$ cat welcome.c
#include <stdio.h>

int main(int argc, char *argv[])

{
printf(“COS 217\n”);
printf(“Introduction to Programming Systems\n\n’);

printf(“Spring, 2018\n”);
return 0;

}

$ gcc2l7 welcome.c -o welcome

$./welcome

COS 217
Introduction to Programming Systems

Spring, 2018

/

Agenda
Course overview Getting started with C

* Introductions e History of C
» Course goals Building and running C
* Resources programs
« Grading « Characteristics of C
e Policies o C details (if time)
e Schedule

/

Introductions

Lead Instructor
e Prof. Szymon Rusinkiewicz

Lead Preceptor
* Robert Dondero, Ph.D.

Faculty Preceptor
e Donna Gabai

Preceptors
e Seo Young Kyung
e Austin Le

smr@princeton.edu

rdondero@cs.princeton.edu

dgabai@cs.princeton.edu

skyung@princeton.edu

austinle@princeton.edu

mailto:smr@cs.princeton.edu
mailto:rdondero@cs.princeton.edu
mailto:dgabai@cs.princeton.edu
mailto:skyung@princeton.edu
mailto:austinle@princeton.edu

/

Agenda
Course overview Getting started with C

 Introductions e History of C
e Course goals Building and running C
* Resources programs
« Grading « Characteristics of C
e Policies o C details (if time)
e Schedule

/

Goal 1: “Programming in the large”

e Help you learn how to compose
large computer programs

Topics
« Modularity/abstraction, information hiding, resource management,
error handling, testing, debugging, performance improvement,
tool support

/

Goal 2: Under the Hood

Learn what happens
“under the hood” of
computer systems

Downward tours

C Language

'

Assembly

Language

Machine Language

language
levels
tour

Learn “how to be _
a client of an o F
operating system”

e (G o) B
e - LLEEE L] S e L oy
RENNE ROON moNEg 1F

Application Program

Operating System

Hardware

service
levels
tour

-

Modularity!

Linux kernel map

functions . . human
system .
layers o Y Wln:lﬁracessing o memory I8 storage] v:'letworkmg likiiface
system interfaces processes memory access files & directories sockets access HI char devices
:;nmﬁm::‘mh lmm i “4ys_fark sys_brk a“m sys_socketcall kinsg

EIS'EI‘ space e s \Jeiesece ﬂm e . i \\ BIE SO H =
interfaces e et NS e IO fﬁm RN
ceguber chies GuEfs GpS = \ e Wi i ! ﬁn_
ﬂ"_nhun; syg/init module ._ ¥ : = = mh_:l-‘ﬁ;,
e - p— 1 5 e e e =
_sock craat
inet_family_ops

memaory disk controllers network controllers usar peripherals

-

Goals: Summary

Help you to become a...

Power Programmer!!!

/

Goals: Why C?

Question: Why C instead of Java?

THE
Answer 1. Primary language for
“under the hood” programming |
PROGRAMMING
LANGUAGE

Answer 2: Knowing a variety of
approaches helps you “program in the large”

Goals: Why Linux?

Question: Why use the Linux operating system?

Answer 1: Linux is good for education and research

Answer 2: Linux (with GNU tools) is good for programming

10

-
Agenda

Course overview
Introductions
Course goals
Resources
Grading
Policies
Schedule

Getting started with C
e History of C
 Building and running C
programs
» Characteristics of C
o C details (if time)

u

/

Lectures

Lectures
e Describe material at conceptual (high) level
» Slides available via course website

Lecture etiguette
» Use electronic devices only for taking notes or annotating slides
 No FaceNewsChatBookSnapMail, please

I> IClicker
* Please obtain one and register in Blackboard
(not with iClicker — they’ll charge you)

» Occasional questions in class, graded on participation
(with a generous allowance for not being able to attend)

2

> 1Clicker Question

Q: Do you have an IClicker with you today?

e A.Yes

* B. No, but I've been practicing my mental electrotelekinesis and
the response Is being registered anyway

e C. I'm not here, but someone is iClicking for me (don’t do this!)

[

Precepts

Precepts
e Describe material at the “practical” (low) level
e Support your work on assignments
 Hard copy handouts distributed during precepts
« Handouts available via course website

Precept etiquette
« Attend your precept — attendance will be taken
 Use SCORE to move to another precept
e Trouble = See Colleen Kenny (CS Bldg 210)
« But Colleen can’t move you into a full precept
e Must miss your precept? = inform preceptors & attend another

Precepts begin today and tomorrow!

