3.4 Hash Tables

- hash functions
- separate chaining
- linear probing
- context
ST implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>worst-case cost (after N inserts)</th>
<th>average-case cost (after N random inserts)</th>
<th>ordered iteration?</th>
<th>key interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search hit</td>
</tr>
<tr>
<td>sequential search (unordered list)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N/2</td>
</tr>
<tr>
<td>binary search (ordered array)</td>
<td>lg N</td>
<td>N</td>
<td>N</td>
<td>lg N</td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>1.38 lg N</td>
</tr>
<tr>
<td>red-black BST</td>
<td>2 lg N</td>
<td>2 lg N</td>
<td>2 lg N</td>
<td>1.00 lg N</td>
</tr>
</tbody>
</table>

Q. Can we do better?

A. Yes, but with different access to the data.
Hashing: basic plan

Save items in a **key-indexed table** (index is a function of the key).

Hash function. Method for computing array index from key.

```
hash("it") = 3
hash("times") = 3
```

Issues.

- Computing the hash function.
- Equality test: Method for checking whether two keys are equal.
- Collision resolution: Algorithm and data structure to handle two keys that hash to the same array index.

Classic space-time tradeoff.

- No space limitation: trivial hash function with key as index.
- No time limitation: trivial collision resolution with sequential search.
- Space and time limitations: hashing (the real world).
3.4 Hash Tables

- hash functions
- separate chaining
- linear probing
- context
Computing the hash function

Idealistic goal. Scramble the keys uniformly to produce a table index.
- Efficiently computable.
- Each table index equally likely for each key.

Ex 1. Phone numbers.
- Bad: first three digits.
- Better: last three digits.

Ex 2. Social Security numbers.
- Bad: first three digits.
- Better: last three digits.

Practical challenge. Need different approach for each key type.
Java’s hash code conventions

All Java classes inherit a method `hashCode()`, which returns a 32-bit int.

Requirement. If `x.equals(y)`, then `(x.hashCode() == y.hashCode())`.

Highly desirable. If `!x.equals(y)`, then `(x.hashCode() != y.hashCode())`.

Default implementation. Memory address of `x`.

Legal (but poor) implementation. Always return 17.

Customized implementations. `Integer`, `Double`, `String`, `File`, `URL`, `Date`, ...

User-defined types. Users are on their own.
Implementing hash code: integers, booleans, and doubles

Java library implementations

```java
public final class Integer {
    private final int value;
    ...

    public int hashCode() {
        return value;
    }
}
```

```java
public final class Double {
    private final double value;
    ...

    public int hashCode() {
        long bits = doubleToLongBits(value);
        return (int) (bits ^ (bits >>> 32));
    }
}
```

```java
public final class Boolean {
    private final boolean value;
    ...

    public int hashCode() {
        if (value) return 1231;
        else return 1237;
    }
}
```

convert to IEEE 64-bit representation; xor most significant 32-bits with least significant 32-bits
Implementing hash code: strings

Java library implementation

```java
public final class String {
    private final char[] s;
    ...

    public int hashCode() {
        int hash = 0;
        for (int i = 0; i < length(); i++)
            hash = s[i] + (31 * hash);
        return hash;
    }
}
```

- Horner's method to hash string of length L: L multiplies/adds.
- Equivalent to $h = s[0] \cdot 31^{L-1} + \ldots + s[L-3] \cdot 31^2 + s[L-2] \cdot 31^1 + s[L-1] \cdot 31^0$.

