
Class Meeting #6
COS 226 — Spring 2018

Mark Braverman

(based on slides by

Jérémie Lumbroso)

A note on collaboration

• Read collaboration policy.

• 10 total attempts per team.

• Keep team’s submission in one account,

and erase from the other.

Assignment Goal

Write a client that takes list of terms with

weights and produces autocomplete

Manipulate Comparator / Comparable

Reimplement binary search

93827

14608512 Shanghai, China

13076300 Buenos Aires, Argentina

12691836 Mumbai, India

12294193 Mexico City, Distrito Federal, Mexico

11624219 Karachi, Pakistan

11174257 İstanbul, Turkey

number of
terms in file

one term per line

weight per term

Main challenge

Problem 1: finding any index in a list

Problem 2: finding the first index in a list

Test Client #1

public static void main(String[] args) {

// read in the terms from a file

String filename = args[0];

In in = new In(filename);

int N = in.readInt();

Term[] terms = new Term[N];

for (int i = 0; i < N; i++) {

long weight = in.readLong(); // read the next weight

in.readChar(); // scan past the tab

String query = in.readLine(); // read the next query

terms[i] = new Term(query, weight); // construct the term

}

// read in queries from standard input and print out the top k matching terms

int k = Integer.parseInt(args[1]);

Autocomplete autocomplete = new Autocomplete(terms);

while (StdIn.hasNextLine()) {

String prefix = StdIn.readLine();

Term[] results = autocomplete.allMatches(prefix);

for (int i = 0; i < Math.min(k, results.length); i++)

StdOut.println(results[i]);

}

}

(in assignment description)

It reads the data from the file; then it repeatedly reads autocomplete queries
from standard input, and prints out the top k matching terms in descending
order of weight.

Test Client #2

AutocompleteGUI from FTP

COMPARATORS

Comparison function

compares two objects

instance version (where this == a):
compareTo(Object b)

comparator version:
compare(Object a, Object b)

returns 0 if objects are equal

returns -1 if a < b // or any negative int

returns 1 if a > b // or any positive int

int comparator(int a, int b) { return a-b; }

Two new interfaces

Comparable<T> applied to a class
says that it can be compared to objects of type T
add compareTo(T other)

Comparator<T> declares that an external class can be

used to compare two objects of type T
add compare(T first, T second)
can be given to a function as a parameter

What does <Key> mean?

Generic method: placeholder for argument type.

Enforces the condtition that a and key are of the same

type:

Apple [] a;

Apple b;

….

firstIndexOf(a, b, Apples.bySweetness());

What does <Key> mean?

Generic method: placeholder for argument type.

Enforces the condtition that a and key are of the same

type:

Apples [] a;

Orange b;

….

firstIndexOf(a, b, Apples.bySweetness());

TIPS

Don't reinvent the wheel

Look at Arrays java module
Arrays.sort(…)
Arrays.copyOfRange(T[] orig, int from, int to)

Use String.substring(int beginIndex)

String.substring(int begin, int end);

Two tips

Search for the first/last position efficiently
no linear scan to find edge of array
ideally, 1 + ⌈log2 n⌉ (how to test??)

Immutable (when resorting arrays)
when you copy the select results
resort them according to weight
make sure the new array is a copy

This week’s analysis question

Order of growth = no leading constants
Expecting N log N, or M log N, etc.
Pencil-and-paper analysis

/**

* What is the order of growth of the number of compares (in the

* worst case) that each of the operations in the Autocomplete

* data type make, as a function of the number of terms N and the

* number of matching terms M?

*

* Recall that with order-of-growth notation, you should discard

* leading coefficients and lower order terms, e.g., M^2 + M log N.

***/

constructor:

allMatches():

numberOfMatches():

55

TECHNICAL INTERVIEW QUESTIONS

Data streaming model
Sequence of elements (integers)

x[1] x[2] x[3] x[4] x[5]

Like an array

In some problems, we hope to make as

few passes as possible

Ideally only 1 pass (read each element

only once, sequentially from x[1] to x[N])

Use memory substantially smaller than N

FINDING MISSING ELEMENTS
Data streaming — Part 1

Problem #1: One Missing

Stream: x[1] x[2] x[3] x[4] … x[N-1]

with all elements from 1 to N appear once except one

(which is missing)

Problem: find missing element

Requirements:
one pass (scan elements from x[1] to x[N-1] and read each
exactly once)
linear time
one word of memory

Problem #2: Two Missing

Stream: x[1] x[2] x[3] x[4] … x[N-2]

with all elements from 1 to N appear once except two

(which are missing)

Problem: find the two missing element

Requirements:
one pass (scan elements from x[1] to x[N-2] and read each exactly
once)
linear time
(~) one word of memory