Y

/

Website

Website
» Access from http://www.cs.princeton.edu/
* Princeton CS — Courses — Course Schedule — COS 217
« Home page, schedule page, assignment page, policies page

J

/

Plazza

Piazza
 http://piazza.com/class#spr2018/cos217/
* Instructions provided in first precept

Piazza etiguette
e Study provided material before posting question
» Lecture slides, precept handouts, required readings
* Read all (recent) Piazza threads before posting question
e Don’'t show your code!!!

« See course policies e

0l10ZZa

)

/

Books

The Practice of Programming (recommended)
e Kernighan & Pike
« “Programming in the large”

Computer Systems: A Programmer ’s
Perspective (Third Edition) (recommended)

e Bryant & O'Hallaron
e “Under the hood”

C Programming: A Modern Approach
(Second Edition) (required)
* King
o C programming language and standard libraries

/

Manuals

Manuals (for reference only, available online)

* Intel 64 and IA-32 Architectures Software Developer’s Manual,
Volumes 1-3

* Intel 64 and 1A-32 Architectures Optimization
Reference Manual

 Using AS, the GNU Assembler

See also
e Linux man command

s

Programming Environment

Server Client

CourseLab Cluster Your Computer

vl B
Linux A i

GNU|| | E@Lﬂ ‘\
Your @

Pgm

courselab01

courselab02 On-campus or
off-campus

19

-
Agenda

Course overview
Introductions
Course goals
Resources
Grading
Policies
Schedule

Getting started with C
e History of C
 Building and running C
programs
» Characteristics of C
o C details (if time)

J

Grading

N
(1)
Course Component Percentage of Grade é L).)
Assignments * \'ff/'
Midterm Exam ** 15 VIS N [U(/(’?
| percentages are (\| n— @ |
Final Exam ** 25 approximate ¢ — 7
Participation *** 10 / P ‘
R
I

* Final assignment counts double; penalties for lateness
** Closed book, closed notes, no electronic devices

*** Did your involvement benefit the course as a whole?
o Lecture/precept attendance and participation counts

21

-
Programming Assignments

Programming assignments
(some individual, some done with a partner from your precept)
0. Introductory survey
“De-comment” program
String module
Symbol table module
Assembly language programs
Buffer overrun attack
Heap manager module
Unix shell

NOoO O~ E

Assignments 0 and 1 are available now

Start early!!!

2

-
Agenda

Course overview
Introductions
Course goals
Resources
Grading
Policies
Schedule

Getting started with C
e History of C
 Building and running C
programs
» Characteristics of C
o C details (if time)

J

/

Policies

Study the
course “Policies”
web page!

PROCEDURES

Mo

Especially the assignment collaboration policies
 Violations often involve trial by Committee on Discipline
« Typical course-level penalty is F for course

e Typical University-level penalty is suspension from University
for 1 academic year

*

Assignment Related Policies

Some highlights:

e You may not reveal any of your assignment solutions (products,
descriptions of products, design decisions) on Piazza.

o Getting help: To help you compose an assignment solution you
may use only authorized sources of information, may consult with
other people only via the course's Piazza account or via interactions
that might legitimately appear on the course's Piazza account, and
must declare your sources in your readme file for the assignment.

* Giving help: You may help other students with assignments only
via the course's Piazza account or interactions that might
legitimately appear on the course's Piazza account, and you may
not share your assignment solutions with anyone, ever, in any form.

Ask the instructor for clarifications
e Permission to deviate from policies must be obtained in writing

25

-
Agenda

Course overview
Introductions
Course goals
Resources
Grading
Policies
Schedule

Getting started with C
e History of C
 Building and running C
programs
» Characteristics of C
o C details (if time)

%)

Course Schedule

1-2

3-6
6

7
8-13

Number Systems Linux/GNU
C (conceptual) C (pragmatic)

Programming in the Large Advanced C

Midterm Exam

“Under the Hood” “Under the Hood”
(conceptual) (assignment how-to)

Reading Period
Final Exam

27

Questions?

