
COS 226 Algorithms and Data Structures Spring 2018

Midterm

This exam has 8 questions (including question 0) worth a total of 80 points. You have 80 minutes.
This exam is preprocessed by a computer, so please write darkly and write your answers
inside the designated spaces. Whenever there is a multiple choice question, fill in the
appropriate bubble(s) with your pencil.

Policies. The exam is closed book, except that you are allowed to use a one page cheatsheet
(8.5-by-11 paper, one side, in your own handwriting). No electronic devices are permitted.

Discussing this exam. Discussing the contents of this exam before solutions have been posted
is a violation of the Honor Code.

This exam. Do not remove this exam from this room. Write your name, NetID, and the room
in which you are taking the exam in the space below. Mark your precept number. Also, write and
sign the Honor Code pledge. You may fill in this information now.

Name:

NetID:

Exam room:

P01 P02 P02A P03 P04 P04A P04B P05 P05A P05B

#Precept:

“I pledge my honor that I will not violate the Honor Code during this examination.”

Signature

2 PRINCETON UNIVERSITY

0. Initialization. (2 points)

In the space provided on the front of the exam, write your name, NetID, and the room in
which you are taking the exam; mark your precept number; and write and sign the Honor
Code pledge.

1. Short questions: Union-Find (6 points)

Note: there are union implementations from the book added for your reference at the bottom
of the page.

a) How many connected components result after performing the following sequence of union
operations on a set of 10 items?

1 − 2 3 − 4 5 − 6 7 − 8 7 − 9 2 − 8 0 − 5 1 − 9

1 # 2 3 # 4

b) Suppose the following set of union operations were performed in quick-find.

1 − 2 3 − 4 5 − 6 7 − 8 7 − 9 2 − 8 0 − 5 1 − 9

How many array accesses required to determine find(7)

 1 # 2 # 3 # 4

c) What is the maximum number of id[] array entries that can change (from one value to
a different value) during one call to union when using the quick-find data structure on N
elements?

1 # logN N − 1 # N

For your reference, below is the union implementation for quick-union and quick-find from
the book:

public void union(int p, int q) {

// from quick-union

int i = find(p);

int j = find(q);

if (i == j) return;

id[i] = j;

count--;

}

public void union(int p, int q) {

// from quick-find

int pID = id[p];

int qID = id[q];

if (pID == qID) return;

for (int i = 0; i < id.length; i++)

if (id[i] == pID) id[i] = qID;

count--;

}

COS 226 MIDTERM, SPRING 2018 3

2. Short questions: data structure analysis (10 points)

a) Suppose that, starting from an empty data structure, we perform N push operations in our
resizing array implementation of a stack. How many times is the resize() method called?

constant logarithmic # linear # quadratic

b) Suppose that you implement a queue using a null-terminated singly-linked list, maintaining
a reference to the item least recently added (the front of the list) but not maintaining a
reference to the item most recently added (the end of the list). What are the worst case
running times for enqueue and dequeue?

constant time for both enqueue and dequeue

constant time for enqueue and linear time for dequeue

 linear time for enqueue and constant time for dequeue

linear time for both enqueue and dequeue

c) Consider the code fragment:

for (int k = 1; k < N; k = k*2)

sum++;

How many addition operations does the above code fragment perform as a function of N?

∼ N # ∼ N/2 ∼ log2N # ∼ 0.5 log2N

d) Which of the following order-of-growth classifications represent the (best case, worst case)
number of array accesses used to binary search an array of size N?

(constant, constant) (constant, logarithmic) # (constant, linear)

(logarithmic, logarithmic) # (logarithmic, linear) # (linear, linear)

e) The code below shows the instance variables for WeightedQuickUnionUF.

public class WeightedQuickUnionUF {

private int[] id; // id[i] = parent of i

private int[] sz; // sz[i] = number of objects in subtree rooted at i

private int count; // number of components

...

How much memory (in bytes) does a WeightedQuickUnionUF object use as a function of N?

∼ 2N # ∼ 3N # ∼ 4N ∼ 8N

∼ 12N # ∼ 16N # ∼ 28N # ∼ 32N

4 PRINCETON UNIVERSITY

3. Short questions: Sorting. (10 points)

a) Consider the data type Temp defined below.

public class Temp implements Comparable<Temp> {

private final double deg;

public Temp(double deg) {

this.deg = deg;

}

public int compareTo(Temp that) {

double EPS = 0.1;

if (this.deg < that.deg - EPS)

return -1;

if (this.deg > that.deg + EPS)

return +1;

return 0;

}

}

Which of the following required properties of the Comparable interface does the compareTo()
method violate?

