COS $126 \quad$ General Computer Science \quad Spring 2011
 Written Exam 2 Solutions

1. Data types.

(a) A data type is a set of values and operations on those values.

Java expression	type	value
r.length()	int	5
r.charAt (r.length ())	run-time exception	
$(\mathrm{t}==\mathrm{u})$	boolean	false
u.equals(t)	boolean	true
r.substring(0, r.length())	String	"Hello"

2. Scientific computation.
(a) (ii)
(b) $1 / 2,3 / 4,1,123$

3. Linked structures.

I and III only

4. Data type design.

(a) Y declaring instance variables to be private

N declaring instance variables to be immutable
no such access modifier in Java
Y declaring instance variables to be final
Y defensively copying instance variables
N overloading instance methods
a feature of Java methods, but not related to immutability
(b) double[] Tour Stack<String> GuitarString

5. Analysis of algorithms.

(a) N^{2}
(b) $240=15 \times 4^{2}$
(c) $8 N^{2}$

6. Symbol tables.

7. Regular expressions.

ii (i matches aA; iii matches Aa; iv doesn't match a)

8. Theory of computation.

(a) B There exists a mathematical function that can be computed in Java, but cannot be computed on a Turing machine.

D There exists a mathematical function that can be computed in polynomial time on a quantum computer, but cannot be computed in polynomial time on a Turing machine. Assume that quantum computers can be built.

B There exists a mathematical function that can be computed in polynomial time in Java, but cannot be computed in polynomial time on a Turing machine.

A There exists a Universal Turing machine that can simulate the behavior of any other Turing machine.
A. known to be true
B. known to be false
C. if true would falsify the Church-Turing thesis
D. if true would falsify the extended Church-Turing thesis
E. if true would prove the Church-Turing thesis
(b) D Not all search problems can be solved in polynomial time.

A There exists a search problem that can be solved in polynomial time.

C Both Factor and 3-Sat can be solved in polynomial time.

B Exactly one of 3-Sat and Tsp can be solved in polynomial time.

9. Circuits.

(a)

X	Y	Z	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

(b) $X^{\prime} Y^{\prime} Z^{\prime}+X^{\prime} Y Z^{\prime}+X Y^{\prime} Z+X Y Z$
(c) $2^{(N+1) / 2}$

There is one entry in the truth table (and an N-input AND gate) for each N-bit palindrome. For odd N, the first $(N+1) / 2$ bits can be 0 or 1 ; the last $(N-1) / 2$ bits equal the reverse of the first $(N-1) / 2$ bits.

