
COS 226 Algorithms & Data Structures – p. 1/3

COS 226–Algorithms and Data Structures
Week 3: Comparators & Sorting (Algorithms §2.1 and §2.2)

Version: February 18, 2018

Exercise 1 – Comparables and Comparators
In the sorting algorithms seen in lecture, we have been using static comparators: given any two elements, such comparators
will always provide the same answer. But comparators do not need to be static, and can instead depend on additional
information. This exercise illustrates this notion by looking at a comparator that compares the distance of two given points
p and q each to a third point w.

Recall that a comparator returns a negative value if the first parameter i s smaller than the s econd, positive i f the first
parameter is greater, and zero if the values are equal.

A. Suppose we want to create a Comparator that compares two points based on their distance from some third point. Fill in
the code below. You may find the back of the other page of this handout useful.

public static class DistanceComparator implements Comparator<_______________> {
Point2D ________;

public DistanceComparator(____________) {
_________ = __________;

}

public int compare(_______ p, _______ q) {
double distToP = p.distanceTo(_______);
double distToQ = q.distanceTo(_______);
if (distToP < distToQ) return ____;
if (distToP > distToQ) return ____;
return ____;

}
}

B. Now suppose we want to use our comparator to sort a list of Points called by their distance from the origin. Fill in the
code below to accomplish this task.

Point2D[] points = getRandomPoints();
Point2D origin = ___________________________________;

Comparator<Point2D> originDistanceComparator = ______________________________;
Arrays.sort(points, ___________________________);

C. Summary: what method must a Comparable have? What method must a Comparator have? Above is an example of
calling sort with a Comparator. If I want to sort with the Point2D compareTo method, how do I call Arrays.sort()?

c©Spring 2018 by COS 226 Staff. February 18, 2018

Exercise 2 –
The column on the left is the original input of strings to be sorted; the column on
the right are the strings in sorted order; the other columns are the contents at some
intermediate step during one of the 6 sorting algorithms listed below. Match up each
algorithm by writing its number under the corresponding column. Use each number
ex actly once.

nite deni
dent
nite
rein
ding
grin
rent
ride
diet
dint
rind
ring
dine
dire
dog

rein
deni
dent
rent
ding
grin
ride
rind
diet
dint
ring
dire
dog
edit
dine edit

(1) Otig,iur1l input

(2) Sortt'(l

(3) Select.ion sort

(4) Insertion sort

deni
dent
ding
grin
nite
rein
rent
ride
diet
dint

ring
dire
dog
edit
dine

deni deni
dent dent
ding diet
nite dine
rein ding
rent rent
grin grin
ride ride
rind rind
diet nite
dint dint
ring ring
dire dire
dog dog
ed.it edit
dine rein

(5) :Merge�orl
(la]!• down)

(6) !\·!ergesort
(IJ1.Jtf.rm1.-117J)

dint
dine
deni
dent
edit
ding
grin
dog
dire
diet
nite
ring
rind
ride
rent
rein

{7)

(8).

dine deni
deni dent
dent diet
edit dine
ding ding
grin dint
dog dire
dire dog
diet edit
dint grin
nite nite
ring rein
rind rent
ride ride
rent rind
rein ring

Q11iekS('Jrl
(.�laiulm·.t. ,w ,ih,u}Jle)

Quicksori
(.1-w,rg, 110 -�hufJl,,)

_ _

Spring 2018 by COS 226 Staff.

rind

Sorted

Final Sorted

Sorted

Original Insertion Sort

Mixed Selection Sort

I Sorted after 1st half I Mergesort Top Down

l
2

l
2

l
2

l
2

l
2

l
2

l
2

l
2

I
Mergesort Bottom Up

<= p
Ip I >= p I

<P =P >P

2-way (standard)
Quicksort

3-Way Quicksort

Spring 2018 by COS 226 Staff

Sorting Invariants

COS 226 Algorithms & Data Structures – p. 3/3

Exercise 3 – Counting Compares (Bonus)
Suppose that you have an array of length 2n consisting of n B's followed by n A's. Below is the array when n = 10.
 B B B B B B B B B B A A A A A A A A A A

A. How many compares does it take to merge sort (ascending order) the array, as a function of n? Use tilde notation to
simplify your answer.

B. The number of compares to 2-way quicksort is the same as if the elements were not sorted: ∼ (n(log2n))
How many compares does it take to (3-way) quick sort (ascending order) the array, as a function of n? Use tilde notation
to simplify your answer.

c©Spring 2018 by COS 226 Staff. February 18, 2018

