COMPRESSION AND VC-DIMENSION

ERIC NASLUND

1. INTRODUCTION

Let C C {0,1}* be a class of functions from X — {0,1}. We say that a pair (Y, y)
is a C-labelled sample it Y C X is a multiset and y = ¢|y for some ¢ € C. The size of
the labelled set is the size of Y. For an integer k, let

Le(k) ={(Y,y): (Y,y) C-labelled and |Y| < k}.

In this notation, L¢(oco) is the set of all finite C-labelled samples.
Definition 1. A sample compression is a pair of maps «, p. The compression map

K Le(0o) = Le(k) X Q
takes (Y, y) to ((Z,2),q) where Z C Y, |Z| <k, and y|z = z. The reconstruction map

p:Le(k) x Q — {0,1}~
is such that for all (Y,y) € L¢(00)

p(R(Y,y))ly = .

The size of the compression scheme is k + log Q).

Example 1. Let C C {0, 1}® be the set of indicator functions for closed intervals. Then
for any C-labelled sample (Y,y) let x(Y,y) be given by Z =min{z € Y : y(z) =1} U
max{z € Y : y(x) =1}. Given such a set Z, define

f:Y —={0,1}
by

1 ifmin{z: z€ Z} <z <max{z:z¢€Z}
fx) = . .
0 otherwise

Then f|y =y, and so this yields a compression scheme of size 2.

Example 2. Let C C {0,1}" be a class of functions lives in a vector space of rank r in
RX. That is, there exists 7 elements of C that span the entire class, and no such r — 1
elements. Then there is a size r compression scheme with no side information. Given
any C-labelled sample Y, C|y has rank at most r, and so let Zy be a set of columns of
size r that span C|y. Then we can uniquely determine c¢: Y — {0, 1} given ¢|z,. This
is because if c¢1, ¢y have the same restriction to Zy, then since Zy spans the column
space, the columns associated to ¢; and c; on Y must be identical.

Let’s recall the definition of VC-dimension and the fundamental theorem of statistical
machine learning.
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Definition 2. We say that Y C X is shattered by C if for every f € {0,1}¥ there
exists h € C such that hly = f, or in other words, if C|y = {0,1}¥. The VC-dimension
(or Vapnik-Chervonenkis dimension) is the maximum size of a shattered subset of X.

Theorem 1. (Fundamental theorem of machine learning) If C C {0,1}* has VC-
dimension d, then C is properly PAC-learnable with sample complexity

o) - e (3).

That is, there exists a learning map
H: Lo(m) — {0,1}F
such that for every c € C and for every probability distribution p over X
Py [1({a € X ¢ hy(2) # c(@)}) < = 1-0
where hy = H (Y, y).

If there exists a sample compression scheme for C of size k, then C is PAC-learnable
and has VC-dimension at most 8k.

Theorem 2. (Littlestone-Warmuth 1986) Let C C {0,1}*, and let x,p be a sample
compression scheme for C of size k. Let

o2 ome(2) ()

H: Lc(m)— {0,1}¥
defined by H(Y,y) = p(k(Y,y)) PAC-learns C with m samples. That is, for every ¢ € C
and for every probability distribution p over X
By [1({z € X ¢ hy(2) # c@)}) S = 1-6

where hy = H (Y, y).

Proof. We will prove that the VC-dimension is at most 8k. Suppose that the VC-
dimension of C is d > 8k. Then there exists Y C X of size |Y| = 8k such that Cl|y
yields all possible functions from Y to {0,1}. We will use a counting argument to show
that for any compression scheme of size k, there are distinct ¢y, ¢y € C that cannot be

distinguished, and hence that cannot be uncompressed. Given a compression mapping
into Le(l) x @, there are at most

Then the learning map

l
=0

possible triples ((Z,c|z),q) where Z C Y has size at most [, ¢ is some function in C
restricted to Z, and g € () is some element of (). Since we have a sample compression
scheme of size k, we must have that |Q| < 27!, and so k compresses the set of all
functions on Y, which has size 28%, to a set of size at most

l

2k—l Z (Sk) 27, < 2k+1 (Skk) ’

1
=0

where the inequality follows since (**) is monotonic in i, and 1424224 +2¢ < 21+L,
This quantity is strictly less than 2%% for all k£ > 1, and so the proof is complete. O
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In their paper, Littlestone and Warmuth asked:

Problem 1. (Littlestone-Warmuth 1986) Are there concept classes of finite dimension
for which there is no scheme with bounded kernel size and bounded additional informa-
tion?

This was elegantly answered by Shay and Moran in 2015, and we will present their
proof in the next section.

Theorem 3. (Moran-Yehudayoff 2015) Let C C {0,1}* be a class of VC-dimension d.
Then there exists a sample compression scheme for C of size at most 20D,

Littlestone and Warmuth conjecture that this bound could be improved further to
O(d) on the size of the compression scheme.