Antisymmetry (for all v and w if both v <= w and w <= v then v = w)

 Transitivity (for all v, w, and x, if both v <= w and w <= x, then v <= x)

Totality (either v <= w or w <= v or both)

Reflexivity (for all v, v = v)

None of the above

b) How many compares does selection sort make when the input array is already sorted?

constant # logarithmic # linear quadratic # exponential

c) How many compares does insertion sort make on an input array that is already sorted?

constant # logarithmic linear # quadratic # exponential

d) In QuickSort, suppose we partition an array of size 1251 and the pivot ends up in position
867. What is the entire set of positions in which the median might be found? Assume no
elements are equal to each other.

Positions 0 through 383. # Positions 0 through 625.

 Positions 0 through 866. # Any position.

e) If we have an array of size N with only 3 different values for its elements, what is the
approximate probability that the first QuickSort partition results in a completely sorted
array? Assume there are an equal number of each element in the array.

 0% 33% # 67% # 100%

Remark: it depends on whether 2-way or 3-way sort is used: it’s near-0 for 2-way, but ∼ 1/3
for 3-way — we’d need to select a middle value as a pivot. We accepted both answers.

COS 226 MIDTERM, SPRING 2018 5

4. Data structure analysis. (8 points)

Consider the following task QueueExchangeRandom(Queue<Item> q): given a queue q with at
least two elements, pick two uniformly random elements from q and exchange their location.
In each of the following scenarios, indicate the best running time that can be achieved by an
implementation of QueueExchangeRandom on a queue with n elements.

Number of operations
proportional to:

1 log n n n log n

Only with access to the standard
public Queue API

#

With access to the private variables
of q, where the Queue is

implemented as a resizable array
 # # #

With access to the private variables
of q, where the Queue is

implemented as a linked list
#

With access to the private variables
of q, where the Queue is

implemented as a red-black BST,
with values being the values in the
queue, and keys representing the
insertion order into the queue1

#

1You may assume that the BST is the full implementation here, which supports all standard ST key-valued
operations as well as insertions and deletions in logarithmic worst-case time.

6 PRINCETON UNIVERSITY

5. Debugging. (12 points)

Consider the following code snippet for finding the minimum in a stack of integers without
affecting its contents:

1 public int findMin(Stack<Integer> s1)

3 {

5 Stack<Integer> tmp = new Stack<Integer>();

7 if (s1==null)

9 throw new java.lang.IllegalArgumentException("Null stack");

11 if (s1.isEmpty())

13 throw new java.lang.IllegalArgumentException("Empty stack");

15 int min = s1.pop();

17 int t;

19 while (!s1.isEmpty())

21 {

23 t = s1.pop();

25 if(t < min)

27 min = t;

29 tmp.push(t);

31 }

33 while (!tmp.isEmpty())

35 s1.push(tmp.pop());

37 return min;

39 }

There is a bug in this code. The next two questions refer to that bug.

1) What is/are the undesirable side effect(s) of the bug which may occur during execution?
Check all that may apply:

Null pointer exception #
Side effects on the contents of the stack after execution
Returned answer incorrect #
Linear-time execution #

2) The bug can be fixed by inserting one line of code into the snippet. Identify line number
to insert

14 16 # 22 # 24 # 26

28 # 30 # 32 # 34 # 36

Write the code to insert in the box below.

tmp.push(min);

COS 226 MIDTERM, SPRING 2018 7

6. MinPQ. (20 points)

In the unit on priority queues we have covered minimum and maximum oriented priority
queues MinPQ and MaxPQ. The purpose of this problem is to implement a median oriented
priority queue. The median of a list containing 2n+1 elements is the middle n+1-st element.
The median of a list with 2n elements is the n-th element. So the median of {1,5,7} is 5,
and the median of {1,2,5,7} is 2. Here we will focus on key components of the API:

MedPQ() create an empty priority queue

void insert(Key v) insert a key

Key median() returns the median

Key delMedian() returns and removes the median

The goal of the implementation is to perform the insertions and deletions in time proportional
to log2(current size), and to perform the median() operation in constant time. There are
multiple ways of doing this, but here we will focus on an implementation with two private
priority queues (which we assume are implemented using a heap).

public class MedPQ<Key> implements Iterable<Key> {

private MaxPQ<Key> left;

private MinPQ<Key> right;

public MedPQ() {

left = new MaxPQ<Key>();

right = new MinPQ<Key>();

}

In the box below, describe what is stored in left and right in your implementation:

At a high level, left will hold the bottom half of the list, and right will hold the top half.

