Class Meeting #9
COS 226 — Spring 2018

Mark Braverman



Time and location

The midterm is during lecture on
Monday, March 12, 11-12:20pm.

The exam will start and end promptly, so please
do arrive on time.

The midterm rooms are
Precepts PO1, P02, PO2A, P05, PO5A: McDonnell 02 (new room)

Precepts P03, P04, PO4A, PO4B, PO5B : Friend 101 (traditional
lecture room)

Space is tight. Failure to go to the right room can
result in a 10% deduction on the exam.

There will be no makeup exams except under
extraordinary circumstances, which must be
accompanied by the recommendation of a Dean.



Rules

* Closed book, closed note.

* You may bring one 8.5-by-11 sheet (one side)

with notes in your own handwriting to the exam.

* No electronic devices (including calculators,

laptops, and cell phones). Headphones attached

to audio devices are also prohibited.

« Discussing the exam with others until solutions
are posted is a violation of the Honor Code.



General considerations

Three types of questions:

* Quizzera style questions.

« Short questions, such as “what data
structure to use”, “debug this code”.

* Questions involving
design/implementation.

* Programming assignments are part of the
material.

A useful review deck from last semester:

http://www.cs.princeton.edu/courses/archive/fall1l7/cos226/exams/midterm_review_f17.pdf



Design

If performance guarantees are required,
pay attention to them, often they hint at the
Implementation.

Pay attention to any partial implementation
given.

Sometimes more than one data structure
needs to be combined.

Caching is another very useful technigue
(a special case of “more than one data
structure”).



Data structures

Arrays Random access, easy to use, resizing needed

Singly LL Flexible memory management, linear access

Doubly LL Flexible memory management, extra memory, two-way
access

Weighted UF Linear memory, logarithmic union/find

Queue/stacks Specialized operations (push, pop, enqueue, dequeue),
LL or array implementation

BST Supports order operations, bad worst case

LLRB Supports order operations, all log n operations

max/min heap

log n inserts/deletes, constant find min/max

ST

BST, LLRB, hashtable implementations (not yet covered)




Warm-up

How to implement a max-PQ with an LLRB
BST?

Same performance as heap implementation:
* Insert/delete in time proportional to log n
« Constant max()



Solution

Cache the maximum value.



Design question

Randomized priority queue. (8 points)

Describe how to add the methods sample () and delRandom() to our binary heap implemen-
tation of the MinPQ APIL. The two methods return a key that is chosen uniformly at random
among the remaining keys, with the latter method also removing that key.

public class MinPQ<Key extends Comparable<Key>>

MinPQQ) create an empty priority queue
void insert(Key key) insert a key into the priority queue
Key min(Q) return the smallest key
Key delMin() return and remove the smallest key
Key sample() return a key that is chosen uniformly at random
Key delRandom() return and remove a key that is chosen

uniformly at random



Design question

You should implement_the-sample () method ind the delRandom() method
in time proportiond] to log N, where N is the number-of keys in the data structure. For
simplicity, do not worry about resizing the underlying array.

Your answer will be graded on correctness, efficiency, clarity, and conciseness.



Design question

public Key sample() {
int r = 1 + StdRandom.uniform(N); // between 1 and N
return alr];



Design question

public Key delRandom() {
int r = 1 + StdRandom.uniform(N) ;

Key key = alr];
exch(r, N--);
sink(r);
swim(r) ;

a[N+1] = null;
return key;

//
//
//
//
//
//

between 1 and N

save away

to make deleting easy
if a[N] was too big
if a[N] was too small
avoid loitering



Design question

We would like to have a capacitated stack,
with max capacity k.
Supported operations

public class CapStack <ltem>

public CapStack(int cap); // create stack of
given capacity

public Item pop();

public void push(ltem item);



The stack only stores at most cap items.

If more items are pushed, oldest items are
discarded.

All operations should be constant time.
Memory should be proportional to current
stack size.



Solution

Use a dequeue.
CapStack will have instance variables:

Int capacity;
Deque<Item> data;
public CapStack(int cap)
{

capacity = cap;

data = new Dequeue();

}



public Item pop()
{

return data.removeFirst();

}



public Item push(ltem item)

{
data.addFirst(item);

If (data.size()>cap)
data.removelast();



Follow-up questions

Dequeue can be implemented as a linked
list, a doubling resizable array, or a fixed-
Size array.

Which implementations are consistent with
the memory requirement?

Suppose that the stack is full to capacity
most of the time.

Order the implementations in terms of
expected memory performance in practice.



Design question

Given k sorted arrays containing N keys in total, design an algorithm that determine whether
there is any key that appears more than once.

Your algorithm should use extra space at most proportional to k. For full credit, it should run

in time at most proportional to N log k in the worst case; for partial credit, time proportional
to Nk.



