Class Meeting #9
COS 226 — Spring 2018

Mark Braverman

Time and location

The midterm is during lecture on
Monday, April 30, 11-12:20pm
Wednesday, May 2, 11-12:20pm

The exams will start and end promptly, so please
do arrive on time.

Bring a charged laptop to the programming
exam. Reboot it before coming to class, and
open the SDE.

The rooms are
Precepts P01, P02, PO2A, P05, PO5A: McDonnell 02 (new room)

Precepts P03, P04, PO4A, P0O4B, PO5B : Friend 101 (traditional
lecture room)

Rules

* Closed book, closed note.

* You may bring one 8.5-by-11 sheet (two sides)

with notes in your own handwriting to the exam.

* No electronic devices (including calculators,

laptops, and cell phones). Headphones attached

to audio devices are also prohibited.

« Discussing the exam with others until solutions
are posted is a violation of the Honor Code.

Consider the 4-sUM problem: Given N integers, do any 4 of them sum up to exactly 07

(a) Consider the following brute-force solution (we ignore integer overflow).

public static fourSum(int[] a) {
int N = a.length;
for (int i = 0; i < N; i++)
for (int j = i+1; j < N; j++)
for (int k = j+1; k < N; k++)
for (int 1 = k+1; 1 < N; 1++)
if (ali]l + a[j] + alk] + a[l] == 0) return true;

return false;

What is the order of growth of the worst-case running time? Circle the best answer.

N Nlog N N2 N3 N4 N

(b) Design an algorithm for 4-suM that runs in O(N?) time and uses O(N?) memory.

Assume that you have access to a hashing-based symbol table that can put () and get ()
integer keys in constant time per operation.

Consider the 4-suM problem: Given N integers, do any 4 of them sum up to exactly 07

(a) N*

(b) For each i and j, put the integer key a[i] + a[j] in a hash table. Assoicate with each

integer key the list of all pairs of indices that sum to that value.

For each k and [, check whether the key —(a[k] + a[l]) is in the hash table. If so, scan
the list of all pairs of indices taht sum to that value. If such a pair exists whose indices
1 and j are disjoint from k and [, then we have four distinct array entries that sum to

exactly 0.
The first phase takes O(N?) time and O(N?) space.

The second phase can be inefficient because searching through the list can take too long
(if too many of the entries at the beginning of the list have indices that are not disjoint
from k and). For example, if the array contains 20, 20, 20, ..., 20, 10, —40, 30, 0, then
the list of all pairs that sum to 30 will be 20 + 10,20 + 10, 20 + 10,...20 + 10, 30 + 0.
Thus, in the second pass, the algorithm will waste alot of time trying to find a match

for 10-40 because it is not disjoint from all of the 20+10 entries.

To avoid this bottleneck, preprocess the original array so that at most 4 copies of each
value remain. Now, when scanning the list for a sum that complements k and [, only
scan the first 9 entries in the list for the sum —(a[k] 4 a[l]). Ther can be at most 4 pairs
of indices in the list with & as one of the indices and at most 4 pairs with [as one of the
indices. By the 9th entry, we will have found a pair of indices disjoint from k and [(or
we will have exhausted the list). Thus, we only need to do a constant amount of work

for each k and [.

Given a directed graph with V vertices and F edges, design an efficient algorithm to find a
directed cycle with the minimum number of edges (or report that the graph is acyclic).

Your answer will be graded on correctness, efficiency, clarity, and succinctness. For full credit,
your algorithm should run in O(EV) time and use O(E + V) space. Assume V < E < V2.

(a)

Solution

The critical observation is that the shortest directed cycle is a shortest path (number of
edges) from s to v, plus a single edge v—s.

For each vertex s:
* Use BFS to compute shortest path from s to each other vertex.
* For each edge v->s entering s, consider cycle formed by
shortest path from s to v (if the path exists) plus the edge v->s.
Return shortest overall cycle.

The running time is O(EV).

The single-source shortest path computation from s takes O(E 4+ V') time per using BFS.
Finding all edges entering s takes O(E + V') time by scanning all edges (though a better
way is to compute the reverse graph at once and access the adjacency lists). We must
do this for each vertex s. Thus, the overall running time is O(E'V).

The memory usage is O(E + V).

BFS uses O(V') extra memory and we only need to run one at a time. (A less efficient
solution is to compute a V-by-V table containing the shortest path from v to w for every
v and w. This uses O(V?) memory.)