More specifically, if there are 2n elements in the list, the bottom n will be in left and the
top n will be in right. If there are 2n + 1 elements in the list, the bottom n + 1 will be in
left and the top n will be in right. This way, median is always just the largest element of left.

During insertion and deletion all we have to do is to maintain these two rules:
(1) elements in left are ≤ elements in right, and
(2) the size of right ≤ the size of left ≤ the size of right+1.

8 PRINCETON UNIVERSITY

Implement the median() method (which should run in constant time).

public median() {

if (isEmpty()) throw new NoSuchElementException("Priority queue underflow");

return left.max();

}

Implement the insert method (which should run in logarithmic time, which means a constant
number of calls to methods for left and right).

public void insert(Key k) {

if (k == null) throw new IllegalArgumentException("Null key");

if(left.isEmpty()) {

left.insert(k);

return;}

if(less(k,left.max()))

left.insert(k);

else

right.insert(k);

if (left.size() > right.size()+1)

right.insert(left.delMax());

if (left.size() < right.size())

left.insert(right.delMin());

}

COS 226 MIDTERM, SPRING 2018 9

Implement the delMedian method (which should run in logarithmic time, which means a
constant number of calls to methods for left and right).

public Key delMedian() {

if (isEmpty()) throw new NoSuchElementException("Priority queue underflow");

Key k = left.delMax();

if (left.size() < right.size())

left.insert(right.delMin());

return k;
}

10 PRINCETON UNIVERSITY

7. Which is the loneliest number? (12 points)

Given a collection of integers, the distance between an element i and the collection is the
minimum difference between i and the closest element in the collection. For example, consider
the collection {1,5,10,15,17}. The distance between 10 and the collection is 5, and the
distance between 5 and the collection is 4. The loneliest element in a collection of integers
is defined as the element with maximum distance to the collection. In the above-mentioned
collection, the loneliest element is 10. the next loneliest elements are 1 and 5.

Note: parts (a) and (b) below are not directly connected.

(a) Given a typical Binary Search Tree implementation representing a list of n integers, how
long would the best algorithm take to find the loneliest element in the average case? Time
proportional to:

1 # logn n # n logn # n2

(b) Describe how to implement an object which maintains a list of integers with insertion
and deletion, and which allows for querying for the loneliest element. For full marks, the
memory used should be proportional to n — the current size of the list, insert, delete and
loneliest should take time proportional to logn.

You need not implement any methods, just give a clear and concise description of which data
structure(s) you would use as instance variables, and how your solution would work in the
boxes below. You may use the space on the last page as scrap paper.

In the box below, provide a concise and precise description of the instance variables you would
use and their purpose:

Solution:

The logarithmic insertion/deletion requirement is a hint that LLRBs are involved. In fact,
we need two LLRBs, one to keep track of the integers, and one to keep track of the distances.

In the numbers LLRB implementing a ST, the keys are the numbers and the values are
distances to the closest element in the list.

In the distances LLRB, we would like the keys to be just distances, but unfortunately different
numbers can have the same distance. Therefore, we need to have a wrapper comparable class
of the form (distance, number) which is compared first based on distance, and in case of a tie
based on the number. Since we are promised that all the numbers are distinct, there will be
no identical pairs in the distance tree (ignoring this issue only led to 1-2 point deduction).

COS 226 MIDTERM, SPRING 2018 11

In the box below, describe how you would implement loneliest(). Use pseudocode or
concise, but precise, English prose, or a combination of both.

Run max on the distances LLRB to obtain a (distance, number) pair. Return the number.

In the box below, describe how you would implement insert(int v). Use pseudocode or
concise, but precise, English prose, or a combination of both.

Check if v is in the numbers LLRB. If it is, return, since no further action is necessary.

Let l = floor(v − 1) and r = ceiling(v + 1) be the successor and predecessor of v in the list
of numbers (one or both could be null).

Calculate the distance d of v to the closest element. Insert (v, d) into the numbers LLRB.

Recalculate the distances dl,new and dr,new of l and r (assuming they are not null).

Retrieve the distances dl,old and dr,old, which are the values corresponding to
keys l and r in the numbers LLRB.

Update the values corresponding to l and r in the numbers LLRB to dl,new and dr,new.

Update the distances LLRB:
Remove (dl,old, l) and (dr,old, r);
Insert (dl,new, l), (dr,new, r), and (d, v).

