

Class Meeting #2
COS 226 — Spring 2018

Based on slides by

Jérémie Lumbroso

— Motivation

— Problem description

— API

— Backwash

— Empirical Analysis

— Memory Analysis

What does Percolation model?

Other examples:
• Water freezing
• Ferromagnetic

effects

Create private “helper” funtion

private int getIntFromCoord(int row, int col) {

return N * row + col;

}

Or perhaps since this function

will be used a lot, should it have a

shorter name?

For ex.: site or location or cell

or grid, etc., …

public class UF

UF(int N)
initialize union-find data structure with

N objects (0 to N – 1)

void union(int p,int q) add connection between p and q

boolean connected(int p,int q) are p and q in the same component?

int find(int p) component identifier for p (0 to N – 1)

int count() number of components

what is

provided

what you must do

both are APIs

Why an API?

API = Application Programming Interface

—a contract between a programmers

—be able to know about the functionality

without details from the implementation

PercolationStats Percolation UF

union

connected

open

percolates

Each of these modules could be programmed by anybody /
implemented anyway

Example 1: Car

public class Car {

void turnLeft()

void turnRight()

void shift(int gear)

void break()

}

A. Electrical?
B. Hybrid?
C. Gasoline?
D. Diesel?

E. Hydrogen cell?

Example 1: Car

public class Car {

void turnLeft()

void turnRight()

void shift(int gear)

void break()

}

Example 2: Electrical Outlets

original API API with added
public members

is incompatible with
rest of the clients

Why is it so important to implement the prescribed API? Writing to an

API is an important skill to master because it is an essential component of

modular programming, whether you are developing software by yourself or as

part of a group. When you develop a module that properly implements an

API, anyone using that module (including yourself, perhaps at some later

time) does not need to revisit the details of the code for that module when

using it. This approach greatly simplifies writing large programs, developing

software as part of a group, or developing software for use by others.

Most important, when you properly implement an API, others can write

software to use your module or to test it. We do this regularly when grading

your programs. For example, your PercolationStats client should work

with our Percolation data type and vice versa. If you add an extra public

method to Percolation and call them from PercolationStats, then

your client won't work with our Percolation data type. Conversely, our

PercolationStats client may not work with your Percolation

data type if you remove a public method.

Backwash problem

Empirical Analysis
THEORY + PRACTICE

Power Law Running Times

c N a

— Typically most running times that are

empirically measure are power laws

exponent

parameter

(size of the instance)
constant

factor

— Usually when other running times are

involved such as N.log N, N.α(n), exp(N), it will

be because of a known sub-algorithm

Doubling Hypothesis (1)

Assuming the running time is of the form:

t(N) := c · Na

then, to find the exponent a:

c ·Na
= =

t(2N) c · (2N)a c ·2aNa

= 2a

t(N)

Finally:

c ·Na

logarithm
base 2

𝑎 = log2
𝑡 2𝑁

𝑡 𝑁

Doubling Hypothesis (2)

Recipe:
— timing in N and 2N

— take log base 2 of ratio

— repeat for several points
timing when size

of input is N

timing when size
of input is 2N (doubled)

binary
logarithm

exponent!!!

(what we want to find)

log2
𝑡 2𝑁

𝑡 𝑁
= 𝑎

Doubling Hypothesis (3)

Tips: 1) pick largest points; 2) repeat couple times

N 100 200 400 800 1600 3200 6400

time 0.538473 0.0932774 0.163298 0.744645 2.5858 18.5561 141.455

first try with N too small (noise)

weird value is an artifact

then we get a more realistic valuelog2
t 6400

t 3200
≈ 2.93038

log2
t 200

t 100
≈ −2.52927

and we can try to confirm
(if not, try to get larger point, such as N=12800)

log2
t 3200

t 1600
≈ 2.84321

What to do…

— … to determine the constant?

Once exponent(s) is found, obtain by simple division.

random,
hypothetical

example

— you have two variables (such as N and T)

Treat each separately (by making one variable vary,

while the other remains constant).