28

-

Agenda

Course overview
Introductions
Course goals
Resources
Grading
Policies
Schedule

Getting started with C
e History of C
 Building and running C
programs
» Characteristics of C
o C details (if time)

2

/

Who? Dennis Ritchie
When? ~1972

Where? Bell Labs

Why? Build the Unix OS

%)

-
Java vs. C: History

1960 1970 1972 1978 1989 1999 2011
Algol Y
ANSI C89 ISO C99 N
LISP ——» Smalltalk C++ —»{ Java

Y

C vs. Java: Design Goals

C Design Goals (1975) Java Design Goals (1995)

Build the Unix OS Language of the Internet

Low-level; close to HW and OS High-level; insulated from
hardware and OS

Good for system-level Good for application-level
programming programming

Support structured programming Support object-oriented
programming

Unsafe: don’t get in the Safe: can't step
programmer’s way “outside the sandbox”

Look like C!

32

-
Agenda

Course overview
Introductions
Course goals
Resources
Grading
Policies
Schedule

Getting started with C
e History of C
e Building and running C
programs
» Characteristics of C
o C details (if time)

)

/

Building Java Programs

~N

TR

$ javac MyPgm.java

Java compiler
(machine lang code)

|

~

MyPgm.java

OS (Linux)

(Java code)

>

javac

HW (CourselLab) /

o MyPgm.class
(bytecode)

*

-

Running Java Programs

“
(Gern " e

~N

e W

$ java MyPgm

Java interpreter

(Java virtual machine)

(machine lang code)

HW (CourselLab)

OS (Linux)

[data }

java

t

MyPgm.class
(bytecode)

~

)

/

Building C Programs

(& FEneET)

~N

TR

$gcc217 mypgm.c —0 mypgm

C “compiler driver”

(machine lang code)

(C code)

{ mypgm.c }

HW (CourselLab)
OS (Linux) 4)
mypgm
» gcc2ly — (machine
\Iang code))

)

/

Running C Programs

mypgm
(machine lang code)

$./mypgm
HW (CourselLab)
OS (Linux)
[data } - Mypgm

)

-
Agenda

Course overview
Introductions
Course goals
Resources
Grading
Policies
Schedule

Getting started with C
e History of C
 Building and running C
programs
e Characteristics of C
o C details (if time)

J

Javavs. C: Portability

Code Type Portable?

MyPgm.java Java source code Yes
mypgm.c C source code Mostly
MyPgm.class Bytecode Yes
mypgm Machine lang code No

Conclusion: Java programs are more portable

39

-

Java vs. C: Safety & Efficiency

Java
e Automatic array-bounds checking,
 NULL pointer checking,
« Automatic memory management (garbage collection)
o Other safety features

C

« Manual bounds checking
 NULL pointer checking,
e Manual memory management

Conclusion 1: Java is often safer than C

Conclusion 2: Java is often slower than C

Y

Java vs. C: Characteristics

| Jaa | C
Portability + -
Efficiency ~ +

Safety + -

41

> 1Clicker Question

Q: Which corresponds to the C programming language?

-
Agenda

Course overview
Introductions
Course goals
Resources
Grading
Policies
Schedule

Getting started with C
e History of C
 Building and running C
programs
» Characteristics of C
e C detalls (if time)

®)

-

Java vs. C: Detalls

Remaining slides provide some details

Use for future reference

Slides covered now, as time allows...

*

Javavs. C: Detalls

I - -

Overall
Program
Structure

Building

Running

Hello.java:

public class Hello
{ public static void main
(String[] args)
{ System.out.printin(
"hello, world™);

¥
}

$ javac Hello.java

$ java Hello
hello, world
$

hello.c:

#include <stdio.h>

int main(void)
{ printf(C'hello, world\n");
return O;

}

$ gcc217 hello.c —o hello

$./hello
hello, world
$

45

Java vs. C: Detalls
| Jaa | . C

Charactertype char // 16-bit Unicode char /* 8 bits */
byte // 8 bits (unsigned) char
Intearal tvoes short // 16 bits (unsigned) short
P int // 32 bits (unsigned) int
long // 64 bits (unsigned) long
Floating point float // 32 bits ezt
t double // 64 bits slouslle
yPes long double
* x *
Logical type boolean /* no equivalent */

/* use integral type */

Generic pointer Object void*
type

#define MAX 1000
Constants final 1nt MAX = 1000; const 1Int MAX = 1000;
enum {MAX = 1000} ;

46

Javavs. C: Detalls

| aa | C_

Arrays

Array bound
checking

Pointer type

Record type

int [1 a = new int [10]; int a[10];
float []J[] b = float b[5][20];
new float [5][20];

// run-time check /* no run-time check */
// Object reference is an Snt *p-
// implicit pointer P-
class Mine struct Mine
{ int x; { int x;
float y; float y;
+ }s

47

Java vs. C: Detalls
| Jdaa | . C

Strings

String
concatenation

Logical ops *
Relational ops *

Arithmetic ops *

Bitwise ops

Assignment ops

String s1 = "Hello";
String s2 = new
String("'hello™);

sl + s2
sl += s2?