Given a directed graph G with positive edge weights and a landmark vertex x, your goal is
to find the length of the shortest path from one vertex v to another vertex w that passes
through the landmark z.

(For example, Federal Express packages are routed through x = Atlanta.)

(a) Describe a O(FlogV') algorithm for the problem. Justify briefly why your proposed
algorithm is correct.

(b) Now suppose that you will perform many such shortest path queries for the same land-
mark x, but different values of v and w. Describe how to build a data structure in
O(FE'log V) time so that, given the data structure, you can process each query in con-
stant time.

(a)

Compute the shortest path from v to x using Dijkstra’s algorithm. Then compute the
shortest path from x to w using Dijkstra’s algorithm. Concatenate the two paths.

Correctness follows since all of the edge weights are positive: if the shortest landmark
path used a non-shortest path from v to x, we could shorten it by substituting a shortest
path from v to x. The same argument applies to the path from z to w.

Pre-compute the following two quantities. Here z is fixed, and we compute the quantity
for every vertex u.

e d(u,z) = length of the shortest path from u to z.

e d(xz,u) = length shortest path from z to u.

Use Dijkstra’s algorithm (with x as the source) to compute d(x,u). This computes
d(z,u) for every vertex u in O(ElogV') time. Use Dijkstra’s algorithm on the reverse
graph G (with x as the source) to compute d(u, x).

To process a shortest landmark path query from v to w, return d(v,z) + d(x, w).

(S'13 Final)

In this improved algorithm we start by setting pathCount inside each node to 0. When
processing an edge a = b, if distTo[b] = distTo[a] + 1, we increment pathCount[b] by
pathCount[a] (since vertex a provides a new set of shortest distTo[a]). If distTo[b] <
distTo[a] + 1, we've found a new shortest path, and set pathCount[b] to pathCount[a]. If
distTo[b] > distTo[a] + 1, we do nothing since the path(s) under consideration is too long
to be considered.

e

For example, for the first graph above, our graph state would be given by:

distTo edgeTo pathCount
v0 0 (don’t care) 1
vl 1 (don’t care) 1
v2 1 (don’t care) 1
v3 2 (don’t care) 2
vé 3 (don’t care) 2
v5 1 (don’t care) 1
v6 00 (don’t care) 0

As an example, when the edge from v4 — v6 is processed, the algorithm will see that
distTo[v4] < distTo[6] + 1, and thus pathCount[v6] will be set equal to pathCount[v4].

In data compression, a set of binary code words is prefiz-free if no code word is a prefix
of another. For example, {01,10,0010,1111} is prefix free, but {01, 10,0010,10100} is not
because 10 is a prefix of 10100.

(a) Design an efficient algorithm to determine if a set of binary code words is prefix-free.

Your answer will be graded on correctness, efficiency, clarity, and succinctness.

What is the order of growth of the worst-case running time of your algorithm as a
function of N and W, where NN is the number of binary code words and W is the total
number of bits in the input?

Solution

(a) Insert all of the codewords into a binary trie, marking the terminating nodes. The set
of string is not prefix-free if when inserting a codeword (i) you pass through a marked
node (an existing codeword is a prefix of the codeword you are inserting) or (ii) the node
you mark is not a leaf node (the codeword you’re inserting is a prefix of an existing
codeword).

O(N W)

A tandem repeat of a base string b within a string s is a substring of s consisting of at least
one consecutive copy of the base string b. Given b and s, design an algorithm to find a
tandem repeat of b within s of maximum length.

For example, if s is "abcabcababcaba" and b is "abcab", then "abcababcab" is the tandem
substring of maximum length (2 copies).

Your answer will be graded on correctness, efficiency, clarity, and succinctness. Let M denote
the length of b and let N denote the length of s. For full credit, your algorithm should take
time proportional to M + N.

* consider R to be constant

This problem is a generalization of substring search (is there at least one consecutive
copy of b within s?) so we need an algorithm that generalizes substring search.

Create the Knuth-Morris-Pratt DFA for k copies of b, where k = | N/M |. Now, simulate
DFA on input s and record the largest state that it reaches. From this, we can identify
the longest repeat.

What’s next

Algorithms and related courses:

« COS326: functional programming

« COS340: reasoning about computation
« COS324: intro to machine learning

« COS423: theory of algorithms

« COS521: advanced algorithms
 ORF307: optimization

Many COS courses have just COS226 as
prerequisite (but best to take COS217 asap).