Stopwatch.java

sw = new starts

ps = new

Stopwatch(); // timer

PercolationStats(N, T); //

//

operation we

want to measure

timing = sw.elapsedTime; // time in seconds since

// the Stopwatch was

// created

if single observations too fast to measure,
measure several operations at a time and average

Memory Analysis

Memory (1)

Read pp. 200-204
the string’s characters. When you use the substring()

method, you create a new String object (40 bytes) but

reuse the same value[] array, so a substring of an

existing string takes just 40 bytes. The character array

containing the original string is aliased in the object for

even when the lengths of the string and the substring

are huge. A naive representation that requires copying

characters to make substrings would take linear time

and space. The ability to create a substring using space

(and time) independent of its length is the key to effi-

ciency in many basic string-processing algorithms.

These basic mechanisms are effect ive for esti-

mating the memory usage of a great many programs,

but there are numerous complicating factors that can

make the task significantly more difficult. We have

already noted the potential effect of aliasing. More-

over, memory consumption is a complicated dynamic

process when function calls are involved because the

system memory allocation mechanism plays a more

important role, with more system dependencies. For

example, when your program calls a method, the sys-

tem allocates the memory needed for the method (for

its local variables) from a special area of memory called

the stack (a system pushdown stack), and when the

method returns to the caller, the memory is returned

arrays or other large objects in recursive programs

ve call implies significant memory usage. When you

em allocates the memory needed for the object from

y known as the heap (not the same as the binary heap

ect ion 2.4), and you must remember that every object

at which point a system process known as garbage

for the heap. Such dynamics can make the task of pre-

of a program challenging.

public classString
{

private char[] value; private int
offset; private int count; private
int hash;

...
}

String object (Java library) 40 bytes

substringexample

reference

int the substring; the offset and length fields identify the
values

substring. In otherwords, a substring takes constant ex-

tra memory and forming a substring takes constant time,

object
overhead

value

offset

count

hash

padding

String genome = "CGCCTGGCGTCTGTAC"; String
codon = genome.substring(6, 3);

genome
40 bytes

object
overhead

value

0 object

16
overhead

hash 16
padding C G

C C

codon T G
G C .. char

G T
. values

object
overhead C T

G T

value
A C

36 bytes

padding

6

3

hash

padding
40 bytes

A Str ingand a substring

to the stack. For this reason, creating

is dangerous, since each recursi

create an object with new, the syst

another special area of memor

data structure we consider in S

lives until no references to it remain,

collection reclaims its memory cisely

estimating memory usage

204 CHAPTER 1 ■ Fundamentals

tsforarrays of intvalues,doublevalues,objects, andarrays

bytes

.

.

day

month

year

padding

Total: 24 + 8 M + M× (24 + 8 N) = 24 + 3 2 M + 8 MN

t = new double[M][N];

.

.

.

24 + 8 N bytes

array of arrays (two-dimensionalarray)

double[][] t;

16 bytes

intvalue

(4 bytes)

lues

es)

array of doublevalues

double[] c = new double[N];

object
head

Total: 24+ 8 N

c

N doublevalues

(8 N bytes)

16 bytes

4 bytesN

object
overhead

N double

values (8N

bytes)

M

object
overhead

t

M references

(8M bytes)

16 bytes

intvalue

(4 bytes)

object
overhead

N

padding

padding

padding

object
overhead

N
padding

object
overhead

N
padding

array of intvalues
int[] a = new int[N];

a
16 bytes

object
overhead

int value N

(4 bytes) padding

N intva

(4N byt

Total: 24 + 4 N (N even)

arrayofobjects 32

Date[] d;
d = new Date[N];

for (int k = 0; k < N; k++)
{

...
a[k] = new Date (...);

}

d
object

12 bytes overhead

int value length
(4 bytes) padding

N references

(8N bytes)

Total: 24 + 8 N + N×3 2 = 24 + 4 0 N

over

summary

type bytes

i nt[] ~4N

double[] ~8N

Date[] ~40N

double[] [] ~8NM

Typicalmemoryrequiremen

2031.4 ■ Analysis of Algorithms

nts for various types of arrays in Java are summa-

page. Arrays in Java are implemented as objects,

length. An array of primitive-type values typically

(16 bytes of object overhead, 4 bytes for the

the memory needed to store the values. For ex-

24 + 4N bytes (rounded up to be a multiple of

uses 24 + 8N bytes. An array of objects is an array

to add the space for the references to thespace

an array of N Dateobjects (page 91) uses 24 bytes

ences) plus 32 bytes for each object and 4 bytes of

0N bytes. A two-dimensional array is an array of ar-

a two-dimensional M-by-N array of double

array of arrays) plus 8M bytes (references to the

verhead from the row arrays) plus M times N times

each of the M rows) for a grand total of 8NM +

y entries are objects, a similar accounting leads to a

bytes for the array of arrays filled with references to

cts themselves.