Design question

The main idea is to consider the N keys in ascending order, so that duplicate keys are
adjacent. This is similar to the multiway merging algorithm on pp. 321-322 of the
textbook.

e Scan through adjacent entries in each of the k sorted array to check for any duplicate
key within one of the original sorted arrays. If a duplicate is detected, stop.

e Initialize a red-black BST with k key-value pairs, where the key is the first (smallest)
key in the 7th sorted array and the value is the index i of the array.
e Repeat until the BST is empty or a duplicate is detected:
— Delete the minimum key from the BST and let 7 be the index of the array
associated with the deleted key.

— If the next remaining key from array i is not already in the BST, add the key
and associate it with the value 1.

— Otherwise, stop (duplicate detected). Ot h er so I ut| ons ?



Design question

8. Addendum (9 points). The addBlock() operation is used to add M
comparables to an existing sorted data set of N comparables, where M << N. A
data set of size N 1s considered sorted if it can be iterated through in sorted order in N
time.

COS226 student Frankie Haltbean makes two choices. First, he selects a sorted array as
the data structure. Secondly, he selects insertion sort as the core algorithm, explaining
that insertion sort 1s very fast for almost sorted arrays. To add a new block of M
comparables, the algorithm simply creates an array of length N+M, copies over the old N
values into the new array, copies over the new M values to the end of the array, and
finally insertion sort is used to bring everything into order. The old array is left available
for garbage collection.

(a) What 1s the worst case order of growth of the run time as a function of N and M?



Design question

(b) Design a scheme that has a better order of growth for the run time in the worst case.
For full credit, design a scheme that uses optimal space and time to within a constant
factor.



Design question

Largest common item. (8 points)

Given an N-by-N matrix of real numbers, find the largest number that appears (at least)
once in each row (or report that no such number exists).

The running time of your algorithm should be proportional to N?log N in the worst case.
You may use extra space proportional to N?.



(a) 1. Sort each row using heapsort.

2. For each number in row 0, from largest to smallest, use binary search to check if it
appears in the other N — 1 rows.
3. Return the first number that appears in all N rows.
The order of growth of the running time is N?log N, with the bottleneck being steps 1
and 2. Correctness follows because the largest common number must appear in row 0.
Scanning the numbers in row 0 from largest to smallest ensures that we find the largest
common number.

(b) N?log N



7. Leaky stack. (8 points)

A leaky stack is a generalization of a stack that supports adding a string; removing the
most-recently added string; and deleting a random string, as in the following API:

public class LeakyStack

LeakyStack(Q) create an empty randomized stack
void push(String item)  push the string on the randomized stack
String pop(Q) remove and return the string most recently added

void Teak() remove a string from the stack, uniformly at random

All operations should take time proportional to log N in the worst case, where N is the number
of items in the data structure.



public class LeakyStack {
private int counter = O;
private RedBlackBST<Integer, String> st = new RedBlackBST<Integer, String>();

public void push(String item) {
st.put(counter++, item);

}

public String pop() {
String item = st.get(st.max());
st.deleteMax();
return item;

public void leak() {
int r = StdRandom.uniform(st.size());
st.delete(st.select(r));



v =T ONTT

You have been hired by Deep Thought Enterprises to implement a priority-queue-like data structure sup-
porting the following operations:

e insert() anitem in O(logN) time.
e fortytwo() — return the 42" smallest item in constant time.
e delFortyTwo() — delete the 42" smallest item in O(logN) time.

Explain how you would implement the required functionality, using one or more data structures that we have
seen in class. Write pseudocode for each of the three operations listed above. You may assume that N > 42,
and omit all checks for smaller N.

For full credit, your implementation should support finding the <™ smallest item with an order-of-growth
running time independent of k. That is, it should be possible to change 42 to some other constant (at compile
time) without changing the order-of-growth running time.



Solution #1:
Maintain a MaxPQ called firstFortyTwo with 42 items on it,
and a MinPQ called theRest with all the rest of the items.
insert(x):
firstFortyTwo.insert(x);
if (firstFortyTwo.size() > 42)
theRest.insert (firstFortyTwo.delMax()) ;
fortytwo(Q):
if (firstFortyTwo.size() < 42) // Check may be omitted in answer
throw new NoSuchElementException("N < 42");
return firstFortyTwo.max();
delFortyTwo():
if (firstFortyTwo.size() < 42) // Check may be omitted in answer
throw new NoSuchElementException("N < 42");
x = firstFortyTwo.delMax();
if (!'theRest.isEmpty())
firstFortyTwo.insert(theRest.delMin());
return Xx;



Solution #2:

Maintain a Red-Black BST, as well as the 42nd-smallest element.

insert() adds to the RBST, then calls select(42) to find the
42nd-smallest element, saving it in an instance variable.

fortytwo() returns the cached 42nd-smallest element.

delFortyTwo() deletes the 42nd-smallest element from the RBST, then calls
select(42) to save the new 42nd-smallest element.

Incorrect solution:
Maintain a Red-Black BST, but call select(42) in fortytwo() - takes log(N) time.



