
ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 2/22/18 7:15 AM

ASSIGNMENT 2 TIPS AND
‣ n-body simulation
‣ problem decomposition
‣ the physics
‣ bugs
‣ universes

http://introcs.cs.princeton.edu

Alan Kaplan and Kevin Wayne

http://intros.cs.princeton.edu

http://introcs.cs.princeton.edu

ASSIGNMENT 2 TIPS AND
‣ overview
‣ problem decomposition
‣ the physics
‣ bugs
‣ universes

http://intros.cs.princeton.edu

N-body simulation

Simulate the motion of n bodies, subject to Newton’s laws.

3
planets.txt 3body.txt

Physics and math

Newton’s law of gravity.
 
Newton’s second law of motion.
 
“Leapfrog” method. For numerical integration of differential equations.

4

€

F = Gm1m2

r2

€

F = m a

don’t worry (this is not a math or physics course)

Context

Applications. Cosmology, semiconductors, fluid dynamics, ….

5

http://www.youtube.com/watch?v=ua7YlN4eL_w

key to becoming
a good programmer

Programming goals

6

Use standard input, standard output, and standard drawing for I/O.
Use parallel arrays.
Decompose a large program into small, manageable steps.

Before you begin

Carefully read assignment specification; skim checklist.
 
Check that standard libraries are available to Java.

Already configured if you used auto-installer.
Remember to use javac-introcs and java-introcs at command line.
To check installation, open command line and:
– % java-introcs StdIn

– % java-introcs StdOut

– % java-introcs StdDraw

– % java-introcs StdAudio

 
Useful programs from lecture/precept.

Students.java
BouncingBallDeluxe.java
Distinct.java

 
Download sample data files and create working directory.

7

http://introcs.cs.princeton.edu

ASSIGNMENT 2 TIPS AND
‣ overview
‣ problem decomposition
‣ the physics
‣ bugs
‣ universes

http://intros.cs.princeton.edu

physics localized to these steps
(formulas provided)

Decompose problem into individual steps

9

Develop program incrementally, decomposing into 6 individual steps.
1. Parse command-line arguments.
2. Read universe from standard input.
3. Initialize standard drawing.
4. Play music on standard audio.
5. Simulate the universe.

A. Calculate net forces.
B. Update velocities and positions.
C. Draw universe to standard drawing.

6. Print universe to standard output.
 
 
Advice. Although final code will appear in order 1–6, we recommend implementing
these steps in the order 1, 2, 6, 3, 4, 5B, 5C, 5A.
Q. Why?
A. Easier to test and debug.

Start with comments

10

public class NBody {
 public static void main(String[] args) {

 // Step 1. Parse command-line arguments.

 // Step 2. Read universe from standard input.

 // Step 3. Initialize standard drawing.

 // Step 4. Play music on standard audio.

 // Step 5. Simulate the universe.

 // Step 5A. Calculate net forces.
 // Step 5B. Update velocities and positions.
 // Step 5C. Draw universe to standard drawing.

 // Step 6. Print universe to standard output.
 }
}

Command-line arguments

Step 1. Parse command-line arguments.
Read stopping time Τ and increment Δt from command line.
Print values of each variable (as debugging aid).

 
 
Note. Easy, but you should still test it!

11

% java-introcs NBody 157788000.0 25000.0  
tau = 1.57788E8
dt = 25000.0

% java-introcs NBody 10 1  
tau = 10.0
dt = 1.0

Standard input

Step 2. Read universe from standard input.

