Class Meeting #14
COS 226 — Spring 2018

Mark Braverman

Midterm overview

« Multiple choice questions:
* Variable difficulty
* Hardest questions:
* comparelo;
* |oneliest using standard BST
e Other questions: 70-95% answered correctly

« Median priority queue:
* Considered a ‘B-level’ question.
* Most students got the high-level idea.
* Implementation details vary

Midterm overview

* Loneliest element question.

Considered an ‘A level’ question

About 25% got 7/10 or more

Median/average around 4/10

Hard to see the complete solution right away — start
collecting the pieces (e.g. the idea of using two search
trees).

Strategies for test #2

Multiple choice part: quizerra, lectures,
readings
Design part, preparation:

 Old exams
* Not reading the checklist right away
e During assignments, code mindfully

Design part, test taking strategies:
 Meta: understand which problems to tackle first.
e Start with high-level structure.
* Write out an explanation of the roles of the major pieces.
These should lead to rules to guide implementation.
* Implementation (as needed).

General advice

« When making long-term decisions, think
long-term.

« When making short-term decisions, think
short-term.

Hash tables

linear probing alb

h(a) =1 [inserted first]

0o 1 2 38 4 5 6 7 8 9 h(b) =1 [inserted second]

separate chaining

o [

<l
-

jo1]

Hash tables

True/false:
A. With separate chaining, if the hash table is smaller than the

number of distinct keys to insert, the table will overflow.

B. With linear probing, if the hash table is smaller than the number

of distinct keys to insert, the table will explode.

C. Recall that a hash table is a symbol table which associates some data to a key (and we call entry the key-data pair).
Then, the best definition of a collision in a hash table is when:

(i) two entries are identical except for their keys;
(i1) two entries with different data have the exact same key;
(111) two entries with different keys have the exact same hash value;

(iv) two entries with the exact same key have different hash values.

D. Choosing a bad hash function can result in

(1) too many collisions;
(1) slow performance;
(111) no expected constant runtime guarantees;

(iv) too much clustering when using linear probing.

F. Which of the following scenarios leads to a linear running time for a random search hit in a linear probing hash table
containing N keys?

(1) All keys hash to different indices.
(1) All keys hash to the same index.

(11) All keys hash to an even-numbered index.

(iv) The table has size larger than NZ.

True/false:

G. With separate chaining for collision resolution, it is unnecessary

to resize the hash table to obtain good efficiency.

H. Deletions in linear probing are easier to implement than in separate chaining.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P M A|C|[S|H|L E R | X

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P | M AflC H|L E R | X
h(S) =6 t removing S this way won’t work
h(H) = 6 because when looking for H, the

hash table will think that it is not
in the table

Kd-tree assignment

Timing demo

Timing question
(J. Lumbroso’s slides)

How many get() calls can a BST
Implementation perform per second for a
BST that contains 1,000 random keys?

You can assume that the keys are
Integers.

When timing do not include the time to
build the BST. (Algorithms textbook 3.2)

Timing question

BST<Integer, Integer> testTree = new BST<Integer, Integer>();

// insert N random values
for(int i = 0; i < N; 1i++)
testTree.put (i, StdRandom.uniform(l, 1000000));

// time number of gets

// (make enough operations to last 1 second at least)
Stopwatch timerl = new Stopwatch () ;
int numGets = 0;

for(int j = 0; j < 100; J++) {
for(int i = 0; i < N; i++) {
testTree.get (1)
numGets += 1;
}
double timing = timerl.elapsedTime() ;

StdOut .println (numGets/timing) ;

