
Testing and Debugging
Tips & Tricks

COS226 - Spring 2018 Class Meeting # 3 February 12, 2018

Ibrahim Albluwi

COS 126 Unofficial Coding “Strategy”

 Repeat Until Deadline :

Hack!

Click Check All Submitted Files

 If all correctness tests pass :

Celebrate

Break

Fake some test cases

Choke off CheckStyle

 If in the mood :

COS 126 Unofficial Coding “Strategy”

 Repeat Until Deadline :

Hack!

Click Check All Submitted Files

 If all correctness tests pass :

Celebrate

Break

Fake some test cases

Choke off CheckStyle

 If in the mood :

 Repeat 10 times :

Not Realistic!

Doesn’t work
in 226!

Intended Coding Strategy

 Repeat :

Hack thoughtfully and with style!

Click Check All Submitted Files

 If all tests pass :
Break

Celebrate!

 Repeat :

Test
 If all tests pass :

Break

Today’s Class Meeting

Goals:
Testing and debugging
tips and tricks.
Help you succeed in 226.
Develop healthy
programming habits.

Not Goals:
Rigorous introduction to
testing.
Prepare you for a SW
Testing Engineer job.

Warmup Quiz
Which of the following best describes you as you work on
programming assignments?

(A) Idealist: Codes very carefully. Usually gets it right from the
first shot. Doesn’t need to test much.

(B) Pragmatist: Let’s get something up and running quickly.
Careful testing will let us know if there is an issue.

(C) Submissionist: Why code too carefully? Why test carefully?
KEEP CALM AND CHECK ALL SUBMITTED FILES.

http://etc.ch/i7VR

Quiz # 1
Which of the following tests are necessary and sufficient for testing a method
that returns the maximum of three integers.

A. (1, 2, 3)

B. (1, 2, 3) (3, 2, 1) (1, 3, 2)

C. (1, 2, 3) (1, 3, 2) (2, 1, 3) (2, 3, 1) (3, 1, 2) (3, 2, 1)

D. None of the above.

http://etc.ch/i7VR

Quiz # 1
Which of the following tests are necessary and sufficient for testing a method
that returns the maximum of three integers.

A. (1, 2, 3)

B. (1, 2, 3) (3, 2, 1) (1, 3, 2)

C. (1, 2, 3) (1, 3, 2) (2, 1, 3) (2, 3, 1) (3, 1, 2) (3, 2, 1)

D. None of the above.

http://etc.ch/i7VR

Tip # 1 Tests can be written before the program is implemented.
Blackbox Testing: Test based on problem description.

Tip # 2 Think carefully about the domain of the inputs.

integers can be negative!

Example
The following code passes all test cases with positive integers but fails all test
cases with negative integers!

Quiz # 2
Which of the following tests are necessary and sufficient for testing a method
that returns the maximum of three integers.

A. (1, 2, 3) (3, 2, 1) (1, 3, 2) (-1, -2, -3) (-3, -2, -1) (-1, -3, -2)

B. All 3-permutations of -3, -2, -1, 1, 2, 3.

C. Thousands of randomly generated positive and negative integers.

D. None of the above.

http://etc.ch/i7VR

Quiz # 2
Which of the following tests are necessary and sufficient for testing a method
that returns the maximum of three integers.

A. (1, 2, 3) (3, 2, 1) (1, 3, 2) (-1, -2, -3) (-3, -2, -1) (-1, -3, -2)

B. All 3-permutations of -3, -2, -1, 1, 2, 3.

C. Thousands of randomly generated positive and negative integers.

D. None of the above.

http://etc.ch/i7VR

Think of input equivalence classes.

(1, 2, 3) is equivalent to (2, 3, 4) = (min, mid, max)
(3, 2, 1) is equivalent to (30, 5, 4) = (max, mid, min)

Tip # 3

Example
The following code passes all test cases with 3-permutations of -3, -2. -1, 1, 2, 3.
However, it could fail if the input has duplicates!

Now What?

Using {-3, -2. -1, 1, 2, 3}, is it enough to test  
all possible 3-tuples (permutations with repetition)?

Not necessarily!

Example
The following code passes all test cases with 3-tuples from {-3, -2. -1, 1, 2, 3}.
However, it could fail when the used numbers are too small or too large, like:

a = 2147483647 b = 2147483647 c = -2147483647

 2147483647
 + 2147483647
 ——————————
 = -2

Overflow!

Always test boundary inputs and corner cases.Tip # 4

Blackbox testing may not be enough.
Whitebox Testing: Generate tests based on code.

Examine code and make sure there are test
cases that cover all possible program flow
paths.

Example Test both branches

Test entering
the loop and not
entering the loop

Tip # 5

Quiz # 3

Which of the following tests could reveal the bug in the following stack code?

A. Calling push then toString then pop.

B. Calling push then pop then toString.

C. Calling push (many times) then pop (many times) then push.

D. All of the above.

http://etc.ch/i7VR

Hint: Is size always correctly updated?

Quiz # 3

Which of the following tests could reveal the bug in the following stack code?

A. Calling push then toString then pop.

B. Calling push then pop then toString.

C. Calling push (many times) then pop (many times) then push.

D. All of the above.

http://etc.ch/i7VR

Hint: Is size always correctly updated?

