

Class Meeting #2
COS 226 — Spring 2018

Based on slides by

Jérémie Lumbroso

— Motivation

— Problem description
— API

— Backwash

— Empirical Analysis
— Memory Analysis

What does Percolation model?

Likelihood of percolation

Depends on site vacancy probability p.

p low (0.4) p medium (0.6) p high (0.8)
does not percolate percolatas? percolates

Percolation phase transition

When N is large, theory guarantees a sharp threshold p*.
« p>p*: almost certainly percolates.

. s i
p < p*: almost certainly does not percolate. Other examples:

* Water freezing
* Ferromagnetic
effects

Q. What is the value of p* ?

1

percolation
probability

J p‘
04

| |
0 0.593 1

o site vacancy probability p

Monte Carlo simulation

* |nitialize N-by-N whole grid to be blocked.
» Declare random sites open until top connected to bottom.
» Vacancy percentage estimates p*.

full apen site
[connected o top)

Ermply dpen Site
[hak cannected ba Boph

. blacked site

Dynamic connectivity solution to estimate percolation threshold

Q. How to check whether an A-by-N system percolates?

SpEn Site

[]
|

rlocked site

Dynamic connectivity solution to estimate percolation threshold

Q. How to check whether an N-by-N system percolates?
* Create an object for each site and name them 0 to N2 - 1.

N=5 /\“ Lo o 4B AR
'\9_/‘ l_l_/] ‘_Z/I I\3'_/l l\i/'
BN (B (@ (R) (o)
'é,’ 'é/ 1\Z/I '\E/' \2/'
A0) A1) (12) (13) (19
& & y & W
o B &6 B AR
N N N N
- _"\‘ P \. L\ o3\ Y
@060 e

D opeén site
. blocked site

Create private “helper” funtion

private int getIntFromCoord (int row, int col) {
return N * row + col;

}

Or perhaps since this function
will be used a lot, should it have a
shorter name?

Forex.: site or locationorcell
orgrid, etc,, ...

Dynamic connectivity solution to estimate percolation threshold

Q. How to model opening a new site?
A. Mark new site as open; connect it to all of its adjacent open sites.

™~

up to 4 calls to union()

open this site

|:| OpEn site

. Blocked site

Dynamic connectivity solution to estimate percolation threshold

Clever trick. Introduce 2 virtual sites (and connections to top and bottom).
» Percolates iff virtual top site is connected to virtual bottom site.

efficient algorithm: anly 1 call to connactadd()

wirtual top site

e o ® —wprow
o o o } °
e o o
e o 0 0o
[] ®—48@ - bottomrow

Blocked site

D OpeEn Site
virtual bottom site

public class Percolation {

public Percol

ation(int N)

i

public void open{int row, int col) I
public boolean isOpen(int row, int col) //
public boolean isFull{int row, int ceol) //
public int numberOfOpenSites() i

public boolean percolates()

i

public static void main(String[] args) I

}

public class PercolationStats {

public PercolationStats(int ¥, int T) I

public double
public double
public double
public double

what you mu

mean()

gtddev()

/i
/"

confidenceLow() I
confidenceHigh() I

stdo

both are APIs

what is
provided

EEE—————

public class UF

create WN-by-N grid, with all sites initially blocked
open the site (row, col) if it is not open already
is the site (row, col) open?

ie the =ite (row, col) full?

number of open sites

does the system percolate?

unit testing (reguired)

perform T independent experiments on an MN-by-N grid
sample mean of percolation threshold

gsample standard deviation of percolation threshold
low endpoint of 95% confidence interval

high endpoint of 95% confidence interval

initialize union-find data structure with

UF(intN) N objects (0 to N —1)
void union(int p,int q) add connection between p and q
boolean connected(int p,int q) are p and g in the same component?
int find(int p) component identifier for p (0 to N —1)

int count() number of components

Why an API?

APl = Application Programming Interface

—a contract between a programmers

—be able to know about the functionality
without details from the implementation

r) e D e A

open union
.

percolates
>

PercolationStats Percolation UF

connected
-

_ Y, N J _ Y,

Each of these modules could be programmed by anybody /
implemented anyway

Example 1: Car

blic
void
void
void
void

class Car {
turnLeft ()
turnRight ()
shift (int gear)
break ()

A. Electrical?
B. Hybrid?
C. Gasoline?

Example 1: Car

public class Car {
void turnlLeft ()
void turnRight ()

shift (int gear)

Example 2: Electrical Outlets

g l\l)

original API APl with added
public members . . : .
Is incompatible with
rest of the clients

Why is it so important to implement the prescribed AP1? Writing to an
API is an important skill to master because it is an essential component of
modular programming, whether you are developing software by yourself or as
part of a group. When you develop a module that properly implements an
API, anyone using that module (including yourself, perhaps at some later
time) does not need to revisit the details of the code for that module when
using it. This approach greatly simplifies writing large programs, developing
software as part of a group, or developing software for use by others.

