COS 226 Algorithms & Data Structures — p. 1/3

PRINCETON
& UNIVERSITY

COS 226-Algorithms and Data Structures

Week 1: Logistics, WeightedUnionFind, Doubling hypothesis and
Percolation problem (Algorithms §1.4 and 1.5)

Version: February 9, 2018

Exercise 1 — Understanding COS 226 Course Components

A. Class meetings meet twice per week, from 11 to 12:20pm on Mondays and Wednesdays in Friend 101.
B. Precepts meet once per week and cover details pertinent to programming assignments, quizzes, and exams.
C. Quizzes are due Friday at 11PM with a 59 minute grace period.

D. Assignments are due Monday 11PM with a one hour grace period. Files submitted at 12:01am are considered a day late.

E. Lectures are available on the lecture web page.

(©Fall 2017 by COS 226 Staff. February 9, 2018

COS 226

Algorithms & Data Structures — p. 2/3

Exercise 2 — WeightedQuickUnionUF. Algorithms Textbook 1.5

Consider the following code that uses WeightedUnionFind objects (WeightedQuickUnionUF). Describe the purpose
of this program.

+ Nam
Net
Pre

* % % %

Des

O 00 1 O N B~ W=

import
import
import
import
import

e e e e N
DN kW= O

public

—_
N O

publ

NI NN NN~ —
O 00 1 NN B W~ OO X

publ

B A D DS DS D D WL LW WL W W W W W
AN N kA W= OV P WN—=O

(©OFall 2017

/**

e: Kevin Wayne

ID: wayne

cept: P99

cription: This program demonstrates the use of various classes 1n

* algs4.jar (WeightedQuickUnionUF, StdRandom,

edu.princeton.cs.algs4.StdOut;
edu.princeton.cs.algs4.StdStats;
edu.princeton.cs.algs4.Stopwatch;
edu.princeton.cs.algs4.StdRandom;

edu.princeton.cs.algs4.WeightedQuickUnionUF;

class ErdosRenyi {

ic static int count (int n) {
int edges = 0;

Stopwatch, and StdoOut).

**/

WeightedQuickUnionUF uf = new WeightedQuickUnionUF (n);

while (uf.count () > 1) {
int i = StdRandom.uniform(n);
int j = StdRandom.uniform(n);

uf.union (i, 7J);
edges+t++;
}

return edges;

ic static void main(String[] args) {
int n = Integer.parselnt (args[0]);
int trials = Integer.parselnt (args([l]);

int[] edges = new int[trials];
Stopwatch timer = new Stopwatch();

// repeat the experiment trials times

for (int t = 0; t < trials; t++) {
edges[t] = count(n);

}

double timed = timer.elapsedTime();

// report statistics

StdOut.println (' 'n

StdOut.println (' ‘mean of number of edges
StdOut.println (' ‘stddev of mean
StdOut.println('‘elapsed time

by COS 226 Staff.

// number of vertices
// number of trials

+ + + +

n);

StdStats.mean (edges)) ;
StdStats.stddev (edges)) ;
timed) ;

February 9, 2018

COS 226 Algorithms & Data Structures — p. 3/3

Exercise 3 — Analysis of Running Time. Algorithms Textbook 1.4
Consider the code example in exercise 2. Paste the code to DrJava (or your preferred editor) and run the program to make
following observations.

A. Run ErdosRenyi.java with n = 12500 and 7" = 100. Double n as appropriate. For each n, calculate the log ratio
loga(T'(2n)/T (n)) where T'(n) is the time required to run the above code on a data set of size of n, using the Weight-
edQuickUnionUF.

n T(n) loga(T'(2n)/T(n))

B. If you observe that the ratio log2(7(2n)/T'(n)) column is likely converging to a specific value, write it down. Discuss
how this value may be related to the model 7'(n) = a x n®

C. Explain why it is not a good idea to consider running times under 0.5 second.

Exercise 4 — Memory analysis. Algorithms textbook 1.4

Suppose you have an array p[] as declared and initialized below. How much memory (in bytes) does the array use as a
function of N ? Include the memory for both the array and the points. Repeat the previous question, but use tilde notation to
simplify your answer.

public class Point {
private final int x;
private final int y;

}

Point[] p = new Point[N];

for (int i = 0; i < N; i++)
pli]l = new Point(...);

(©OFall 2017 by COS 226 Staff. February 9, 2018