&&, 11, !

+, -, *, /, %, unary -

char *sl1 = "Hello";
char s2[6];
strcpy(s2, "hello™);

#include <string.h>
strcat(sl, s2);

&&, 11, !

+, -, *, /, %, unary -

* Essentially the same In the two languages

48

Javavs. C: Detalls

. aa_ . C

it (1 <0)
. statementl;
* b
It stmt else

statement?;

switch (1)
{ case 1:

break;
. case 2:
switch stmt * €

break;
default:

}

goto stmt // no equivalent

it (i <0)
statementl;
else
statement?;
switch (1)
{ case 1:
break;
case 2:
break;
default:
s

goto somelLabel;

* Essentially the same In the two languages

49

Javavs. C: Detalls

| Jaa | C_

, _ ;) int 1;
for (int 1=0; 1<10; i1++) 2 _ _
=0; 1<10; i++
for stmt statement: for (1=0; 1 %O, 1++)
statement;
. while (I < 0) while (1 < 0)
*
while stmt statement: statement:
do do
do-while stmt * statement; statement;
while (1 < 0) while (1 < 0);
continue stmt* continue; continue;
Eﬁ?edconmnme continue someLabel; /* no equivalent */
break stmt * break; break;
BloElze sl break someLabel; /* no equivalent */

stmt

* Essentially the same In the two languages

50

Javavs. C: Detalls

I N = A -

return stmt *

Compound stmt
(alias block) *

Exceptions

Comments

Method / function
call

return 5; return 5;
return; return;
{ {
statement]l; statement]l;
statement?2; statement?;
ks ks

throw, try-catch-finally /* no equivalent */

/* comment */ /* comment */
// another kind
f(x, y, z);

someObject.f(x, Vy, 2); fx, vy, 2);
SomeClass.f(x, y, 2);

* Essentially the same in the two languages

o1

Example C Program

{

#i1include <stdio.h>
#include <stdlib.h>

int main(void)

const double KMETERS PER MILE = 1.609;
Iint miles;
double kMeters;

printfF("miles: ");

iIT (scanf("%d", &miles) 1= 1)

{ fprintf(stderr, "Error: Expected a number.\n");
ex1t(EXIT_FAILURE);

+

kMeters = (double)miles * KMETERS PER MILE;

printf("%d miles 1s %f kilometers.\n",
miles, kMeters);

return O;

52

/

Summary

Course overview
* Introductions
Course goals
e Goal 1: Learn “programming in the large”

e Goal 2: Look “under the hood”and learn low-level programming

» Use of C and Linux supports both goals
Resources

» Lectures, precepts, programming environment, Piazza, textbooks

» Course website: access via http://www.cs.princeton.edu
Grading
Policies
Schedule

)

/

Summary

Getting started with C
e History of C
» Building and running C programs
» Characteristics of C
e Details of C
« Java and C are similar
« Knowing Java gives you a head start at learning C

"

/

Getting Started

Check out course website soon
« Study “Policies” page
 First assignment is available

Establish a reasonable computing environment soon
* Instructions given in first precept

)

	Slide Number 1
	Agenda
	Introductions
	Agenda
	Goal 1: Programming in the Large
	Goal 2: Under the Hood
	Modularity!
	Goals: Summary
	Goals: Why C?
	Goals: Why Linux?
	Agenda
	Lectures
	 iClicker Question
	Precepts
	Website
	Piazza
	Books
	Manuals
	Programming Environment
	Agenda
	Grading
	Programming Assignments
	Agenda
	Policies
	Assignment Related Policies
	Agenda
	Course Schedule
	Slide Number 28
	Agenda
	The C Programming Language
	Java vs. C: History
	C vs. Java: Design Goals
	Agenda
	Building Java Programs
	Running Java Programs
	Building C Programs
	Running C Programs
	Agenda
	Java vs. C: Portability
	Java vs. C: Safety & Efficiency
	Java vs. C: Characteristics
	 iClicker Question
	Agenda
	Java vs. C: Details
	Java vs. C: Details
	Java vs. C: Details
	Java vs. C: Details
	Java vs. C: Details
	Java vs. C: Details
	Java vs. C: Details
	Java vs. C: Details
	Example C Program
	Summary
	Summary
	Getting Started

