
Exception Handling

COS226 - Spring 2018 Class Meeting # 21 April 23, 2018

Ibrahim Albluwi

Unhandled exception has occurred in your
application. if you click continue the application
will ignore this error and attempt to continue. If
you click Quit, the application will close
immediately

Continue QuitDetails

X

Warm Up Question!

From a Software Engineering point of view, what is wrong with the
following implementation of the push method in an implementation of
the Stack ADT?

! What if the stack is used in a GUI application?

! How can the calling method know if a push is successful?

Stack methods detect errors, but do not handle them.
Stack methods return information about errors in the form of error codes.

Advantages:

Stack implementation is not tied to any certain error reporting mechanism.
Clients of a Stack are well-informed about errors.

Any problems?

Candidate Solution: Error Codes

Candidate Solution: Error Codes

Disadvantages:

Code may be difficult to read, debug and maintain:
• -1, 0, 1, etc. are not inherently meaningful.
• The same error code can have different meanings in different methods.
• Error codes need to be manually propagated from one method to

another.

Disadvantages:

Code may be difficult to read, debug and maintain:
API limitations need to be worked around!

Candidate Solution: Error Codes

Disadvantages:

Code may be difficult to read, debug and maintain:
API limitations need to be worked around!
Clients may not check for error codes.
• Experience shows that error codes are often ignored!
• Behavior is undetermined if errors are not accounted for.

Candidate Solution: Error Codes

Disadvantages:

Code may be difficult to read, debug and maintain:
API limitations need to be worked around!
Clients may not check for error codes.
• Experience shows that error codes are often ignored!
• Behavior is undetermined if errors are not accounted for.
What if unexpected errors occur that are not described by any error code?

Candidate Solution: Error Codes

Disadvantages:

Code may be difficult to read, debug and maintain:
API limitations need to be worked around!
Clients may not check for error codes.
• Experience shows that error codes are often ignored!
• Behavior is undetermined if errors are not accounted for.
What if unexpected errors occur that are not described by any error code?
No information about the trace of how the error occurred.

Solution: Exception Handling!

Candidate Solution: Error Codes

Exception Handling

Advantage 1: Allows separating error detection from error handling.
Advantage 2: Allows separating error handling code from regular code.

Advantage 4: Automatically propagate errors up the call stack.
Advantage 6: Keeps track of information on the error stack trace.

Advantage 3: Errors can’t go unnoticed: Specify or Handle rule.

Advantage 7: Allows grouping and differentiating error types.

Throw something, catch something!

Catching Exceptions

… some code …

element = myStack.pop();

… some code …

… some code …

try {

} catch(NoSuchElementException e) {

 // code that handles the exception

}

may throw a
NoSuchElementException

Control is
transferred to
the catch block
if a NoSuchElementException is thrown

Catching Exceptions

… some code …

element = myStack.pop();

… some code …

… some code …

try {

} catch(NoSuchElementException e) {

 // code that handles the exception

} catch(FileNotFoundException e) {

 // code that handles the exception

} catch(IOException e) {

 // code that handles the exception

}

Add a catch
block for every
exception that
you would like
to handle.

Catching Exceptions

… some code …

element = myStack.pop();

… some code …

… some code …

try {

} catch(NoSuchElementException e) {

 // code that handles the exception

} catch(FileNotFoundException e) {

 // code that handles the exception

} catch(IOException e) {

 // code that handles the exception

}

Object holding information
about the exception: cause,
message, stack trace, etc.

Catching Exceptions

… some code …

element = myStack.pop();

… some code …

… some code …

try {

} catch(NoSuchElementException e) {

 // code that handles the exception

} catch(FileNotFoundException e) {

 // code that handles the exception

} catch(IOException e) {

 // code that handles the exception

} finally {

 // Example: close the file

}

Code to be
executed
regardless of
whether an
exception is
thrown or not.