12

% more planets.txt  
5  
2.50e+11
 1.4960e+11 0.0000e+00 0.0000e+00 2.9800e+04 5.9740e+24 earth.gif
 2.2790e+11 0.0000e+00 0.0000e+00 2.4100e+04 6.4190e+23 mars.gif
 5.7900e+10 0.0000e+00 0.0000e+00 4.7900e+04 3.3020e+23 mercury.gif
 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 1.9890e+30 sun.gif
 1.0820e+11 0.0000e+00 0.0000e+00 3.5000e+04 4.8690e+24 venus.gif

 

This file contains the sun and the inner 4 planets of our Solar System.

data for
one body

number of bodies n

radius of universe

optional description

massinitial x- and y-velocity image filenameinitial x- and y-position

Standard input

Step 2. Read universe from standard input.
Read number of bodies n from standard input.
Read radius of universe standard input.
Create six (6) parallel arrays, each of length n, to store the six (6) pieces 
of information characterizing a body.
Read data associated with each body and store in parallel arrays.

 
Hint. Recall Students.java.
 
 
 
 
Q. How to test?
A. Do Step 6 (print universe).

13

% java-introcs NBody 157788000.0 25000.0 < planets.txt

[no output]

Standard output

Step 6. Print universe to standard output.
Write a loop to iterate over the six (6) parallel arrays.
Use StdOut.printf() for formatted output (see checklist for hint).

14

% java-introcs NBody 157788000.0 25000.0 < planets.txt 
5  
2.50e+11

 1.4960e+11 0.0000e+00 0.0000e+00 2.9800e+04 5.9740e+24 earth.gif

 2.2790e+11 0.0000e+00 0.0000e+00 2.4100e+04 6.4190e+23 mars.gif

 5.7900e+10 0.0000e+00 0.0000e+00 4.7900e+04 3.3020e+23 mercury.gif

 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 1.9890e+30 sun.gif

 1.0820e+11 0.0000e+00 0.0000e+00 3.5000e+04 4.8690e+24 venus.gif

Standard drawing

Step 3. Initialize standard drawing.
Enable double buffering by calling StdDraw.enableDoubleBuffering().
Default x- and y-scale supports coordinates between 0 and 1;
Change scale to be between −radius and +radius. 
Hint: StdDraw.setXscale() and StdDraw.setYscale(). 
 
 
 
 
 
 
 
 

 
Q. How to test?

15

(0, 0)

(+radius, +radius)

(−radius, −radius)

desired coordinates

(0, 0)

default coordinates (1, 1)

Standard audio

Step 4. Play music.
Call StdAudio.play("2001.wav").
Easy (but optional).

16

http://introcs.cs.princeton.edu

ASSIGNMENT 2 TIPS AND
‣ overview
‣ problem decomposition
‣ the physics
‣ bugs
‣ universes

http://intros.cs.princeton.edu

The simulation loop (the "big time loop")

Step 5. Simulate the universe. At each time step t :
A. Calculate the net force on each body.
B. Update the velocities and positions.
C. Draw the universe.

 
Q. In which order should I implement these 3 sub-steps?
A. 5B, 5C, 5A because calculating forces is hardest.
 
Q. Can I interleave steps 5A, 5B, and 5C?
A. No. Not only is it bad design, but it ruins the physics. 
 (need position of all bodies at time t, not some at time t + Δt)
 
 
Hint. See BouncingBallDeluxe.java.

18

Measuring time

Time loop. From t = 0 up to (but not including) Τ, incrementing by Δt.
 
Hint. Easy, but also easy to get wrong. ⇒ Test!

19

t = 0.0
t = 2.5
t = 5.0
t = 7.5
t = 10.0
t = 12.5
t = 15.0
t = 17.5
t = 20.0
t = 22.5

Τ = 25.0, Δt = 2.5

t = 0.0
t = 2.5
t = 5.0
t = 7.5
t = 10.0
t = 12.5
t = 15.0
t = 17.5
t = 20.0
t = 22.5

Τ = 23.0, Δt = 2.5

don’t include 25.0

% java-introcs NBody 23.0 2.5

% java-introcs NBody 25.0 2.5

Updating the velocities and positions

Step 5B. [for now, forces and accelerations are 0]
Update the velocity of each body: vx = vx + ax ∆ t, vy = vy + ay ∆ t.
Update the position of each body: px = px + vx ∆ t, py = py + vy ∆ t.

