
Class Meeting #8

8 Puzzle

COS 226

Based in part ok slides by Jérémie

Lumbroso and Kevin Wayne

Level-order traversal of a binary tree.

・Process root.

・Process children of root, from left to right.

・Process grandchildren of root, from left to right.

・…

M

2

LEVEL-ORDER TRAVERSAL

level-order traversal:

T

RA

C H

E

S

M

S E T A R C H

3

LEVEL-ORDER TRAVERSAL

Q1. Given binary tree, how to compute level-order traversal?

queue.enqueue(root);

while (!queue.isEmpty())

{

Node x = queue.dequeue();

if (x == null) continue;

StdOut.println(x.item);

queue.enqueue(x.left);

queue.enqueue(x.right);

}

T

RA

C H

E

S

M

Mlevel-order traversal: S E T A R C H

S

Q2. Given the level-order traversal of a BST, how to (uniquely) reconstruct?

Ex. S E T A R C H M

E

4

LEVEL-ORDER TRAVERSAL

T

RA

C H

M

EVEN-DRIVEN SIMULATION

DEMO

KEY INGREDIENTS!

What is a graph?

Like a binary tree, except there can be cycles.

What is a Priority Queue?

• Comes in two flavors: MinPQ / MaxPQ

MinPQ

MinPQ()

min()

delMin()

What is a Board?

• Immutable type (defensive copy)

• Knows how to compute neighbors

• Estimates how far from goal

public class Board {

public Board(int[][] tiles) // construct a board from an N-by-N array of tiles

// (where tiles[i][j] = tile at row i, column j)

public int tileAt(int i, int j) // return tile at row i, column j (or 0 if blank)

public int size() // board size N

public int hamming() // number of tiles out of place

public int manhattan() // sum of Manhattan distances between tiles and goal

public boolean isGoal() // is this board the goal board?

public boolean isSolvable() // is this board solvable?

public boolean equals(Object y) // does this board equal y?

public Iterable<Board> neighbors() // all neighboring boards

public String toString() // string representation of this board

public static void main(String[] args) // unit testing (required)

}

LESS STRAIGHTFORWARD

STRAIGHTFORWARD

WHAT IS A* SEARCH?

Example run

• Solve problem for board on left

• Draw graph of all boards

• Schematize search through

graph of boards

• Show role of MinPQ

• This is puzzle04.txt

Initial board

Boards on the

priority queue

Board not reachable from

initial board

Boards on the

priority queue

PROBLEM

SOLVED!

% more puzzle04.txt

3

0 1 3

4 2 5

7 8 6

% java-algs4 Solver puzzle04.txt

Minimum number of moves = 4

3

0 1 3

4 2 5

7 8 6

3

1 0 3

4 2 5

7 8 6

3

1 2 3

4 0 5

7 8 6

3

1 2 3

4 5 0

7 8 6

3

1 2 3

4 5 6

7 8 0

Observations

• The graph is MUCH TOO BIG

• Some boards are not reachable from start

(carefully read part about “unsolvable puzzles”)

• The MinPQ (Priority Queue) always

contains a fringe of boards that we should

look at next

A* search

• Use a “priority function” to try to guide the
search through the large graph

• Some conditions on this priority function, but
basically

priority = estimated min. number of moves

• We give:

– Hamming (number of misplaced squares + moves
so far)

– Manhattan (sum of distances to correct position)

– other ideas?

TIPS

Tip #1: Avoid Dropbox Timeout

• Too much (Terminal) output

– remove print out statements

– or use assert / debugging that can be turned

off easily

• Infinite loops

• Much more memory usage than predicted

– it may be useful to test only one file at a time

in Dropbox

Tip #2: Board before Solver

• Fully test Board.java before doing

Solver.java

• If Board.java is not fully tested, things can

go very very very wrong in Solver.java

Tip #3: Iterable neighbors

• You have to implement:

// return the neighboring board positions,

// as an Iterable

public Iterable<Board> neighbors() {

...

}

• Idea: create a Queue (or Stack), add

boards to it, and return Queue (or Stack)

• Queue/Stack are Iterable objects

Tip #4: Class SearchNode
• In Solver.java, create a SearchNode

• This [immutable] SearchNode will wrap around a
Board, and make it Comparable (by priority)

• Being Comparable is needed to use MinPQ

private static class SearchNode

implements Comparable<SearchNode>
{

// ...

}

• SearchNode should also have a pointer to the
previous Node (so you can remember the solution)

Tip #5: Test Equality of Board

• The critical optimization is making sure

we don't go back and forth between two

boards (may cause infinite loop, or

significantly delay search)

• To avoid this, Board needs to implement

equals

• Tricky!

Seems easy.

public class Date implements Comparable<Date>

{

 private final int month;

 private final int day;

 private final int year;

 ...

 public boolean equals(Date that)

 {

 if (this.day != that.day) return false;

 if (this.month != that.month) return false;

 if (this.year != that.year) return false;

 return true;

 }

}

Implementing equals for user-defined types

11

check that all significant

fields are the same

Seems easy, but requires some care.

public final class Date implements Comparable<Date>

{

 private final int month;

 private final int day;

 private final int year;

 ...

 public boolean equals(Object y)

 {

 if (y == this) return true;

 if (y == null) return false;

 if (y.getClass() != this.getClass())

 return false;

 Date that = (Date) y;

 if (this.day != that.day) return false;

 if (this.month != that.month) return false;

 if (this.year != that.year) return false;

 return true;

 }

}

Implementing equals for user-defined types

12

check for null

optimize for true object equality

typically unsafe to use equals() with inheritance

(would violate symmetry)

must be Object.

Why? Experts still debate.

objects must be in the same class

(religion: getClass() vs. instanceof)

check that all significant

fields are the same

cast is guaranteed to succeed

Two optimizations

• Critical: Avoid adding the neighbor “you

just arrived from” to the priority queue:

• Cache Manhattan distance inside the

board as an instance variable and

compute in the constructor (to avoid

recomputing it)

When is a board solvable?

• By Sam Loyd, scanned by Ed Pegg Jr, 2005 - Sam Loyd’s Cyclopedia of Puzzles pp. 234–235, scanned image, on web page, linked from

The Cyclopedia of Puzzles, page by Ed Pegg Jr., Public Domain, https://commons.wikimedia.org/w/index.php?curid=10520923

When is a board solvable?

When is a board solvable?

• An odd-size board is solvable if and only if

the number of inversions is even.

• If 𝑛 is even, the board is solvable if and

only if the number of inversion plus the

row of the blank square (counting from 0)

is odd.