Ex. String s = "call";
 int code = s.hashCode();
 \[3045982 = 99 \cdot 31^3 + 97 \cdot 31^2 + 108 \cdot 31^1 + 108 \cdot 31^0 = 108 + 31 \cdot (108 + 31 \cdot (97 + 31 \cdot (99)))\]
 (Horner's method)
Implementing hash code: strings

Performance optimization.
- Cache the hash value in an instance variable.
- Return cached value.

```java
public final class String
{
    private int hash = 0;
    private final char[] s;
    ...

    public int hashCode()
    {
        int h = hash;
        if (h != 0) return h;
        for (int i = 0; i < length(); i++)
            h = s[i] + (31 * h);
        hash = h;
        return h;
    }
}
```
Implementing hash code: user-defined types

public final class Transaction implements Comparable<Transaction>
{
 private final String who;
 private final Date when;
 private final double amount;

 public Transaction(String who, Date when, double amount)
 { /* as before */ }

 ...

 public boolean equals(Object y)
 { /* as before */ }

 public int hashCode()
 {
 int hash = 17;
 hash = 31*hash + who.hashCode();
 hash = 31*hash + when.hashCode();
 hash = 31*hash + ((Double) amount).hashCode();
 return hash;
 }
}
Hash code design

"Standard" recipe for user-defined types.
- Combine each significant field using the $31x + y$ rule.
- If field is a primitive type, use wrapper type `hashCode()`.
- If field is null, return 0.
- If field is a reference type, use `hashCode()`.
- If field is an array, apply to each entry.

In practice. Recipe works reasonably well; used in Java libraries.
In theory. Keys are bitstring; "universal" hash functions exist.

Basic rule. Need to use the whole key to compute hash code; consult an expert for state-of-the-art hash codes.
Modular hashing

Hash code. An int between \(-2^{31}\) and \(2^{31} - 1\).

Hash function. An int between 0 and \(M - 1\) (for use as array index).

typically a prime or power of 2

```java
private int hash(Key key) {
    return key.hashCode() % M;
}
```

bug

```java
private int hash(Key key) {
    return Math.abs(key.hashCode()) % M;
}
```

1-in-a-billion bug

hashCode() of "polygenelubricants" is \(-2^{31}\)

```java
private int hash(Key key) {
    return (key.hashCode() & 0x7fffffff) % M;
}
```

correct
Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to an integer between 0 and $M - 1$.

Bins and balls. Throw balls uniformly at random into M bins.

Birthday problem. Expect two balls in the same bin after $\sim \sqrt{\frac{\pi M}{2}}$ tosses.

Coupon collector. Expect every bin has ≥ 1 ball after $\sim M \ln M$ tosses.

Load balancing. After M tosses, expect most loaded bin has $\Theta(\log M / \log \log M)$ balls.
Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to an integer between 0 and $M - 1$.

Bins and balls. Throw balls uniformly at random into M bins.
3.4 Hash Tables

- hash functions
- separate chaining
- linear probing
- context
3.4 Hash Tables

- hash functions
- separate chaining
- linear probing
- context
Collisions

Collision. Two distinct keys hashing to same index.

- Birthday problem \Rightarrow can't avoid collisions unless you have a ridiculous (quadratic) amount of memory.
- Coupon collector + load balancing \Rightarrow collisions are evenly distributed.

Challenge. Deal with collisions efficiently.
Separate chaining symbol table

Use an array of $M < N$ linked lists. [H. P. Luhn, IBM 1953]

- Hash: map key to integer i between 0 and $M - 1$.
- Insert: put at front of ith chain (if not already there).
- Search: need to search only ith chain.

<table>
<thead>
<tr>
<th>key</th>
<th>hash</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>R</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>H</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>X</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>M</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>P</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>L</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>12</td>
</tr>
</tbody>
</table>

![Diagram of separate chaining symbol table]
Separate chaining ST: Java implementation

```java
public class SeparateChainingHashST<Key, Value> {
    private int M = 97;    // number of chains
    private Node[] st = new Node[M];   // array of chains

    private static class Node {
        private Object key;
        private Object val;
        private Node next;
        ...
    }

    private int hash(Key key) {
        return (key.hashCode() & 0x7fffffff) % M;
    }

    public Value get(Key key) {
        int i = hash(key);
        for (Node x = st[i]; x != null; x = x.next)
            if (key.equals(x.key)) return (Value) x.val;
        return null;
    }
}
```
Separate chaining ST: Java implementation

```java
public class SeparateChainingHashST<Key, Value> {
    private int M = 97; // number of chains
    private Node[] st = new Node[M]; // array of chains

    private static class Node {
        private Object key;
        private Object val;
        private Node next;
        ...
    }

    private int hash(Key key) {
        return (key.hashCode() & 0x7fffffff) % M;
    }

    public void put(Key key, Value val) {
        int i = hash(key);
        for (Node x = st[i]; x != null; x = x.next)
            if (key.equals(x.key)) { x.val = val; return; }
        st[i] = new Node(key, val, st[i]);
    }
}
```
Analysis of separate chaining

