
Inheritance & Polymorphism

COS226 - Spring 2018 Class Meeting # 13 March 26, 2018

Ibrahim Albluwi

Composition

A GuitarString has a RingBuffer.

A MarkovModel has a Symbol Table.
A Symbol Table has a Binary Search Tree.

A Deque has a Node.
A Node has a Node.

A Solver has a Node.
A Node has a Board and a Node.

A KdTreeST has a Node.
A Node has a Point2D and a Node.

Code reuse through
Composition.

Classes are related
with a has-a
relationship.

Inheritance is-a Basic OOP Feature!

Found in (almost) every Java, C++ or Python book.
Very difficult to find a CS1/CS2 set of courses that does not cover it.

But …

Not covered explicitly in COS126/COS226!

Goal Today: — Know what Inheritance and Polymorphism are.
 — Relate them to what we have seen in 126 and 226 so far.

Inheritance!

Languages that support classes almost always support inheritance. This allows classes to be
arranged in a hierarchy that represents "is-a-type-of" relationships.

Composition

Warm Up Quiz! http://etc.ch/Vvh7

Which of the following is a valid Java Statement?

A. Iterable<Integer> myStack = new Stack<Integer>();

B. Stack<Integer> myStack = new Stack<Integer>();

C. Object myStack = new Stack<Integer>();

D. A and B only.

E. A, B and C.

Which of the following is a valid Java Statement?

A. Iterable<Integer> myStack = new Stack<Integer>();

B. Stack<Integer> myStack = new Stack<Integer>();

C. Object myStack = new Stack<Integer>();

D. A and B only.

E. A, B and C.

Warm Up Quiz!

By the end of this class, you will be able to explain what
these statements mean and what implications they have.

http://etc.ch/Vvh7

Shapes!

A Circle Class

Other Circle methods+

A Rectangle Class

Other Rectangle
methods+

Classes for Shapes

Rectangle

- centerX : double
- centerY : double
- color : Color
- width : double
- height : double

+ getX(): double
+ getY(): double
+ move(int,int): void
+ setColor(int,int,int): void
+ draw(): void
+ area() : double
+ circumference() : double
+ toString() : String
…

Circle

- centerX : double
- centerY : double
- color : Color
- radius : double

+ getX(): double
+ getY(): double
+ move(int,int): void
+ setColor(int,int,int): void
+ draw() : String
+ area() : double
+ circumference() : double
+ toString() : String
…

Triangle

- centerX : double
- centerY : double
- color : Color
- side1 : double
- side2 : double
- side3 : double

+ getX(): double
+ getY(): double
+ move(int,int): void
+ setColor(int,int,int): void
+ draw(): void
+ area() : double
+ circumference() : double
…

…

Classes for Shapes

Rectangle

- centerX : double
- centerY : double
- color : Color
- width : double
- height : double

+ getX(): double
+ getY(): double
+ move(int,int): void
+ setColor(int,int,int): void
+ draw(): void
+ area() : double
+ circumference() : double
+ toString() : String
…

Circle

- centerX : double
- centerY : double
- color : Color
- radius : double

+ getX(): double
+ getY(): double
+ move(int,int): void
+ setColor(int,int,int): void
+ draw() : String
+ area() : double
+ circumference() : double
+ toString() : String
…

Triangle

- centerX : double
- centerY : double
- color : Color
- side1 : double
- side2 : double
- side3 : double

+ getX(): double
+ getY(): double
+ move(int,int): void
+ setColor(int,int,int): void
+ draw(): void
+ area() : double
+ circumference() : double
…

…

A Shape Base Class

Rectangle
- width : double
- height : double

…

Circle
- radius : double

…

Triangle
- side1 : double
- side2 : double
- side3 : double

…

…

Shape
- centerX : double
- centerY : double
- color : Color
+ getX(): double
+ getY(): double
+ move(int,int): void
+ setColor(int,int,int): void
…

A Shape Base Class

Observations. (1) Lots of common code between the classes.
 (2) A Circle is a Shape, so is a Rectangle and a Triangle.  