 
Warning. Cut-and-paste errors are common.
 
Q. How to test?
A. Artificial universe that is easy to check by hand.

20

% java-introcs NBody 192 1 < 3body-zero-gravity.txt 
3  
5.12e+02

 1.9200e+02 1.9200e+02 1.0000e+00 1.0000e+00 1.0000e-30 earth.gif

 5.1200e+02 1.9200e+02 2.0000e+00 1.0000e+00 1.0000e-40 venus.gif

 1.9200e+02 5.1200e+02 1.0000e+00 2.0000e+00 1.0000e-50 mars.gif

Drawing the universe

Step 5C.
Draw background image.
Write loop to display n bodies.
Call StdDraw.show() to display results on screen.
Call StdDraw.pause(20) to control animation speed.

21

Drawing the universe

Step 5C.
Draw background image.
Write loop to display n bodies.
Call StdDraw.show() to display results on screen.
Call StdDraw.pause(20) to control animation speed.

22
planets.txt kaleidoscope.txt

Calculating the force (between two bodies at time t)

Step 5A.
Apply Newton’s law of gravity.
A bit of high-school trig (formulas provided).

23

r =
�

�x2 + �y2

�x

�y

distance between two bodies force between two bodies

�

F =
Gm1m2

r2

Fy = F sin �

Fx = F cos �

�

cos � =
�x

r
, sin � =

�y

r

Calculating the force (between all pairs of bodies at time t)

Principle of superposition. Add all pairwise forces.
 
 
 
How to implement?

Need two extra arrays fx[] and fy[]. Why?
Need to examine all pairs of bodies, ala Distinct.java.

 
 
Warmup. Enumerate all pairs of bodies.

24

0-1 0-2 0-3 0-4
1-0 1-2 1-3 1-4
2-0 2-1 2-3 2-4
3-0 3-1 3-2 3-4
4-0 4-1 4-2 4-3

n = 5

0-1 0-2 0-3
1-0 1-2 1-3
2-0 2-1 2-3
3-0 3-1 3-2

n = 4

�Fearth = �Fmars�earth + �Fmercury�earth + �Fsun�earth + �Fvenus�earth

don’t include 0–0, 1–1, 2–2, or 3–3

http://introcs.cs.princeton.edu

ASSIGNMENT 2 TIPS AND
‣ overview
‣ problem decomposition
‣ the physics
‣ bugs
‣ universes

http://intros.cs.princeton.edu

Advice

key to becoming
a good programmer

26

Develop code incrementally; test after each step.
Test, test, test.
Take your time!
Start early!
Seek help if you get stuck.
Write outline of code (using comments) first; fill in code later.

Command-line bug

27

% java-introcs NBody 157788000.0 25000.0 > planets.txt
<Ctrl-C> 

% java-introcs NBody 157788000.0 25000.0 < planets.txt
Exception in thread "main" java.util.NoSuchElementException  

at java.util.Scanner.throwFor(Scanner.java:907)  
at java.util.Scanner.next(Scanner.java:1530)  
at java.util.Scanner.nextInt(Scanner.java:2160)  
at java.util.Scanner.nextInt(Scanner.java:2119)  
at StdIn.readInt(StdIn.java:319)  
at NBody.main(NBody.java:54) 

% more planets.txt
[it’s empty - you erased it!]

no gravity

Visual bugs

28

no motion

Visual bugs

29

no double buffering planets repel one another

Visual bugs

30

wrong force loop cut-and-paste error (x vs. y)

http://introcs.cs.princeton.edu

ASSIGNMENT 2 TIPS AND
‣ overview
‣ problem decomposition
‣ the physics
‣ bugs
‣ universes

http://intros.cs.princeton.edu

Other universes

32

twinbinaries.txt
(David Costanzo)

planetsparty.txt
(created by Mary Fan)

Other universes

33

chaosblossum.txt
(created by Erik Keselica)

galaxy.txt
(created by Matt Tilghman)