mory in Java’s String objects in the same way as ing

is common for strings. The standard String

length). In terms of the instance variable names in

string that is represented consists of the characters

set + count - 1]. The third intvalue in String

omputation in certain circumstances that need not

object uses a total of 40 bytes (16 bytes for

h of the three intinstance variables plus 8 bytes for

Arrays. Typical memory requireme

rized in the diagrams on the facing

typically with extra overhead for the

requires 24 bytes of header information

length, and 4 bytes of padding) plus

ample, an array of N int values uses 8),

and an array of N doublevalues

of references to the objects, so we need

required for the objects. For example,

(array overhead) plus 8N bytes (refer

padding, for a grand total of 24 + 4

rays (each array is an object). For example,

values uses 24 bytes (overhead for the

row arrays) plus M times 16 bytes (o

8 bytes (for the N double values in

32M + 24 ~ 8NM bytes. When arra

total of 8NM + 32M + 24 ~ 8NM

objects, plus the memory for the obje

String objects. We account for me

for any other object, except that alias

implementation has four instance

and three int values (4 bytes each).

ray; the second is a count (the string

the drawing on the facing page, the

value[offset]through value[off objects is

a hash code that saves rec

concern us now. Therefore, each String

object overhead plus 4 bytes for eac

the array reference plus 4 bytes of

the space needed for the characters

for the characters is accounted for

among strings. Since Stringobjects

mentation to save memory when String

String values and substrings. A String

String object) plus 24 + 2N bytes

total of 64 + 2N bytes. But it is typical

Java’s representation is meant to allo

are immutable, this arrangement allows the imple-

objects have the same underlying value[].

of length N typically uses 40 bytes (for the

(for the array that contains the characters) for a

in string processing to work with substrings, and

w us to do so without having to make copies of

202 CHAPTER 1 ■ Fundamentals

8 bytes are

l for 64-bit

recognizing

hitecture that

ess.

of anobject,

each instance

each object,

a referenceto

mation, and

the memory

e of 8 bytes

For example,

of overhead,

4 bytes of

also uses 32

h of its three

ding. Aref-

y address and

,a Counter

overhead, 8

reference), 4

bytes of pad-

or a reference,

for the object

mory for the

class such

xtra 8 bytes of

instance). Thus, a Nodeobject uses 40 bytes

h for the references to the Itemand Nodeob-

Thus, since an Integerobject uses 24 bytes, a

t representation (Algori thm 1.2) uses 32 +

for Stack, 8 for its reference instance vari-

padding, and 64 for each entry, 40 for a Node

needed for a machine address varies from

machine. For consistency, we assume that

needed to represent addresses, as is typica

architectures that are now widely used, that

many older machines use a 32-bit arc

would involve just 4 bytes per machine addr

Objects. To determine the memory usage

we add the amount of memory used by

variable to the overhead associated with

typically 16 bytes. The overhead includes the

object’s class, garbage collection infor

synchronization information. Moreover,

usage is typically padded to be a multipl

(machine words, on a 64-bit machine). an

Integer object uses 24 bytes (16 bytes 4

bytes for its int instance variable, and

padding). Similarly, a Date(page 91) object

bytes: 16 bytes of overhead, 4 bytes for eac

int instance variables, and 4 bytes of pad

erence to an object typically is a memor

thus uses 8 bytes of memory. For example

(page 89) object uses 32 bytes: 16 bytes of

bytes for its String instance variable (a bytes

for its int instance variable, and 4 ding.

When we account for the memory f we

account separately for the memory itself, so

this total does not count the me String

value.