Proposition. Under uniform hashing assumption, prob. that the number of keys in a list is within a constant factor of N/M is extremely close to 1.

Pf sketch. Distribution of list size obeys a binomial distribution.

![Binomial distribution](image)

Consequence. Number of probes for search/insert is proportional to N/M.
- M too large \Rightarrow too many empty chains.
- M too small \Rightarrow chains too long.
- Typical choice: $M \sim N/5 \Rightarrow$ constant-time ops.
ST implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>worst-case cost (after N inserts)</th>
<th>average case (after N random inserts)</th>
<th>ordered iteration?</th>
<th>key interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search hit</td>
</tr>
<tr>
<td>sequential search (unordered list)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N/2</td>
</tr>
<tr>
<td>binary search (ordered array)</td>
<td>lg N</td>
<td>N</td>
<td>N</td>
<td>lg N</td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>1.38 lg N</td>
</tr>
<tr>
<td>red-black tree</td>
<td>2 lg N</td>
<td>2 lg N</td>
<td>2 lg N</td>
<td>1.00 lg N</td>
</tr>
<tr>
<td>separate chaining</td>
<td>lg N *</td>
<td>lg N *</td>
<td>lg N *</td>
<td>3-5 *</td>
</tr>
</tbody>
</table>

* under uniform hashing assumption
3.4 Hash Tables

- hash functions
- separate chaining
- linear probing
- context
3.4 Hash Tables

- hash functions
- separate chaining
- linear probing
- context
Collision resolution: open addressing

Open addressing. [Amdahl-Boehme-Rocherster-Samuel, IBM 1953]
When a new key collides, find next empty slot, and put it there.

```
st[0]  jocularly
st[1]  null
st[2]  listen
st[3]  suburban
...
st[30000]  browsing
```
linear probing (M = 30001, N = 15000)
Linear probing hash table demo

Hash. Map key to integer i between 0 and $M-1$.

Insert. Put at table index i if free; if not try $i+1$, $i+2$, etc.

linear probing hash table

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

$M = 16$
Linear probing hash table demo

Hash. Map key to integer i between 0 and $M-1$.

Search. Search table index i; if occupied but no match, try $i+1$, $i+2$, etc.

```
search K
hash(K) = 5
```

<table>
<thead>
<tr>
<th>st[]</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>M</td>
<td>A</td>
<td>C</td>
<td>S</td>
<td>H</td>
<td>L</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$M = 16$

K

search miss
(return null)
Linear probing hash table summary

Hash. Map key to integer i between 0 and $M-1$.

Insert. Put at table index i if free; if not try $i+1$, $i+2$, etc.

Search. Search table index i; if occupied but no match, try $i+1$, $i+2$, etc.

Note. Array size M **must be** greater than number of key-value pairs N.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>st[]</td>
<td>P</td>
<td>M</td>
<td></td>
<td></td>
<td>A</td>
<td>C</td>
<td>S</td>
<td>H</td>
<td>L</td>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>X</td>
</tr>
</tbody>
</table>

$M = 16$
linear probing ST implementation

```java
public class LinearProbingHashST<Key, Value> {

    private int M = 30001;
    private Value[] vals = (Value[]) new Object[M];
    private Key[] keys = (Key[]) new Object[M];

    private int hash(Key key) { /* as before */ }

    public void put(Key key, Value val) {
        int i;
        for (i = hash(key); keys[i] != null; i = (i+1) % M)
            if (keys[i].equals(key))
                break;
        keys[i] = key;
        vals[i] = val;
    }

    public Value get(Key key) {
        for (int i = hash(key); keys[i] != null; i = (i+1) % M)
            if (key.equals(keys[i]))
                return vals[i];
        return null;
    }
}
```

array doubling and halving code omitted
Clustering

Cluster. A contiguous block of items.

