Class Meeting #16
COS 226 — Spring 2018

Mark Braverman

(based in part on slides by Kevin Wayne)

Greedy algorithms

A class of algorithms, typically for solving an

optimization problem:

 Attain goal with fewest resources

« Get the most out of given fixed resources

Examples:

* Produce a given amount of change with
fewest coins

e Schedule classes in fewest possible rooms

* Perform the largest possible number of
jobs on a machine

Online decision making

 In classical algorithms, we are given an
iInput and need to produce an output.

Algorithm

Online decision making

 In online decision making, need to make
iIrrevocable decisions based on what we've
seen so far.

State, State, State; State, EEEE

Algorithm Algorithm Algorithm Algorithm

Online decision making

 In online decision making, need to make
iIrrevocable decisions based on what we’ve

seen so far.

 Examples:
* Games

 Control
* Prediction tasks in Machine Learning

Online vs. offline

« Which one will perform better?
* Offline clearly better.

* Why bother with online?

e Often no choice...

 When we have a choice?
* Conceptually simpler.
 Sometimes lead to optimal performance (often with
some preprocessing).
* When we do have an optimal algorithm that operates by
making local irrevocable decisions, such an algorithm is
called a greedy algorithm.

Greedy algorithms

« Make local, irrevocable, decisions
« Work when we can answer the following
guestion easily:

* Given the current state, can | commit to part of the
output right now?

Coin changing

Goal. Given U. S. currency denominations { 1, 5, 10, 25, 100 },
devise a method to pay amount to customer using fewest coins.

Ex. 34¢.

Cashier's algorithm. At each iteration, add coin of the largest value that does not take
us past the amount to be paid.

Ex. $2.89.

Cashier's algorithm

At each iteration, add coin of the largest value that does not take us past the amount to
be paid.

CASHIERSALGORITHM(X, C, 2, &), C

SORT n coin denominations so thakc1 <c2< € Ca.<

S M. € muttiset of coins selected

WHILE (x > 0)
k Y largest «euchthatk®nomi nati on c
IF (no such k)

RETURNANO sol ution. O

ELSE
X Y ox
S {kS.

RETURNS.

Cashier's algorithm (for arbitrary coin denominations)

Q. Ils cashierds algorithm optimal for any set

A. No. Consider U.S. postage: 1, 10 , 34, 70, 100, 350, 1225, 1500.
Il Cashierds alkog o f100hBAr+1+1+1+1+1+1.
11 Optimal: 140¢ = 70 + 70.

A USA]C

bad,
irredeemable

decisions

A. No. It may not even lead to a fgasi AGtion | a>1 7,8,9.
Il Cashierds albly
11 Optimal: 15¢= 7 +8.

10

Optimality of cashier’s algorithm (for U.S. coin denominations)

Theorem. Cashi erds algorithm is opti mal

100 }.

Pf. Succeed by not failing.

Enough to show that we never regret adding a coin to the change.

Therefore enough to show that:

(1) Any amount above $1 has a $1 coin in optimal solution

(2) Any amount above $0.25 but below $1 has a quarter in optimal
solution

(3) Any amount above $0.10 but below $0.25 has a dime in optimal
solution

(4) Any amount above $0.05 but below $0.10 has a nickel in optimal
solution

Prove those by observing that #pennies < 4, #nickels <1, #dimes < 2,
#quarters < 3.

11

Interval scheduling

11 Jobj starts at § and finishes at f;.

1l Two jobsare compatible i f they dondt overl ap.

11 Goal: find maximum subset of mutually compatible jobs.

a
Cc
d —
: : : 7 are incompatible
D
0 1 2 3 4 5 6 7 8 9 10 11

12

Interval scheduling: greedy algorithms

Greedy template. Consider jobs in some natural order.
Take each job provided it 's compatible with the ones already taken.

Il [Earliest starttime] Consider jobs in ascending order of S.
Il [Earliest finish time] ~ Consider jobs in ascending order of f;.
Il [Shortestinterval] — Consider jobs in ascending order of fi1s.

Il [Fewest conflicts] For each job j, count the number of
conflicting jobs ¢. Schedule in ascending order of ;.

13

Interval scheduling: greedy algorithms

Greedy template. Consider jobs in some natural order.
Take each job provided it 's compatible with the ones already taken.

counterexample for earliest start time

counterexample for shortest interval

counterexample for fewest conflicts

14

Interval scheduling: earliest-finish-time-first algorithm

EARLIESFFINISH-TIME-FIRST(N, 8, ®, &,fi, s @), f

SORT jobs by finish times and renumber so ttiatO f» O éfn. O
S Y. € setofjobs selected

FORj=1 TO n
IF (job jis compatible with S)
S ¥
RETURNS.

Proposition. Can implement earliest -finish -time firstin O(nlog n) time.
11 Keeptrack of job j* thatwas added lastto S.
11 Jobj is compatible with ~ Siff § O .. f
11 Sorting by finish times takes ~ O(n log n) time .
Note: Can be implemented in an online fashion?
No, because need to know the future to tell whether to accept a job or not.
*Yes, if allowed to drop jobs halfway through (and lose the credit)

Interval scheduling: analysis of earliest-finish-time-first algorithm

Theorem. The earliest -finish -time -first algorithm is optimal.

Pf.

-JJ2J

Succeed by not failing.

Assume greedy made first irredeemable mistake at step r+1.

Let iy, iy, ...
Let ji, jo -

I1=]1, I2=

Greedy:

Optimal:

j2! "'!ir = jr

i, denote set of jobs selected by greedy.