Most important, when you properly implement an API, others can write
software to use your module or to test it. We do this regularly when grading
your programs. For example, your PercolationStats client should work
with our Percolation datatype and vice versa. If you add an extra public
method to Percolation and call them from PercolationStats, then
your client won't work with our Percolation datatype. Conversely, our
PercolationStats client may not work with your Percolation

data type if you remove a public method.

Backwash problem

% java PercolationVisualizer inputlO.txt

backwash

Empirical Analysis

THEORY + PRACTICE

Power Law Running Times

— Typically most running times that are
empirically measure are power laws

exponent

CN2*~
constant _—— % <«— parameter

factor (size of the instance)

— Usually when other running times are
Involved such as N.log N, N.a(n), exp(N), it will
be because of a known sub-algorithm

Doubling Hypothesis (1)

Assuming the running time is of the form:
t(N) := c-N*°
then, to find the exponent a:

t(2ZN) c-(2N)? ¢c-29N9
t(N) c¢c-Na ¢c-Na

28

Doubling Hypothesis (2)

timing when size "
of input is 2N (doubled) exponent::
(what we want to find)

\ e
t(2N)

logz(t(N)>=a .
/A ecipe:

‘\ — timing in N and 2N
— take log base 2 of ratio
— repeat for several points

binary timing when size
logarithm of input is N

Doubling Hypothesis (3)

Tips: 1) pick largest points; 2) repeat couple times

N 100 200 400 800 1600 3200 6400

time 0.538473 | 0.0932774 | 0.163298 | 0.744645 2.5858 18.5561 141.455

N

weird value is an artifact

t(200) _ _ _
log; (W) ~ —2.52927 first try with N too small (noise)
1 (62003 2.93038 isti
08> G200~ then we get a more realistic value

(3200 _
t(1600) (if not, try to get larger point, such as N=12800)

What to do...

— ... to determine the constant?
Once exponent(s) is found, obtain by simple division.

— you have two variables (such as N and T)

Treat each separately (by making one variable vary,
while the other remains constant).

Stopwatch.java

sw = new Stopwatch(); // timer starts

ps = new PercolationStats (N, T); // operation we
// want to measure

timing = sw.elapsedTime; // time in seconds since
// the Stopwatch was
// created

if single observations too fast to measure,
measure several operations at a time and average

Memory Analysis

Read pp. 200-204

Memory (1)

boolean

by
char
int
float
long
double
Typical

requirements for
primitive types

CHAPTER 1+ Fundamentals

Memory As with running time, a program’s memory usage connects directly to the
physical world: a substantial amount of your computer’s circuitry enables your pro-
gram to store values and later retrieve them. The more values you need to have stored
at any given instant, the more circuitry you need. You probably are aware of limits on
memory usage on your computer (even more so than for time) because you probably
have paid extra money to get more memory.

Memory usage is well-defined for Java on your computer (every value requires pre-
cisely the same amount of memory each time that you run your program), but Java is
implemented on a very wide range of computational devices, and memory consump-
tion is implementation-dependent. For economy, we use the word typicaltosignal that
Values are subject to machine dependencies.

One of Java's most significant features is its memory allocation system,
which is supposed o relieveyou from having to worry about memory.
Certainly, you are well-advised to take advantage of this feature when ap-
propriate. Stil it is your responsibility to know, at least approximately,
when a program’s memory requirements will prevent you from solving a
given problem.

Analyzing memory usage is much easier than analyzing running time,
primarilly because not as many program statements are involved (just dec-
larations) and because the analysis reduces complex objects to the primi-
tive types, whose memory usage is well-defined and simple to understand:
we can count up the number of variables and weight them by the number
of bytes according to their type. For example, since the Javaint data type is
the set of integer values between—2,147,483,648 and 2,147483,647, a
grand total of 2%different values, typical Java implementations use 32 bits
to represent int values. Similar considerations hold for other primitive types: typical
Java implementations use 8-bit bytes, representing each char value with 2 bytes (16
bits), each int value with 4 bytes (32 bits), each double and each long value with 8 bytes
(64 bits), and each boolean value with 1 byte (since computers typically access memory
one byte at a time). Combined with knowledge of the amount of memory available,
you can calculate limitations from these values. For example, if you have 1GB of
memory on your computer (1 billion bytes), you cannot fit more than about 32 mil-
lion intvalues or 16 million doublevalues in memory at any one time,

On the other hand, analyzing memory usage is subject to various differences in ma-
chine hardware and in Java implementations, so you should consider the specific ex-
amples that we give as indicative of how you might go about determining memory
usage when warranted, not the final word for your computer. For example, many data
structures involve representation of machine addresses, and the amount ofmemory

boveeeh

202

GUAPTER 1 Fundamentals

8 bytes are
1 for 64-bit
farecognizing
itecture that
i ess.

of anabject,
ach instance
each object,
hacterenceto
mation, and
the memory
e 0f 8 bytes
fror example,
of overhead,
4 bytes of
also uses 32
h of its three
ding. Aref-
address and

the object
mory for the

s class such
ra Bbytes of

machine to imsoeruespcs

14+ Analysisof Algorthms 201

?

