
Class Meeting #7
COS 226 — Spring 2018

Mark Braverman

(based on slides by

Jérémie Lumbroso)

Problem #3: Duplicate Element

Stream: x[1] x[2] x[3] x[4] … x[N+1]

Elements from 1…N

At least 1 duplicate: 1, 5, 4, 3, 2, 1

Possibly many: 2, 1, 1, 1, 1, 2

Problem: find one duplicate element

Requirements:

(~) constant auxiliary memory

as few passes as possible

Problem #3: Naïve One Pass

As before, we can build a

histogram:

array a[1..N] initially all 0

foreach element x[i]
increment a[x[i]] by 1

for i = 1 to N
if a[i] > 1 then print "Duplicate is " + i

One pass, but linear space

Problem #3: Naïve One Word

We can flip the naïve solution to use

linear passes and constant memory

for i = 1 to N
counter := 0
foreach element x[j]:

if x[j] == i then counter = counter + 1
if counter > 1 then print "Found duplicate " + i

Sketch of better solution

Solution: constant memory, log N

passes

Use two counters
one counter to track values in [1, N/2)
one counter to track values in [N/2, N]

The counter that is larger indicates to

range to visit (lower half or higher half)

Recursively look at half

Problem #4: Cycle Detection

Single linked list got corrupted and has
cycle
Question 1: how to detect cycle?
Question 2 (harder): how to fix cycle?

head

Problem #4: Suboptimal ideas (1)

Try to traverse the list (possibly does not

terminate)

Keep track of all elements seen so far

(requires linear extra memory + does not

allow duplicates)

Keep track of the pointer addresses seen so

far (requires linear extra memory)

Problem #4: Tortoise and Hare

Traverse the list using two pointers
Tortoise which follows each node.next
Hare which follows at twice the pace, going each time to
node.next.next

If there is a loop, they will at some point be on

the same element

We can then compare addresses

(and if not, then the Hare eventually will get to

a null element)

*How to find the cycle’s location?

Problem 4: locating the cycle

Problem 4: finding t

Problem 4: finding t

Problem 4: finding t

Problem 4: finding t

Problem #5
(Dynamic programming preparation)

Just enough gas to complete the course.

Where to start?
3 mi 5 mi

1 mi

2 mi

6 mi

4 mi

3 mi

5 mi

5 mi

1 mi

Problem #5

Problem #5

Imagine that we could “overdraw” gas.

Start at 1.

After i steps have

A[i]:=G[1]-C[1]+G[2]-C[2]+…+G[i]-C[i]

gas.

1 N 0

Problem #5

Let j be such that A[j] is the smallest. Start

from j+1.

Gas after k steps:

G[j+1]-C[j+1]+G[j+2]-C[j+2]+…+G[j+k]-C[j+k]=

A[j+k]-A[j]

Problem #6

Find the (contigeous) subarray with largest

sum.

Problem #6 (sketch)

Calculate

Sum[i]=A[0]+…+A[i-1]

Calculate

Min[i]=min(Sum[0],…,Sum[i+1])

Max[i]=Sum[i+1]-Min[i]

Find the maximum value of Max[i] for i=1..N

Note that only a constant amount of extra

memory is needed for these calculations

