COS 126

Written Exam 2 Solutions

1. Data types.

(a) A data type is a set of *values* and *operations* on those *values*.

Java expression	type	value
r.length()	int	
<pre>r.charAt(r.length())</pre>	run-time exception	
(t == u)	boolean	false
u.equals(t)	boolean	true
<pre>r.substring(0, r.length())</pre>	String	"Hello"

2. Scientific computation.

(a) (ii)

(b) 1/2, 3/4, 1, 123

3. Linked structures.

I and III only

4. Data type design.

- (a) Y declaring instance variables to be private
 - N declaring instance variables to be immutable no such access modifier in Java
 - Y declaring instance variables to be final
 - Y defensively copying instance variables
 - N overloading instance methods a feature of Java methods, but not related to immutability

(b) double[] Tour Stack<String> GuitarString

- 5. Analysis of algorithms.
 - (a) N^2 (b) $240 = 15 \times 4^2$
 - (c) $8N^2$
- 6. Symbol tables.

7. Regular expressions.

ii (i matches aA; iii matches Aa; iv doesn't match a)

8. Theory of computation.

- (a) B There exists a mathematical function that can be computed in Java, but *cannot* be computed on a Turing machine.
 - D There exists a mathematical function that can be computed in polynomial time on a quantum computer, but *cannot* be computed in polynomial time on a Turing machine. Assume that quantum computers can be built.
 - B There exists a mathematical function that can be computed in polynomial time in Java, but *cannot* be computed in polynomial time on a Turing machine.
 - A There exists a Universal Turing machine that can simulate the behavior of any other Turing machine.

- A. known to be true
- B. known to be false
- C. if true would falsify the Church-Turing thesis
- D. if true would falsify the *extended* Church-Turing thesis
- E. if true would prove the Church-Turing thesis

- (b) D Not all search problems can be solved in polynomial time.
 - A There exists a search problem that can be solved in polynomial time.
 - C Both FACTOR and 3-SAT can be solved in polynomial time.
 - B Exactly one of 3-SAT and TSP can be solved in polynomial time.

- A. known to be true
- B. known to be false
- C. if true would imply P = NP
- D. if true would imply $P \neq NP$

9. Circuits.

(a)

X	Y	Z	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

- (b) X'Y'Z' + X'YZ' + XY'Z + XYZ
- (c) $2^{(N+1)/2}$

There is one entry in the truth table (and an N-input AND gate) for each N-bit palindrome. For odd N, the first (N + 1)/2 bits can be 0 or 1; the last (N - 1)/2 bits equal the reverse of the first (N - 1)/2 bits.