Observation. New keys likely to hash into middle of big clusters.
Knuth's parking problem

Model. Cars arrive at one-way street with M parking spaces. Each desires a random space i: if space i is taken, try $i + 1, i + 2$, etc.

Q. What is mean displacement of a car?

Half-full. With $M/2$ cars, mean displacement is $\sim 3/2$.

Full. With M cars, mean displacement is $\sim \sqrt{\pi M/8}$.
Analysis of linear probing

Proposition. Under uniform hashing assumption, the average # of probes in a linear probing hash table of size M that contains $N = \alpha M$ keys is:

$$\sim \frac{1}{2} \left(1 + \frac{1}{1 - \alpha} \right)$$

search hit

$$\sim \frac{1}{2} \left(1 + \frac{1}{(1 - \alpha)^2} \right)$$

search miss / insert

Pf.

Parameters.

- M too large \Rightarrow too many empty array entries.
- M too small \Rightarrow search time blows up.
- Typical choice: $\alpha = \frac{N}{M} \sim \frac{1}{2}$.

probes for search hit is about $3/2$
probes for search miss is about $5/2$
ST implementations: summary

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Worst-case cost (after N inserts)</th>
<th>Average case (after N random inserts)</th>
<th>Ordered iteration?</th>
<th>Key interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search hit</td>
</tr>
<tr>
<td>sequential search (unordered list)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N/2</td>
</tr>
<tr>
<td>binary search (ordered array)</td>
<td>lg N</td>
<td>N</td>
<td>N</td>
<td>lg N</td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>1.38 lg N</td>
</tr>
<tr>
<td>red-black tree</td>
<td>2 lg N</td>
<td>2 lg N</td>
<td>2 lg N</td>
<td>1.00 lg N</td>
</tr>
<tr>
<td>separate chaining</td>
<td>lg N *</td>
<td>lg N *</td>
<td>lg N *</td>
<td>3-5 *</td>
</tr>
<tr>
<td>linear probing</td>
<td>lg N *</td>
<td>lg N *</td>
<td>lg N *</td>
<td>3-5 *</td>
</tr>
</tbody>
</table>

* under uniform hashing assumption
3.4 Hash Tables

- hash functions
- separate chaining
- linear probing
- context
3.4 Hash Tables

- hash functions
- separate chaining
- linear probing
- context
War story: String hashing in Java

String hashCode() in Java 1.1.

- For long strings: only examine 8-9 evenly spaced characters.
- Benefit: saves time in performing arithmetic.

```java
public int hashCode()
{
    int hash = 0;
    int skip = Math.max(1, length() / 8);
    for (int i = 0; i < length(); i += skip)
        hash = s[i] + (37 * hash);
    return hash;
}
```

- Downside: great potential for bad collision patterns.

http://www.cs.princeton.edu/introcs/13loop/Hello.java
http://www.cs.princeton.edu/introcs/13loop/Hello.class
http://www.cs.princeton.edu/introcs/12type/index.html
War story: algorithmic complexity attacks

Q. Is the uniform hashing assumption important in practice?
A. Obvious situations: aircraft control, nuclear reactor, pacemaker.
A. Surprising situations: denial-of-service attacks.

Real-world exploits. [Crosby-Wallach 2003]
- Bro server: send carefully chosen packets to DOS the server, using less bandwidth than a dial-up modem.
- Perl 5.8.0: insert carefully chosen strings into associative array.
- Linux 2.4.20 kernel: save files with carefully chosen names.

malicious adversary learns your hash function (e.g., by reading Java API) and causes a big pile-up in single slot that grinds performance to a halt.
Algorithmic complexity attack on Java

Goal. Find family of strings with the same hash code.