Linked lists. A nested non-static (inner) as

our Node class (page 142) requires an e

overhead (for a reference to the enclosing

(16 bytes of object overhead, 8 bytes eac

jects, and 8 bytes for the extra overhead).

stack with N integers built with a linked-lis

64N bytes, the usual 16 for object overhead

able, 4 for its int instance variable, 4 for and

24 for an Integer.

public class Integer
{

private int x;
...
}

Typical object memoryrequirements

public class Node
{

private Itemitem; private
Node next;

...
}

public class Counter
{

private String name; private
int count;

...
}

24bytesmachine to integer wrapperobject

counter object 32 bytes

int
value

int
value

String variables: a reference to a character array (8 bytes)
reference

The first intvalue is an offset into the character ar-

date object
public class Date
{

private int day; private int
month; private int year;

...
}

node object (inner class) 40bytes

padding). This space requirement is in addition to

themselves, which are in the array. The space needed
references separately because the char array is often shared

object
overhead

extra
overhead

item

next

32bytes

int
values

object
overhead

x

padding

object
overhead

name

count

padding

object
overhead

day

month

year

padding

2011.4 ■ Analysis of Algorithms

Memory As with running time, a program’s memory usage connects directly to the

physical world: a substantial amount of your computer’s circuitry enables your pro-

gram to store values and later retrieve them. The more values you need to have stored

at any given instant, the more circuitry you need. You probably are aware of limits on

memory usage on your computer (even more so than for time) because you probably

have paid extra money to get more memory.

Memory usage is well-defined for Java on your computer (every value requires pre-

cisely the same amount of memory each time that you run your program), but Java is

implemented on a very wide range of computational devices, and memory consump-

tion is implementation-dependent. For economy, we use the word typical to signal that

values are subject to machine dependencies.

One of Java’s most significant features is its memory allocation system,

which is supposed to relieve you from having to worry about memory.

Certainly, you are well-advised to take advantage of this feature when ap-

propriate. Still, it is your responsibility to know, at least approximately,

when a program’s memory requirements will prevent you from solving a

given problem.

Analyzing memory usage is much easier than analyzing running time,

primarily because not as many program statements are involved (just dec-

larations) and because the analysis reduces complex objects to the primi-

tive types, whose memory usage is well-defined and simple to understand:

we can count up the number of variables and weight them by the number

of bytes according to their type. For example, since the Java int data type is

the set of integer values between—2,147,483,648 and 2,147,483,647, a

grand total of 232different values, typical Java implementations use 32 bits

to represent int values. Similar considerations hold for other primitive types: typical

Java implementations use 8-bit bytes, representing each char value with 2 bytes (16

bits), each int value with 4 bytes (32 bits), each double and each long value with 8 bytes

(64 bits), and each boolean value with 1 byte (since computers typically access memory

one byte at a time). Combined with knowledge of the amount of memory available,

you can calculate limitations from these values. For example, if you have 1GB of

memory on your computer (1 billion bytes), you cannot fit more than about 32 mil-

lion intvalues or 16 million doublevalues in memory at any one time.

On the other hand, analyzing memory usage is subject to various differences in ma-

chine hardware and in Java implementations, so you should consider the specific ex-

amples that we give as indicative of how you might go about determining memory

usage when warranted, not the final word for your computer. For example, many data

structures involve representation of machine addresses, and the amount ofmemory

type bytes

boolean

byte

char

int

float

long

double

1

1

2

4

4

8

8
Typical memory

requirements for

primitive types

200 CHAPTER 1 ■ Fundamentals

http://algs4.cs.princeton.edu/14analysis/#memory

http://algs4.cs.princeton.edu/14analysis/

Memory (2)

type bytes

boolean

byte

char

int

float

long

double

1

1

2

4

4

8

8

type bytes

boolean[]

char[]

int[]

double[]

N + 24
2N + 24
4N + 24
8N + 24

type bytes

boolean[][] ∼MN
char[][] ∼2MN
int[][] ∼4MN

double[][] ∼8MN

public class Stack {

private int N; // size of the stack

private Node first; // top of stack

private class Node {

private double item;

private Node next;

}

...

}

object
overhead (16)

N (4) padding (4) first (8)
Node (40)

for each

Stack

object
overhead (16)

extra
overhead (8)

item (8) next (8)

Node

why?

why?

Questions?

Logo by Kathleen Ma (AB ’18)

More on this in the precept!

