
Compressed Representations
of Text Documents

Papers by Paskov et al. 20131, 20163

Presented by Misha Khodak

10 May 2017

1 Hristo S. Paskov, Robert West, John C. Mitchell, and Trevor J. Hastie. Compressive Feature Learning. NIPS 2013.
2 Hristo S. Paskov, John C. Mitchell, and Trevor J. Hastie. Data Representation and Compression Using Linear-Programming Approximations. ICLR 2016.

Compression in Unsupervised Learning

• Widespread agreement that a ‘good’ representation involves
compression
• Rate-Distortion Theory: minimize expected distortion given a constraint on

the rate (number of bits needed to represent)

• Hazan-Ma Framework: reconstruct data at least as good (probably,
approximately) as a hypothesis class given a representation length constraint

• Methods: PCA, Auto-Encoders

• How to apply this idea to text data?
• Discrete data – harder to pose optimization problems

• Any real-valued representation is already lossy

Overview

• Use dictionary-based compression scheme to find a succinct
document representation.

• Rewrite compression scheme as an optimization problem.

• Representation similar to a common baseline approach in NLP but
with dimension two orders of magnitude smaller.

• Do as well as the baseline approach on text classification tasks but
with lower memory and computation costs.

Bag of N-Grams: Representation

Bag of N-Grams: Drawbacks

• High-Dimensional
• For small datasets, unigram V = 50K-100K, bigram V = 100K+, trigram V = 1M+
• Hard-to-construct for large datasets

• Maintains no ordering information
• ‘Movie was good but acting was terrible’ has almost the same feature vector as

‘Movie was terrible but acting was good’

• Overfitting for high values of n
• n-grams with high values of n encode more meaning, which is desirable, but also

occur more rarely, which leads to overfitting

• Poor semantic similarity
• ‘Movie was quite good’ has zero inner product with ‘Film is pretty decent’

Some hope of fixing the first three issues using compression

Lempel-Ziv Compression: Representation

Lempel-Ziv Compression: Drawbacks

• Different features for different ordering

• D1=abcd, D2=ceab, D3=bce
• Concatenation D1D2D3 yields features

{a,b,c,d,ab,bc}

• Concatenation D2D3D1 yields features
{a,b,c,d,ab,ce}

• Performance is sensitive to this ordering

History: Entropy as Compression Difficulty

• Benedetto et al. 20013 had the idea of
computing the ‘divergence’ between two
different text distributions A and B by seeing
how hard it is to compress text from
distribution B using a compression scheme
‘trained’ on text from distribution A.

• Used LZ to perform well on an authorship
attribution task as well as constructing a
language tree of European languages via
their translations of The Universal
Declaration of Human Rights

3 Dario Benedetto, Emanuele Caglioti, and Vittorio Loreto. Language Trees and Zipping. PRL 2002.

History: Compression as a Similarity Measure

• Sculley and Brodley 20064 show that for several compression schemes
the image of the algorithm can be associated to a vector space whose
norm is the compression length.

• For each scheme they also define a document similarity measure
based on these norms that is used to identify UNIX users based on
their user data using Nearest Neighbor classification.

4 D. Sculley and Carla E. Brodley. Compression and Machine Learning: A New Perspective on Feature Space Vectors. DCC 2006.

Compressive Features: Representation

Compressive Features: Optimization

Compressive Features: Regularization

The pointer storage cost d can be viewed as a regularization quantifying
the trade-off between storing fewer pointers (sparsity) and storing
more characters.

Higher pointer cost produces long substrings and tends to hurt
accuracy because such substrings occur rarely.

Compressive Features: Convex Relaxation

Compressive Features: PCA Clustering

• 2 components from top 10 principal
components were picked based on
lowest classification error (from 20
news groups corpus) via logistic
regression.

• Compressed features display much
nicer class structure (top is
compressive features, bottom is Bag of
5-gram representations).

Compressive Features: Text Classification

Extension: ‘Deep’ Recursive Compression

• Compressive feature learning can be extended via recursion – treating
the n-grams that compress the documents as documents themselves
to be compressed by pointers from shorter n-grams.

• This representation can have many layers, each consisting of sets of
(n-gram, pointer) pairs compressing longer n-grams.

• Experimental Results:
• Trials on small datasets indicates the recursive features are able uncover

‘higher-order structure’ that is useful on tasks such as author identification.

• However, recursive features do remarkably poorly (10% below SOTA) on a
standard sentiment classification task.

Extension: ‘Deep’ Recursive Compression

Follow-Up Work?

• Issues:
• Bag of N-Gram vectors are not that hard to store – no performance increase

for quite a bit more work

• Hard to extend to lossy compression – how to define error over natural
language (can’t just use Hamming/Euclidean distance)?

• Timing
• Word embeddings become popular again (Word2Vec – 2013, GloVe – 2014)

and found to have nice geometric properties

• Harder to input compressive features to neural networks