Solution. The base 31 hash code is part of Java's string API.

<table>
<thead>
<tr>
<th>key</th>
<th>hashCode()</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Aa"</td>
<td>2112</td>
</tr>
<tr>
<td>"BB"</td>
<td>2112</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>key</th>
<th>hashCode()</th>
</tr>
</thead>
<tbody>
<tr>
<td>"AaAaAaAa"</td>
<td>-540425984</td>
</tr>
<tr>
<td>"AaAaAaBB"</td>
<td>-540425984</td>
</tr>
<tr>
<td>"AaAaBBAa"</td>
<td>-540425984</td>
</tr>
<tr>
<td>"AaAaBBBB"</td>
<td>-540425984</td>
</tr>
<tr>
<td>"AaBBBBB"</td>
<td>-540425984</td>
</tr>
<tr>
<td>"AaBBBBBB"</td>
<td>-540425984</td>
</tr>
<tr>
<td>"BBAaAaAa"</td>
<td>-540425984</td>
</tr>
<tr>
<td>"BBAaAaBB"</td>
<td>-540425984</td>
</tr>
<tr>
<td>"BBAaBBAa"</td>
<td>-540425984</td>
</tr>
<tr>
<td>"BBAaBBBB"</td>
<td>-540425984</td>
</tr>
<tr>
<td>"BBAaBBBBB"</td>
<td>-540425984</td>
</tr>
<tr>
<td>"BBBBBaaAa"</td>
<td>-540425984</td>
</tr>
<tr>
<td>"BBBBBaaBB"</td>
<td>-540425984</td>
</tr>
<tr>
<td>"BBBBBaaBBBB"</td>
<td>-540425984</td>
</tr>
<tr>
<td>"BBBBBaaBBBBB"</td>
<td>-540425984</td>
</tr>
</tbody>
</table>

2^N strings of length 2N that hash to same value!
Diversion: one-way hash functions

One-way hash function. "Hard" to find a key that will hash to a desired value (or two keys that hash to same value).

Ex. MD4, MD5, SHA-0, SHA-1, SHA-2, WHIRLPOOL, RIPEMD-160,

known to be insecure

String password = args[0];
MessageDigest sha1 = MessageDigest.getInstance("SHA1");
byte[] bytes = sha1.digest(password);

/* prints bytes as hex string */

Applications. Digital fingerprint, message digest, storing passwords.
Caveat. Too expensive for use in ST implementations.
Separate chaining vs. linear probing

Separate chaining.
- Easier to implement delete.
- Performance degrades gracefully.
- Clustering less sensitive to poorly-designed hash function.

Linear probing.
- Less wasted space.
- Better cache performance.

Q. How to delete?
Q. How to resize?
Hashing: variations on the theme

Many improved versions have been studied.

Two-probe hashing. (separate-chaining variant)
• Hash to two positions, insert key in shorter of the two chains.
• Reduces expected length of the longest chain to $\log \log N$.

Double hashing. (linear-probing variant)
• Use linear probing, but skip a variable amount, not just 1 each time.
• Effectively eliminates clustering.
• Can allow table to become nearly full.
• More difficult to implement delete.

Cuckoo hashing. (linear-probing variant)
• Hash key to two positions; insert key into either position; if occupied, reinsert displaced key into its alternative position (and recur).
• Constant worst case time for search.
Hash tables vs. balanced search trees

Hash tables.
- Simpler to code.
- No effective alternative for unordered keys.
- Faster for simple keys (a few arithmetic ops versus \(\log N \) compares).
- Better system support in Java for strings (e.g., cached hash code).

Balanced search trees.
- Stronger performance guarantee.
- Support for ordered ST operations.
- Easier to implement compareTo() correctly than equals() and hashCode().

Java system includes both.
- Red-black BSTs: java.util.TreeMap, java.util.TreeSet.
3.4 Hash Tables

- hash functions
- separate chaining
- linear probing
- context
3.4 Hash Tables

- hash functions
- separate chaining
- linear probing
- context