. Jm denote set of jobs in an optimal solution with

job i, exists and finishes no later than

Jr+1

iy i Ir

Ire1

|

jl j2 jr

\ 4

job j+1 exists
because m >k

/1

why not replace
job jiwithjob i.4?

16

Interval scheduling: analysis of earliest-finish-time-first algorithm

Theorem. The earliest -finish -time -first algorithm is optimal.

Pf. Succeed by not failing.

11 Assume greedy made an irredeemable mistake at step r+1.
1l Let iy, iy ... iy denote set of jobs selected by greedy.

1l Letjy, jo ... jm denote set of jobs in an optimal solution with

i1 =1, 2=]2 i =J;
job i, exists and finishes before
jl’ﬂl |
| l |
[[[- | i
Greedy: i I Iy [| Ik
I 1 7z
| |
| |
| |
Optimal: 1 B I i. HEEEE N

1

solution still feasible and optimal
(but contradicts that an irredeemable
mistake was made)

17

Recap: greedy algorithms

« Greedy algorithms process the input in
some order, and make irrevocable
decisions.

« They succeed by never making decisions
that are irreversibly wrong.

« Design decisions:

Order of processing
What to be greedy about

Recap: online decision making

* Online decision making algorithms operate on only part
of the input, which arrives in order we can’t control.

« Typically cannot attain “optimal in hindsight”
performance, the goal is to approximate its
performance.

« All online decision algorithms are greedy in some sense.

« Algorithm design reduces to two goals:

(1) Objective function design: “what to be greedy about?”
(2) Optimization: “how to find the best next step for the
objective?”

Graph algorithms

BFS vs. level-order-traversal of a binary
search tree.

LEVEL-ORDER TRAVERSAL (FROM 5 WEEKS AGO)

Level-order traversal of a binary tree.
11 Process root.
11 Process children of root, from left to right.
1l Process grandchildren of root, from left to right.

1 é

level-order traversal: SETARCHM

21

LEVEL-ORDER TRAVERSAL

Q1. Given binary tree, how to compute level -order traversal?

public Iterable<Key> levelOrder() {
Queue<Key> keys = new Queue<Key>();
Queue<Node> queue = new Queue<Node>();
queue.enqueue(root);
while (!queue.isEmpty()) {
Node x = queue.dequeue();
if (x == null) continue;
keys.enqueue(x.key);
queue.enqueue(x.left);
queue.enqueue(x.right);

}

return keys;

level-order traversal: SETARCHM

22

Graph algorithms

BFS vs. level-order-traversal of a binary

search tree.

// BFS from single source
private void bfs(Digraph G, int s) {
Queue<Integer> q = new Queue<Integer>();
marked[s] = true;
distTo[s] = ©;
g.enqueue(s);
while (!q.isEmpty()) {
int v = gq.dequeue();
for (int w : G.adj(v)) {
if (!marked[w]) {
edgeTo[w] V;
distTo[w] distTo[v] + 1;
marked[w] = true;
g.enqueue(w) ;

public Iterable<Key> levelOrder() {

Queue<Key> keys = new Queue<Key>();
Queue<Node> queue = new Queue<Node>();
queue.enqueue(root);
while (!queue.isEmpty()) {
Node x = queue.dequeue();
if (x == null) continue;
keys.enqueue(x.key);
queue.enqueue(x.left);
queue.enqueue(x.right);
}

return keys;

Cycle detection in digraphs

An example of timing analysis (similar to
WordNet readme).

public DirectedCycle(Digraph G) {
marked new boolean[G.V()];
onStack = new boolean[G.V()];
edgeTo new int[G.V()];
for (int v = 0; v < G.V(); Vv++)
if (!marked[v] && cycle == null) dfs(G, v);

}
Running time?
V (always) + cost of dfs calls.

Cost of dfs(G, v) calls?

private void dfs(Digraph G, int v) {

onstack[v] = true; Each edge visited at
marked[v] = true;
for (int w : G.adj(v)) { most once throughout
// short circuit if directed cycle found the execution Of
if (cycle != null) return;

DirectedCycle(..)

Lound now vertox <o rocyr

[else if (!marked[w]) {) .
: See;geTonE:r; i v\;’ COSt' S E
g, oer e Exactly once if no
\ J
trgce back directed cvcle CyCIeS‘
lse if (onStack[w]) {
(: sec;cle?: nZvcv Szackdnteger‘)(); \
T T X SaEE Run at most once,
iycle.push(w); throughout the
cycle.push(v); . f
assert check(); executlon 0]
A J DirectedCycle..)

onStack[v] = false;
} Cost: <V

Cycle detection in digraphs

public DirectedCycle(Digraph G) {
marked new boolean[G.V()];
onStack = new boolean[G.V()];
edgeTo new int[G.V()];
for (int v = 0; v < G.V(); Vv++)
if (!marked[v] && cycle == null) dfs(G, v);

}

Running time?

V (always) + cost of dfs calls.

Worst case: O(V+E);

Best case: O(V);

Best case if there are no cycles: O(V+E).

Example: exam problem from Spring’12

Given an edge-weighted digraph G the bottleneck capacity of a path is the minimum weight
of an edge on the path.

(a) Given an edge-weighted digraph G, two distinguished vertices s and ¢, and a threshold
value T', design an algorithm to find any one path from s to t of bottleneck capacity
greater than or equal to 7" or report that no such path exists. The order of growth of
the worst case running time of your algorithm should be E + V.

(b) Using the subroutine from (a), design an algorithm to find a mazimum bottleneck capacity

path from s to ¢t in an edge-weighted digraph . The order of growth of the worst case
running time of your algorithm should be (E + V') log E.

Note: solution is on the course webpage (Final Spring’12)