.

?
mmmzmen

“‘rh‘l”[“.‘scm,

e Srgare: e

et
f
e e

obefea

[

e

[
— [S

o

e

Typical object memery requirements

instance). Thus, a Nodeabject uses 40 bytes

for the references to the temand Nodeob-

us, since an Integerobject uses 24 bytes, a

t representation (Algorithm 1.2) uses 32 +
r Stack, 8 for its reference instance vari-

dding, and 64 for each entry, 40 for a Node

htty

nts for various types of arrays in Java are summa-
page. Arays in Java are implemented as objects,
Tength. An array of primitive-type values typically
on (16 bytes of object overhead, 4 bytes for the
the memory needed t0 store the values. For ex-
8), 24+ 4N bytes (rounded up to be a multiple of
uses 24 + 8N bytes. An array of objects isan array
d o add the space for the references to thespace
. anarray of N Dateobjects (page 91) uses 24 bytes
ences) plus 32 bytes for each object and 4 bytes of
N bytes. A two-dimensional array is an aray of ar-
ple, atwo-dimensional M-by-N array of double
artay of arrays) plus 8M bytes (references o the
verhead from the row arrays) plus M times N times
each of the M rows) for agrand total of 8NM +
entries are objects, a similar accounting leads to a
yies for the array of arrays filled with references to
ts themselves.
[mory in Java's String objects i the same way as ing
is common for strings. The standard Stiing
es: a reference to a character armay (8 bytes)
[first intvalue is an offset into the character ar-
length). In terms of the instance variable names in
string that i represented consists of the characters
it + count- 1) The third intvalue in String
mputation in certain circumstances that neednot
g object uses a total of 40 bytes (16 bytes for
of the three intinstance variables plus 8 bytes for
adding). This space requirement is in addition to
iemselves, which are in the array. The space needed
rately because the char artay is often shared
are immutable, ths arrangement allows the imple-
ng objects have the same underlying value(.

ng of length N typically uses 40 bytes (for the
(for the array that contains the characters) for a
in string processing to work with substrings, and
Ws o do so without having to make copies of

204 GWPTER1: Fundamentals

Suingobject Gaallbrary) 05y

bt chssSnn
f

BEsausmn

substringesample

the string’s characters. When you use the substring(
method, you create a new String object (40 bytes) but
reuse the same valuel] aray, so a substring of an
existing string takes just 40 bytes. The character array
containing the original string is aliased in the object for

2= ithe substrng; the offset and length fields identify the

substring. In otherwords, a substring takes constant ex-
tramemory and forming a substring takes constant time,
even when the lengths of the string and the substring

://a

14 Avalysisof Algorithms 23

e BV

‘amay of aays (twoimensiorelaray)
g
e G

s for amays of 1 values, 0.1 values, objecs, andarrays.

gs4.cs.princeton.edu/l4ana

re huge. A naive representation that requires copying

haracters to make substrings would take linear time
nd space. The ability to create a substring using space
(and time) independent of its length is the key to effi-
iency in many basic string-processing algorithms

[These basic mechanisms are effective for esti-
mating the memory usage of a great many programs,
out there are numerous complicating factors that can
make the task significantly more difficult. We have
lready noted the potential effect of aliasing. More-
ver, memory consumption is a complicated dynamic
process when function calls are involved because the
ystem memory allocation mechanism plays a more
important role, with more system dependencies. For
fexample, when your program calls a method, the sys-
em allocates the memory needed for the method (for
its 1ocal variables) from a special area of memory called
he stack (a system pushdown stack), and when the
method returns to the caller, the memory is returned
ing arrays or other large objects in recursive programs
ve call implies significant memory usage. When you
em allocates the memory needed for the object from
known as the heap (not the same as the binary heap
ction 2.4), and you must remember that every object
in, at which point asystem process known s garbage
oelhe heap. Such dynamics can make the task of pre-
of a program challenging

lysis/#memory

http://algs4.cs.princeton.edu/14analysis/

Memory (2)

public class Stack {

private int N; // size of the stack
private Node first; // top of stack
private class Node { type bytes type bytes
private double item; boolean 1 boolean(] N +24
private Node next; byte 1 char[] 2N +24
} char 2 int[] 4N + 24
int 4 double[] 8N +24
Why? float 4
} long 8
/ double 8 type bytes
NOd? boolean(][] ~MN
(0] JeCt extra it 8 £ (8 char[][] ~2MN
overhead (16) overhead (8) ikieem () e int[][] ~4MN
Stack Why? double[][] ~8MN
. r =

overhead (16)

for each

Questions?

More on this in the precept!

lll
-'HIIH.AHUN

Logo 0)Y Kathleen Ma (AB’18)

