
Class Meeting #9
COS 226 — Spring 2018

Mark Braverman

Time and location
The midterm is during lecture on

Monday, March 12, 11–12:20pm.

The exam will start and end promptly, so please
do arrive on time.
The midterm rooms are

Precepts P01, P02, P02A, P05, P05A: McDonnell 02 (new room)

Precepts P03, P04, P04A, P04B, P05B : Friend 101 (traditional
lecture room)

Space is tight. Failure to go to the right room can
result in a 10% deduction on the exam.
There will be no makeup exams except under
extraordinary circumstances, which must be
accompanied by the recommendation of a Dean.

Rules

• Closed book, closed note.

• You may bring one 8.5-by-11 sheet (one side)

with notes in your own handwriting to the exam.

• No electronic devices (including calculators,

laptops, and cell phones). Headphones attached

to audio devices are also prohibited.

• Discussing the exam with others until solutions

are posted is a violation of the Honor Code.

General considerations

Three types of questions:

• Quizzera style questions.

• Short questions, such as “what data

structure to use”, “debug this code”.

• Questions involving

design/implementation.

• Programming assignments are part of the

material.

A useful review deck from last semester:
http://www.cs.princeton.edu/courses/archive/fall17/cos226/exams/midterm_review_f17.pdf

Design

• If performance guarantees are required,

pay attention to them, often they hint at the

implementation.

• Pay attention to any partial implementation

given.

• Sometimes more than one data structure

needs to be combined.

• Caching is another very useful technique

(a special case of “more than one data

structure”).

Data structures
Arrays Random access, easy to use, resizing needed

Singly LL Flexible memory management, linear access

Doubly LL Flexible memory management, extra memory, two-way
access

Weighted UF Linear memory, logarithmic union/find

Queue/stacks Specialized operations (push, pop, enqueue, dequeue),
LL or array implementation

BST Supports order operations, bad worst case

LLRB Supports order operations, all log n operations

max/min heap log n inserts/deletes, constant find min/max

ST BST, LLRB, hashtable implementations (not yet covered)

Warm-up

How to implement a max-PQ with an LLRB

BST?

Same performance as heap implementation:

• Insert/delete in time proportional to log n

• Constant max()

Solution

Cache the maximum value.

Design question

Design question

Design question

Design question

Design question

We would like to have a capacitated stack,

with max capacity k.

Supported operations

public class CapStack <Item>

public CapStack(int cap); // create stack of

given capacity

public Item pop();

public void push(Item item);

• The stack only stores at most cap items.

• If more items are pushed, oldest items are

discarded.

• All operations should be constant time.

• Memory should be proportional to current

stack size.

Solution

Use a dequeue.

CapStack will have instance variables:

int capacity;

Deque<Item> data;

public CapStack(int cap)

{

capacity = cap;

data = new Dequeue();

}

public Item pop()

{

return data.removeFirst();

}

public Item push(Item item)

{

data.addFirst(item);

if (data.size()>cap)

data.removeLast();

}

Follow-up questions

• Dequeue can be implemented as a linked

list, a doubling resizable array, or a fixed-

size array.

• Which implementations are consistent with

the memory requirement?

• Suppose that the stack is full to capacity

most of the time.

• Order the implementations in terms of

expected memory performance in practice.

Design question

Design question

Other solutions?

Design question

Design question

Design question