Solution. — Create a Shape class that has the common code.  
 — Declare that Circle is a Shape. Do the same for Triangle
 and Rectangle.  
 — Circle, Triangle and Rectangle inherit the code from  
 class Shape.

In Java: public class Circle extends Shape { … }

public class Triangle extends Shape { … }

public class Rectangle extends Shape { … }

Demo!

Notes

Terminology. Shape is a parent class, a superclass and a base class.
 Circle is a child class, a subclass and a derived class.  

Access Modifiers. Public: Accessible to everyone.  
 Protected: Accessible to subclasses and package.  
 No Modifier: Accessible to package.

Super and this. this.x Can be an x in the parent or child class.  
 If both classes have x, this.x refers to the
 x in the child class  

 super.x Always refers to x in the superclass.

What did we gain?

Code Reuse!
Is-A Relationship!

Example 1

Method doSomething accepts an
argument of type Shape.

Example 2

Can do great things!

Rules of the Game
Circle c = new Circle()

Reference of
type Circle

Object of
type Circle

pointing to an

Shape c = new Circle()

Reference of
type Shape

Object of
type Circle

pointing to an

Can invoke on c any method in class Circle (or Shape).
c.setRadius() <— Valid
c.setColor() <— Valid

Can invoke on c only methods in class Shape.
c.setRadius() <— Invalid
c.setColor() <— Valid

Abstract Classes
Q. Do we want to allow instantiating objects of type Shape?

Q. Do we want method draw() to be defined in class Shape?

If not, then declare class Shape as abstract.

Yes! Since all shapes need to be drawn. 
However, since each shape is drawn differently, draw() should be abstract.

 

An abstract method: Has no body (note the semicolon).

 Derived classes MUST either be also abstract or  
 implement all abstract methods in the base class.

Demo!

Quiz

Assume that Circle overrides method setColor. Which method will get
called when shapes[0].setColor is called?

A. setColor of Shape.

B. setColor of Circle.

C. The compiler will complain because there are two setColor methods.

D. Armagedon.

http://etc.ch/Vvh7

Quiz

Assume that Circle overrides method setColor. Which method will get
called when shapes[0].setColor is called?

A. setColor of Shape.

B. setColor of Circle.

C. The compiler will complain because there are two setColor methods.

D. Armagedon.

http://etc.ch/Vvh7

Welcome Polymorphism
What? If a subclass defines it’s own version of a base class method
(overrides it), the subclass version is invoked if the reference points to an
object of the subclass type.

Example. Assume class Circle overrides method setColor in Shape.

Shape c = new Circle()

Reference of
type Shape

Object of
type Circle

pointing to an

c.setRadius() <— Invalid Not a Shape method.

c.draw() <— Valid Abstract method of Shape.  
 Implemented in Circle.

c.getX() <— Valid Implemented in Shape.

c.setColor() <— Valid Implemented in both Shape and Circle.  
 Circle’s version gets called.

Polymorphic
behavior

Déjà vu!

Inheritance & Polymorphism
you have already seen.

The Parent of all Objects

 — equals(Object obj) Checks if the object is equal to obj.

 — toString() Returns a string representation  
 of the object.
 — hashCode() Returns a hash code value
 for the object.
 — clone() Returns a copy of the
 object.
 — getClass() Returns the type of the
 object.
 — Others…

All Java classes implicitly extend a class named Object
that has the following methods:

The Parent of all Objects
When you implement equals or toString, you are actually
overriding the default implementation of equals and toString in
the Object class.

Default Implementations.
Equals(): Reference comparison of memory locations using  
 the == operator.

ToString(): A String made of the class name + ‘@‘ + hashCode().
 The default implementation of hashCode returns the
 memory location of the object.

Circle c1 = new Circle()
c1.equals(c2) <— Valid Uses default implementation of Object.

c1.toString() <— Valid A default implementation in Object and
 another in Circle.
 Uses the implementation in Circle.

Quiz

Explain. How does Java handle the following two lines of code?

 System.out.print(c1)
 System.out.print(c1.toString())

Circle c1 = new Circle()Consider.

Answer. Method print is overloaded:
Calls method toString on obj.

Polymorphism in action!

