
Class Meeting #14
COS 226 — Spring 2018

Mark Braverman



Midterm overview

• Multiple choice questions: 
• Variable difficulty
• Hardest questions: 

• compareTo;
• loneliest using standard BST 
• Other questions: 70-95% answered correctly

• Median priority queue:
• Considered a ‘B-level’ question.
• Most students got the high-level idea. 
• Implementation details vary



Midterm overview

• Loneliest element question.
• Considered an ‘A level’ question
• About 25% got 7/10 or more
• Median/average around 4/10
• Hard to see the complete solution right away – start 

collecting the pieces (e.g. the idea of using two search 
trees). 



Strategies for test #2
• Multiple choice part: quizerra, lectures, 

readings

• Design part, preparation:
• Old exams
• Not reading the checklist right away
• During assignments, code mindfully

• Design part, test taking strategies:
• Meta: understand which problems to tackle first.
• Start with high-level structure.
• Write out an explanation of the roles of the major pieces. 

These should lead to rules to guide implementation.
• Implementation (as needed). 



General advice

• When making long-term decisions, think 

long-term. 

• When making short-term decisions, think 

short-term. 



Hash tables



Hash tables

True/false:









True/false:





Kd-tree assignment

Timing demo



Timing question 
(J. Lumbroso’s slides)

How many get() calls can a BST 
implementation perform per second for a 
BST that contains 1,000 random keys?

You can assume that the keys are 
integers.

When timing do not include the time to 
build the BST. (Algorithms textbook 3.2)



Timing question
BST<Integer, Integer> testTree = new BST<Integer, Integer>();

// insert N random values
for(int i = 0; i < N; i++)

testTree.put(i, StdRandom.uniform(1, 1000000));

// time number of gets
// (make enough operations to last 1 second at least)
Stopwatch timer1 = new Stopwatch();
int numGets = 0;

for(int j = 0; j < 100; j++) {
for(int i = 0; i < N; i++) {

testTree.get(i);
numGets += 1;

}
}

double timing = timer1.elapsedTime();

StdOut.println(numGets/timing);