Test different orderings of method calls. Tip # 6

Test methods on different states of the data structureTip # 7

Summary

Lesson Testing can show the presence of errors but not their
absence!

Implement a simple test client before starting to code the ADT.

Write tests that cover all input equivalence classes.

Always test boundary inputs and corner cases.

Write tests that cover all possible flow paths in the code.

Intermix method calls to see if one breaks another.

Test method calls with all possible states of the object.

This slide is brought to you by Microsoft

Failed test cases?

Time to Debug!

Easiest Bugs: Compile Time Errors

Confused?
Copy and paste error to Google.

Use Java compiler messages cheatsheets.
Examples:
https://introcs.cs.princeton.edu/java/11cheatsheet/errors.pdf
https://dzone.com/articles/50-common-java-errors-and-how-to-avoid-them-part-1
http://mindprod.com/jgloss/compileerrormessages.html#TYPESAFETYERASED

Tip # 1 Understand what the error means.

Students.java:90: error: illegal start of expression
}
^

https://introcs.cs.princeton.edu/java/11cheatsheet/errors.pdf
https://dzone.com/articles/50-common-java-errors-and-how-to-avoid-them-part-1
http://mindprod.com/jgloss/compileerrormessages.html#TYPESAFETYERASED

Easiest Bugs: Compile Time Errors

An error can produce a cascade of other errors. Fixing the first
error, automatically fixes all subsequent errors caused by it.

Tip # 2 Focus on the first error first.

ErdosRenyi.java:29: error: '.class' expected
 For (int i = 0; i < n; i++)
 ^
ErdosRenyi.java:29: error: > expected
 For (int i = 0; i < n; i++)
 ^
ErdosRenyi.java:29: error: not a statement
 For (int i = 0; i < n; i++)
 ^
ErdosRenyi.java:29: error: ';' expected
 For (int i = 0; i < n; i++)
 ^
4 errors

Runtime Exceptions

Know the anatomy of a runtime exception.

Exception in thread "main"
java.lang.IndexOutOfBoundsException: -1
 at test.convertIndex(test.java:6)
 at test.findMax(test.java:15)
 at test.max(test.java:31)
 at test.main(test.java:41)

Exception name

java.lang.IndexOutOfBoundsException

Message

-1

Stack Trace

 at test.convertIndex(test.java:6)
 at test.findMax(test.java:15)a
 at test.max(test.java:31) a
 at test.main(test.java:41)

Confused? Copy and paste exception to Google
(without message and trace).

Debugging Non-trivial Errors

Can you reproduce the error?

Example 1: Assume max(-1, 1, 1) fails:
Does max fail for all inputs?
Does it fail only with negative numbers?
Does it fail only when there are duplicates?
Does it fail only with (min, max, max)?

Example 2: Autograder says: Intermixing calls to push, pop and top
throws an exception.

Can you come up a sequence of push, pop and top calls that
would produce the same exception?

Tip # 3 Know exactly when the error happens.

Debugging Non-trivial Errors

Tip # 4 Use print statements to know where and why
the error happens.

Example:

Helps understand
how the value of

x changes.

Debugging Non-trivial Errors

Tip # 4 Use print statements to know where and why
the error happens.

Example:

Helps understand
program flow.

Using Print Statements

Trick # 1 Use java.util.Arrays.

Print 1D array: StdOut.print(Arrays.toString(a))
Print 2D array: StdOut.print(Arrays.deepToString(a))

Fill array: StdOut.print(Arrays.fill(a, value))

Compare arrays: Arrays.equals(a1, a2)
 Arrays.deepEquals(a1, a2)

Warning # 1 Do not forget to remove debugging print
statements before submitting!

Debugging Non-trivial Errors

Copied-and-pasted code: It is very common to forget to make
the needed changes after copying code.

Variable scope: Are there different variables with the same
name?

Others?
-if (var = true)
-if (str1 == str2)
-Boolean [] isTrue = new Boolean[10];

Tip # 5 Check common sources of errors.

Debugging Non-trivial Errors

Debugging Non-trivial Errors

When you walk through the code (with the rubber duck):

Insert comments explaining your logic.

After certain blocks of code, insert comments explaining why
you are sure the code must be correct at to that point.

Use assertions!

Your assumption. Message displayed 
An error is thrown if not true. when error is thrown

assert booleanExpression : Value

Tip # 6 Document your assumptions

Assertions Examples

Assumption: Flow
should never reach
here!

Assumption: i % 3 = 2.
Fails if i is negative.

Precondition

Postconditions

Debugging Non-trivial Errors

Demo!

Trick # 2 Use the Debugger.

Image on slide 1 retrieved on February 11 from:
http://weclipart.com/gimg/3386E8144A791493/bad-bug.png

Image on slide 4 retrieved on February 11 from:
https://www.indeed.com/salaries/Software-Test-Engineer-Salaries

Image on slide 21 retrieved on February 11 from:
http://www.skaip.org/bug-emoticon

Two assertion examples on slide 32 are from:
https://docs.oracle.com/javase/7/docs/technotes/guides/language/assert.html

http://weclipart.com/gimg/3386E8144A791493/bad-bug.png
https://www.indeed.com/salaries/Software-Test-Engineer-Salaries
http://www.skaip.org/bug-emoticon
https://docs.oracle.com/javase/7/docs/technotes/guides/language/assert.html

