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A note on collaboration

• Read collaboration policy. 

• 10 total attempts per team. 

• Keep team’s submission in one account, 

and erase from the other. 



Assignment Goal

Write a client that takes list of terms with 

weights and produces autocomplete

Manipulate Comparator / Comparable

Reimplement binary search
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Main challenge

Problem 1: finding any index in a list

Problem 2: finding the first index in a list



Test Client #1

public static void main(String[] args) {

// read in the terms from a file

String filename = args[0];

In in = new In(filename);

int N = in.readInt();

Term[] terms = new Term[N];

for (int i = 0; i < N; i++) {

long weight = in.readLong();           // read the next weight

in.readChar();                         // scan past the tab

String query = in.readLine();          // read the next query

terms[i] = new Term(query, weight);    // construct the term

}

// read in queries from standard input and print out the top k matching terms

int k = Integer.parseInt(args[1]);

Autocomplete autocomplete = new Autocomplete(terms);

while (StdIn.hasNextLine()) {

String prefix = StdIn.readLine();

Term[] results = autocomplete.allMatches(prefix);

for (int i = 0; i < Math.min(k, results.length); i++)

StdOut.println(results[i]);

}

}

(in assignment description)

It reads the data from the file; then it repeatedly reads autocomplete queries 
from standard input, and prints out the top k matching terms in descending 
order of weight.



Test Client #2

AutocompleteGUI from FTP



COMPARATORS



Comparison function

compares two objects

instance version (where this == a):
compareTo(Object b)

comparator version:
compare(Object a, Object b)

returns 0 if objects are equal

returns -1 if a < b // or any negative int

returns 1 if a > b  // or any positive int

int comparator(int a, int b) { return a-b; }



Two new interfaces

Comparable<T>  applied to a class
says that it can be compared to objects of type T
add compareTo(T other)

Comparator<T>  declares that an external class can be 

used to compare two objects of type T
add compare(T first, T second)
can be given to a function as a parameter







What does <Key> mean?

Generic method: placeholder for argument type. 

Enforces the condtition that a and key are of the same 

type:

Apple [] a;

Apple b;

….

firstIndexOf(a, b, Apples.bySweetness());  



What does <Key> mean?

Generic method: placeholder for argument type. 

Enforces the condtition that a and key are of the same 

type:

Apples [] a;

Orange b;

….

firstIndexOf(a, b, Apples.bySweetness());  



TIPS



Don't reinvent the wheel

Look at Arrays java module
Arrays.sort( … )
Arrays.copyOfRange(T[] orig, int from, int to)

Use String.substring(int beginIndex)

String.substring(int begin, int end);



Two tips

Search for the first/last position efficiently
no linear scan to find edge of array
ideally, 1 + ⌈log2 n⌉ (how to test??)

Immutable (when resorting arrays)
when you copy the select results
resort them according to weight
make sure the new array is a copy



This week’s analysis question

Order of growth = no leading constants
Expecting N log N, or M log N, etc.
Pencil-and-paper analysis

/******************************************************************************

*  What is the order of growth of the number of compares (in the

*  worst case) that each of the operations in the Autocomplete

*  data type make, as a function of the number of terms N and the

*  number of matching terms M?

*

*  Recall that with order-of-growth notation, you should discard

*  leading coefficients and lower order terms, e.g., M^2 + M log N.

*****************************************************************************/

constructor:

allMatches():

numberOfMatches():
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TECHNICAL INTERVIEW QUESTIONS



Data streaming model
Sequence of elements (integers)

x[1]  x[2]  x[3]  x[4]  x[5]

Like an array

In some problems, we hope to make as 

few passes as possible

Ideally only 1 pass (read each element 

only once, sequentially from x[1] to x[N])

Use memory substantially smaller than N



FINDING MISSING ELEMENTS
Data streaming — Part 1



Problem #1: One Missing

Stream:   x[1] x[2] x[3] x[4] … x[N-1]

with all elements from 1 to N appear once except one 

(which is missing)

Problem: find missing element

Requirements:
one pass (scan elements from x[1] to x[N-1] and read each 
exactly once)
linear time
one word of memory



Problem #2: Two Missing

Stream:   x[1] x[2] x[3] x[4] … x[N-2]

with all elements from 1 to N appear once except two 

(which are missing)

Problem: find the two missing element

Requirements:
one pass (scan elements from x[1] to x[N-2] and read each exactly 
once)
linear time
(~) one word of memory


