Class Meeting #7

COS 226 — Spring 2018

Mark Braverman
(based on slides by
Jérémie Lumbroso)
Problem #3: Duplicate Element

Elements from 1…N

At least 1 duplicate: 1, 5, 4, 3, 2, 1
Possibly many: 2, 1, 1, 1, 1, 2

Problem: find one duplicate element
Requirements:
\((\sim)\) constant auxiliary memory
as few passes as possible
Problem #3: Naïve One Pass

As before, we can build a histogram:

array \texttt{a}[1..N] \text{ initially all 0}

foreach element \texttt{x[i]}

increment \texttt{a[x[i]]} by 1

for \texttt{i = 1 to N}

if \texttt{a[i]} > 1 then print "Duplicate is " + \texttt{i}

One pass, but linear space
Problem #3: Naïve One Word

We can flip the naïve solution to use linear passes and constant memory for $i = 1$ to N

counter := 0
foreach element $x[j]$:
 if $x[j] == i$ then counter = counter + 1
if counter > 1 then print "Found duplicate " + i
Sketch of better solution

Solution: constant memory, log N passes
Use two counters
 one counter to track values in [1, N/2)
 one counter to track values in [N/2, N]
The counter that is larger indicates to range to visit (lower half or higher half)
Recursively look at half
Problem #4: Cycle Detection

Single linked list got corrupted and has cycle

Question 1: how to detect cycle?

Question 2 (harder): how to fix cycle?
Problem #4: Suboptimal ideas (1)
Try to traverse the list (possibly does not terminate)
Keep track of all elements seen so far (requires linear extra memory + does not allow duplicates)
Keep track of the pointer addresses seen so far (requires linear extra memory)
Problem #4: Tortoise and Hare

Traverse the list using two pointers
Tortoise which follows each node.next
Hare which follows at twice the pace, going each time to node.next.next

If there is a loop, they will at some point be on the same element
We can then compare addresses (and if not, then the Hare eventually will get to a null element)
*How to find the cycle’s location?
Problem 4: locating the cycle

Need to figure out the number of steps t to reach cycle and cycle length ℓ
In the picture above, $t = 2$, $\ell = 5$
After the tortoise and hare meet, let tortoise rest, and let hare run another lap, counting its steps will give us ℓ.
Problem 4: finding t

Let x be the number of steps from the start of the cycle that the hare and tortoise meet for the first time.
Let m be the number of steps the tortoise makes before the meeting. Then $m = t + x$
Problem 4: finding t

$$m = t + x$$

The hare makes $2m$ steps. Therefore

$$2m = t + x + k \cdot \ell$$

for some integer k. $m = t + x = k \cdot \ell$

Place turtle at x, and hare at the beginning, and let them run at speed 1.
Problem 4: finding \(t \)

\[
m = t + x = k \cdot \ell
\]

Place turtle at \(x \), and hare at the beginning, and let them run at speed 1.

After \(t \) steps (we don’t know \(t \)), hare will be at the start of the cycle. Turtle will be \(x + t = k \cdot \ell \) from the beginning of the cycle, i.e. at the beginning of the cycle too!
Problem 4: finding t

After t steps (we don’t know t), hare will be at the start of the cycle. Turtle will be $x + t = k \cdot \ell$ from the beginning of the cycle, i.e. at the beginning of the cycle too! They meet for the first time after exactly t steps at the beginning of the cycle.
Problem #5
(Dynamic programming preparation)
Just enough gas to complete the course. Where to start?
Problem #5

$G[1] \ldots G[N]$
$C[1] \ldots C[N]$
$G[i] –$ gas at location i
$C[i] –$ cost of segment after location i
$G[1] + \ldots + G[N] = C[1] + \ldots + C[N]$
Want: a location j such that for all k
$G[j] + G[j+1] + \ldots + G[j+k] \geq C[j] + \ldots C[j+k],$
where addition is modulo N (so $(N-4)+7=3$).
Problem #5

Imagine that we could “overdraw” gas. Start at 1.
After i steps have
Problem #5

Let j be such that $A[j]$ is the smallest. Start from $j+1$.
Gas after k steps:
Problem #6

Find the (contigueous) subarray with largest sum.
Problem #6 (sketch)

Calculate
Sum[i] = A[0] + ... + A[i-1]
Calculate
Min[i] = \text{min}(Sum[0], ..., Sum[i+1])
Max[i] = Sum[i+1] - Min[i]
Find the maximum value of Max[i] for i = 1..N
Note that only a constant amount of extra memory is needed for these calculations