
Class Meeting #4
COS 226 — Spring 2018

Mark Braverman

Amortization

• When we design and implement

algorithms, we often aim to minimize some

resources, such as time and memory.

• Often, we cannot guarantee worst-case

performance, but instead have to settle for

average-case.

• Amortized time 𝑇 per operation == 𝑘
operations cost ≤ 𝑘 ⋅ 𝑇 time steps.

• Not to be confused with expected time.

How to think about amortization?

Real-life examples of amortization:

• Maintenance costs

• Big purchases

• Insurance

Example: condo maintenance

• Expenses:
• Roof: $100K, every 20 years
• Gardening: $10K/year
• Elevator: $300K, when it breaks
• Fire alarm system: $50K, every 10

years.
• …

• Income: condo fees, stable

over time (*if the condo is

well-managed): $5K/month

Long-term cost of condo

• Claim: the long-term cost of maintaining

the condo is $5K/month

• To establish this claim we only need to

show that:

• If we collect $5K/month, we will remain

solvent forever.

• Done with careful accounting.

• Amortization “spreads” the $100K roof over

many months

Stack with resizable array

Example from section 1.4

• Maintain stack contents in an array.

• If run out of room…

double the size of the array

Stack with resizable array

Problem:

• May end up wasting a lot of space:

Stack with resizable array

Solution:

• When array becomes less then quarter full,

resize it.
why not half??

Cost analysis

• Want to show that the cost of resizing is

constant per operation.

• Cost of resizing from n to 2n is ~2n.

• Cost of resizing from 2n to n is ~n.

• Collect $5 for each push(), pop() operation.

• Pay $2n to resize from n to 2n.

• Pay $n to resize from 2n to n.

• Want: show that we’ll remain solvent.

• Then, after 𝑚 ops, collect at most $5m,

and so resizing cost <5m

Observation

• After resizing, the array is of size 2n, and

has either n or n+1 elements.

• Resizing up:
• Resize to 2*n
• Have n+1 elements

Observation

• After resizing, the array is of size 2n, and

has either n or n+1 elements.

• Resizing down:
• Resize to 2*n
• Have n elements

Saving money for next resize

When will next resize happen?

• Next resize up, will require at

least 𝑛 − 1 operations, and

will cost $4𝑛.

• Next resize down, will require

at least 𝑛/2 operations, and

will cost $𝑛/2.

Accounting

• Case 1: Collect at least $5𝑛 − 5, can afford

$4𝑛, as long as 𝑛 ≥ 5.

• Case 2: Collect at least $5𝑛/2, can afford

$𝑛/2.

• Yay!

Algorithm design examples

Problem: given a Stack implementation,

implement a queue, subject to the following

conditions:

• Use two Stacks

• Amortized constant cost of enqueue() and

dequeue()

Solution

1

2

3

Stack 1

4

• enqueue(1)

• enqueue(2)

• enqueue(3)

• enqueue(4)

• dequeue()

Stack 2Stack 1

Solution

1

2

3

4

• dequeue()

Stack 2Stack 1

Solution

2

3

4

• dequeue()

• dequeue()

• enqueue(5)

• dequeue()

5

Stack 2Stack 1

1

2

3

45

Back of queue Front of queue

Solution

enqueue(x)

Stack1.push(x)

Solution

dequeue()

if (Stack2.isEmpty())

if(Stack1.isEmpty())

return error;

while(!Stack1.isEmpty)

Stack2.push(Stack1.pop());

return Stack2.pop();

Amortized analysis

• enqueue() always has cost 1.

• dequeue() may have an arbitrarily high

cost.

• Use amortized analysis.

Amortized analysis

• Use amortized analysis.

• Collect $4 for each enqueued element

• Pay $1 for each push/pop operation

• Each element is addressed at most 4 times

(push into Stack1, pop from Stack1, push

into Stack2, pop from Stack2)

• The 4 operations are prepaid, therefore will

always remain solvent!

• At any point: Cost so far ≤ 4 ∗
number of enqueue calls.

The 3SUM problem

• Similar in flavor to binary search.

• Given three lists of numbers A, B, C of

length 𝑛
• Want to know whether there is an element

x in A, y in B, z in C such that x+y=z.

3SUM

Trivial solution

for (int x: A)

for (int y: B)

for (int z: C)

if (x+y==z)

return true;

return false;

Running time? ∼ 𝑛3

3SUM

• Many solutions in time ∼ 𝑛2

• Unknown whether can do better.

• Wouldn’t be completely shocking if can be

done in ∼ 𝑛1.5

3SUM

Start by sorting A and B (cost ∼ 𝑛 log 𝑛)

Design a procedure IsInSum(A,B,z) which,

assuming A and B are sorted, returns

whether there is x in A and y in B such that

x+y=z

IsInSum(A,B,z)

32 from B is useless;

24 from B is useless;

1 from A is useless;

….

A: 1, 3, 7, 12, 18, 22, 26, 31 B: 2, 3, 8, 11, 16, 21, 24, 32

z=23

i j

IsInSum(A,B,z)

int i=0;

int j=B.length;

while ((i<A.length)&&(j>0))

{

if(A[i]+B[j]==z)

return true;

if (A[i]+B[j]>z)

j--;

else

i++;

}

return false;

Main while() loop
runs at most
A.length+B.length
times, constant cost
each.
Total cost linear in 𝑛

3SUM

sort(A)

sort(B)

for (int z: C)

if (IsInSum(A,B,z))

return true;

return false;

Assignments tips

Avoiding loitering

• Loitering:
• Keeping things in memory after they are no longer

needed.

• In Java, garbage collection is

automatic.

• “An object is stored as long as

someone is pointing at it”

Example: linked list vs resizable array

• When we pop() an element, we may need

to actively remove all reference to it.

1 2 3

end

return

move end

3

will linger in memory3

need to explicitly destroy links to it

until when??

Example: linked list vs resizable array
• Is this a big problem?

• Depends on how big is.

1 2

end

3

3
String TwoCities = “It was the best of
times, it was the worst of times,…”

Example: linked list vs resizable array

• When we pop() an element, we may need

to actively remove all reference to it.

1 2 3

end

return

move end

will linger in memory

3

3

need to explicitly destroy links to it

until when??

Example: linked list vs resizable array

• Removal from linked list implementation of

stack

Example: linked list vs resizable array

• Removal from linked list implementation of

stack

1 2 3

null
first

Example: linked list vs resizable array

1 2 3

null
first

first.next nothing refers to 3
it will get
automatically
picked up by the
garbage collector

Random tips

• Consider sentinel nodes in linked

implementations.
• Often simplifies code/reduces bugs.

• Iterator is just another class.
• You may put code in its constructor.
• More: in precept tomorrow.

