 1, . . .}
Γ ` n : int

NUM

Γ ` e1 : int Γ ` e2 : τ Γ ` e3 : τ

Γ ` if e1 then e2 else e3 : τ
ITE

Γ ` e1 : σ Γ[x : σ] ` e2 : τ

Γ ` let x = e1 in e2 : τ
LET

Γ ` e1 : τ ref Γ ` e2 : τ

Γ ` e1 := e2 : 〈〉
WRITE

Γ ` e : τ

Γ ` ref (e : τ) : τ ref
REF

Γ ` e : 〈τ0, . . . , τn〉 (0 <= i <= n)

Γ ` #i e : τi
TUP

Γ[x : τ1][f : τ1 → τ2] ` e : τ2
Γ ` fun f(x : τ1) : τ2 = e : τ1 → τ2

FUNC

For the given function declaration foo, perform the type checking proof.

fun foo(y : 〈int ref , int, int〉) : 〈〉 =

if (#1 y) then let x = ref 3 in x := #2 y else #0 y := 5

6

7

Problem 4: (10%)

Write an ambigiuous grammer and prove that it is ambiguous.

8

Problem 5: (15%)

For each of the listed errors, specify the error type (Lexical, Syntactic, Semantic)
and name the compiler phase likely to find the error. Include a short justification
of no more than 2 sentences. State assumptions.

• A hexadecimal number contains the letter G.

• A function call has too many arguments.

• “else if” in a language that requires “elif”.

• A nested function in a language that does not support nested functions.

• A space between “>” and “=”.

9