Stack Trace

main

method1: with exception handling

method2: No exception handling

method3: No exception handling

Stack Trace

main

method1: with exception handling

method2: No exception handling

method3: No exception handling

method4: Exception is thrown

Exception is propagated across the stack frames.

Stack Trace

main

method1: with exception handling

method2: No exception handling

method3: No exception handling

method4: Exception is thrown

Exception is propagated across the stack frames.

Information about the exception stack trace is stored in the exception object
as it is being propagated across the stack frames.

Catching Exceptions
What to do with a caught exception?

Address the issue! Make sure your code is in a good and stable state in
spite of the error.

Do not hide the issue! Make sure either the admin knows (by logging
information) or the user knows (by showing an error message), etc.

If it is not your responsibility to handle the exception, consider decorating
the exception with some information and then re-throwing it again!

try { … } catch (SomeException e) {
 SomeOtherExceptionType newE = new SomeOtherExceptionType(e);
 // Add some information to newE
 throw newE;
}

Preserves information
already stored in e.

Exception Handling

Advantage 1: Allows separating error detection from error handling.
Advantage 2: Allows separating error handling code from regular code.

Advantage 4: Automatically propagate errors up the call stack.
Advantage 6: Keeps track of information on the error stack trace.

Advantage 3: Errors can’t go unnoticed: Specify or Handle rule.

Advantage 7: Allows grouping and differentiating error types.

Exception Handling

Advantage 1: Allows separating error detection from error handling.

Advantage 2: Allows separating error handling code from regular code.

Advantage 4: Automatically propagate errors up the call stack.

Advantage 6: Keeps track of information on the error stack trace.

Advantage 3: Errors can’t go unnoticed: Specify or Handle rule.

Advantage 7: Allows grouping and differentiating error types.

Separate Error Handling Code from Regular Code d
 initialize errorCode = 0;
 open the file;
 if (theFileIsOpen) {
 determine the length of the file;
 if (gotTheFileLength) {
 allocate that much memory;
 if (gotEnoughMemory) {
 read the file into memory;
 if (readFailed) {
 errorCode = -1;
 }
 } else {
 errorCode = -2;
 }
 } else {
 errorCode = -3;
 }
 close the file;
 if (theFileDidntClose && errorCode == 0) {
 errorCode = -4;
 } else {
 errorCode = errorCode and -4;
 }
 } else {
 errorCode = -5;
 }
 return errorCode;

Cleaner looking code

Instead of code that looks
like this ———————>

What did we gain?

Write code that

looks like this ——>

 try {
 open the file;
 determine its size;
 allocate that much memory;
 read the file into memory;
 close the file;
 } catch (fileOpenFailed) {
 doSomething;
 } catch (sizeDeterminationFailed) {
 doSomething;
 } catch (memoryAllocationFailed) {
 doSomething;
 } catch (readFailed) {
 doSomething;
 } catch (fileCloseFailed) {
 doSomething;
 }

Separate Error Handling Code from Regular Code d

Exception Handling

Advantage 1: Allows separating error detection from error handling.
Advantage 2: Allows separating error handling code from regular code.

Advantage 4: Automatically propagate errors up the call stack.
Advantage 6: Keeps track of information on the error stack trace.

Advantage 3: Errors can’t go unnoticed: Specify or Handle rule.

Advantage 7: Allows grouping and differentiating error types.

Java Exceptions Hierarchy

initCause()
getCause(t)
getMessage()
getStackTrace()
fillInStackTrace()
toString()
…

Recovery is
impossible or
meaningless!

Java Exceptions Hierarchy

Recovery is
possible and
expected.

Java Exceptions Hierarchy

Unchecked
Exceptions. Can
ignore handling them

Java Exceptions Hierarchy

Checked
Exceptions. Must
specify or handle!

Unchecked Exceptions
Not checked by the compiler. Catching and handling these exceptions is
optional. These exceptions are:

Subclasses of class Error: Like StackOverflowError,
OutOfMemoryError, etc. It is not ordinarily expected for a program to  
be able to recover from these errors. Therefore, it doesn’t make sense to  
enforce catching/handling them.