Again … What did we gain?

Code Reuse!
Is-A Relationship!
A promise for an API

by inheriting state and behavior from parent class.

and Polymorphism!

through abstract methods

What if we care only about these? Define an abstract class where  
all methods are abstract.

Or …

Define and use an interface!

Welcome Interfaces!
Instead of:
public abstract class Shape {
 public abstract double getX();
 public abstract double getY();
 public abstract void draw();
 public abstract void setColor(int, int, int);
 …
}

Implement:
public interface Shape {
 double getX();
 double getY();
 void draw();
 void setColor(int, int, int);
 …
}

All methods are implicitly:  
public abstract.

All fields are implicitly:
public static final

Examples of Interfaces in Java 7

public interface Iterator<T> {
 boolean hasNext();
 T next();
 …
}

public interface Iterable<T> {
 Iterator<T> Iterator();
 …
}

public interface Comparable<T> {
 int compareTo(T other);
}

public interface Cloneable {}
Empty! Useful only
for Is-A relationship

Use with interfaces
implements

instead of
extends

Interfaces in Java 8
In Java 8, methods in interfaces are allowed to have a default
implementation.

Question. What is the difference between an abstract class and an
interface with default implementations?

Answer. extending a class implementing an interface
 Inherits API, state and Inherits only API and 
 implementation. implementation.

 Multiple Inheritance Multiple Inheritance allowed. 
 NOT allowed.

A class can extend only one class, but can implement several interfaces.  
I.e., a class can be only one thing, but can play several roles!

Back to the Warm Up Quiz!

Which of the following is a valid Java Statement?

A. Iterable<Integer> myStack = new Stack<Integer>();

B. Stack<Integer> myStack = new Stack<Integer>();

C. Object myStack = new Stack<Integer>();

D. A and B only.

E. A, B and C.

Same
Type

A Stack is Iterable. Only iterator() can be invoked

A Stack is an Object.

Only Object methods
can be invoked

Discussion
What is the difference between using Generics and using Object?
Example.

public class Queue<T> {
 public void enqueue(T element) {…}
 public T dequeue() {…}
}

public class Queue {
 public void enqueue(Object obj) {…}
 public Object dequeue() {…}
}

v.s.

 Queue<Integer> qT = new Queue<Integer>();

 Queue qObj = new Queue();

 Type Safe. qT.enqueue(myCat); // does not compile!

 Not Type Safe. qObj.enqueue(myCat); // compiles!

 No Need to Cast. int element = qT.dequeue();

 Needs a Cast. int element = (Integer) qObj.dequeue();

Abusing Inheritance

1. Extending for implementation. To extend, Is-A should hold
Example 1. Make class Percolation extend class BeadFinder to make use of the
DFS method. Bad idea! A Percolation object is not a BeadFinder.

Example 2. Make class Polygon extend class Circle to make use of getX(),  
getY(), setColor(), etc. Bad idea! A Polygon is not a Circle.

2. Methods or variables in base class not relevant in subclasses.
Example. Adding instance variable radius and method getRadius in class Shape.  
Bad idea! Useful for Circle, Oval but not for Triangle and Polygon.

3. Hierarchies that are long and complicated.  
Hierarchies should be wide, not deep!

Inheritance Wars!

Anti-Inheritance Clan

Inheritance violates encapsulation.
Child class knows too much about
Parent class.

Widely abused.

Leads to absurdities, especially with
multiple inheritance.

Code difficult to test and debug.

Anti-Anti-Inheritance Clan

Inheritance is useful.

Model’s real world entities more
naturally.

Code carefully and avoid abuse.

Widely Used Rules of Thumb:
 — Favor Composition over Inheritance.
 — Use Composition for code re-use and implement interfaces for 
 defining Is-A relationships.

Image on the first slide retrieved on March 25th from: http://
www.geneticdisordersuk.org/static/images/up/patterns-of-inheritance_2014_v4.jpg

http://www.geneticdisordersuk.org/static/images/up/patterns-of-inheritance_2014_v4.jpg
http://www.geneticdisordersuk.org/static/images/up/patterns-of-inheritance_2014_v4.jpg