Subclasses of class RuntimeException: Like ClassCastException,
ArrayIndexOutOfBoundsException, ArithmeticException, etc.  
These are typically caused by coding flaws. Since, predicting coding flaws is
difficult, enforcing catching/handling them is impractical.

Checked Exceptions
Checked by the compiler. Dealing with these exceptions is not optional.  
These exceptions include everything inherited from class Exception.

Assume method foo() throws an IOException, which is a checked  
exception. If method bar() calls method foo(), then it must do one of the
following, or the compiler will complain:

Handle

Methods calling bar()
must either handle or

specify!

Specifyor

Create Your Own Exceptions

If the pre-defined Java Exceptions are not enough, create your  
own exceptions.

Choose which Exception classes to subclass (Checked vs Unchecked).

Organize your exception classes into an inheritance hierarchy to  
facilitate handling groups of exceptions together.

try { … }
catch (ConnectionException e) {
 // Handles ConnectionException, as well as subclasses
 // like LostConnectionException, InvalidAddressException,
 // AuthenticationErrorException, etc.
} catch (UserInputException e) {
 // Handles UserInputException, as well as subclasses
 // like NoInputProvidedException, InvalidCharsException,
 // DumbUserException, etc.
}

Note: These are hypothetical exceptions!

What is the output of the following piece of code?

A. Exception!

B. RuntimeException!

C. IllegalArgumentException!

D. All of the above.

E. None of the above.

Quiz http://etc.ch/iEiC

What is the output of the following piece of code?

A. Exception!

B. RuntimeException!

C. IllegalArgumentException!

D. All of the above.

E. None of the above.

Quiz http://etc.ch/iEiC

Quiz http://etc.ch/iEiC

error: exception RuntimeException has already been caught
} catch(RuntimeException e) {
 ^
error: exception IllegalArgumentException has already
been caught
} catch(IllegalArgumentException e) {
 ^
2 errors

Exceptions must be caught from most specific to most general.

Bad Practice

Bad Practice

Enumeration Types (Live Demo)

JavaDoc (Live Demo)

Anonymous Classes (Live Demo)

• Java Exceptions Hierarchy chart was retrieved Monday 22nd 2018 from:  
https://3.bp.blogspot.com/-j8y3jyEkRKg/WDCVASlGsoI/AAAAAAAADQ8/oTdt8ty-
emUBcNuzVzXpZKpTU2nGWeVrACLcB/s1600/ExceptionClassHierarchy.png

• Pokemon images were retrieved Monday 22, 2018 from: http://cdn-
static.denofgeek.com/sites/denofgeek/files/pokemon_4.jpg and from https://
www.freepnglogos.com/uploads/gotta-catch-em-all-transparent-pokemon-logo-11.png
and from https://t5.rbxcdn.com/e16e9d97109be187d2c9649a368fbc56

https://3.bp.blogspot.com/-j8y3jyEkRKg/WDCVASlGsoI/AAAAAAAADQ8/oTdt8ty-emUBcNuzVzXpZKpTU2nGWeVrACLcB/s1600/ExceptionClassHierarchy.png
https://3.bp.blogspot.com/-j8y3jyEkRKg/WDCVASlGsoI/AAAAAAAADQ8/oTdt8ty-emUBcNuzVzXpZKpTU2nGWeVrACLcB/s1600/ExceptionClassHierarchy.png
http://cdn-static.denofgeek.com/sites/denofgeek/files/pokemon_4.jpg
http://cdn-static.denofgeek.com/sites/denofgeek/files/pokemon_4.jpg
http://cdn-static.denofgeek.com/sites/denofgeek/files/pokemon_4.jpg
https://www.freepnglogos.com/uploads/gotta-catch-em-all-transparent-pokemon-logo-11.png
https://www.freepnglogos.com/uploads/gotta-catch-em-all-transparent-pokemon-logo-11.png
https://t5.rbxcdn.com/e16e9d97109be187d2c9649a368fbc56