Conjecture 1. (Littlestone-Warmuth 1986) Let C C {0,1}* be a class with VC-
dimension d. Then there is a sample compression scheme for C of size at most O(d).

2. PROOF OF SHAY-MORAN

Throughout we let € = % and 0 = %, as this choice of parameters will be sufficient
for our purposes. If C has VC-dimension d, then it follows from theorem 1 that there
exists s = O(d) and a function H such that for every ¢ € C and for every distribution
u, there exists Z C supp(u) such that

p(fe € X1 hao) # @) < 5,

where hy = H(Z, c|z) is the result of the learning algorithm. To create a sample
compression scheme, we need to use our learning algorithm
H: Le(s) — {0,1}%

where s = O(d). Given a C-labelled class (Y, y), consider the subset Z C Y, |Z| = s for
which hz has the minimal error on Y. We could hope to compress Y — Z, and then
reconstruct y using our learning algorithm H. However, since hz is not guaranteed to
be 100% accurate on Y, this will not work. Instead, we will look at multiple subsets
Zy,.... 2y C Y, |Z]| = s, and the resulting functions hyz,,...,hz,, and ask them to
vote on the value of y(z) for x € Y. In this case Z = UY_, Z;, and our side information
@ allows us to recover Z; from Z. Note in particular that there are many encoding
schemes that allow us to take

Q| < (1+ sk)'*eF,

where s = O(d), and so a bound on k is critical. To guarantee that the vote always
returns the correct answer, we will use Von Neumann’s Min-Max Theorem.

Theorem 4. Let M € R™*" be a real matriz. Then

min max p'Mq = max min p‘ Mg,
PEA™ ge A" gEA™ peA™

where A’ is the set on distributions on {1,...,(}.

Corollary 1. je3Suppose that for every p € A™, I can choose ¢ € A™ such that
p'Mq > c.

Then there exists a distribution ¢* € A" such that
p'Mg > c
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for any choice of p.

Let (Y,y) be any C-labelled sample. By considering only distributions p which are
supported on Y, it follows that there exists Z C Y of size |Z| < s such that

2
p{z €Y hz(x) =yl2)}) > 3,
where as before hy = H(Z,y|z). Hence for any p, there exists Z such that

2
p{z €Y : hz(x) =y(x)}) > 3
and so it follows from the min-max theorem that there exists a distribution v over

Z CY,|Z| = s, such that for every x € Y

v{ZCY: hz(x)=y(z)}) > ;

This distribution v allows us to reconstruct y by looking at it on various subsets Z C Y.
To finish our proof, we need an e-net result that allows us to approximate v as an average
of only a handful of sets Z.

Theorem 5. (Approzimations for bounded VO-dimension) Let C C {0,1}* be class
of VC-dimension d. Let p be a distribution on X. Then for all € > 0, there exists a
multiset W C X of size |[W| < O (%) such that for all c € C

p{re X : c(x)=1}) — {r eW: c(x)=1}| <e

1
i |
Definition 3. Given C C {0,1}¥, the dual class C* is defined as

C'={c,:x € X}
where ¢, : C — {0, 1} is the evaluation map c,(c) = ¢(z).

Theorem 6. Let C C {0,1}* be a class with dual VC-dimension d*. Let v be a
distribution on C and let € > 0. Then there exists a multiset ' C C of size

d*
Fl<o(%)

1
|F|

such that for every xr € X

v({ceC: ¢(x)=1}) — {feF: f(x):1}|'§e.
Applying this theorem with € = %, it follows that there exists Z;,..., 2y C Y such
that for every x € X

L€ (k) ha(e) =y} 2 v (2 CY 5 hale) =y()}) —

8
1

8

v

V
N =Wl X

where k = O (d*). To finish the proof, we use the following lemma:

Lemma 1. (Assouad 1983) Let C C {0,1}* have VC-dimension d. Then the dual
class C* has VC-dimension d* at most < 24+1,
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Proof. Suppose that d* > 29*'. We will show that the VC-dimension of C is > d + 1.
Then there is a subset Y C C of functions of size 27!, and a subset Y C X of points
of size 227", such that the vectors

c1(x)

) (z)
range over all possible 92! binary vectors as x ranges over the points in Y. Lookin
g g g

at the 2471 x 22" matrix M whose rows are indexed my elements of ) and columns
by elements of Y. Let M’ denote the 247! x (d + 1) matrix whose rows are the binary

digits of the numbers 0,...,2%! — 1 in order. For instance, when d = 2,
0 0 07
00 1
010
, 10 11
M= 1 00
1 01
110
11 1

Since the columns of M contain all possible binary vectors of length 29+, M’ must be
a submatrix of M, and hence there exists a set of points of size d + 1 which is shattered
by C, and so the VC-dimension of C is > d + 1. O

Thus k < 291 and log @ < 29 and so the compression scheme has size at most
90(d)

bl

and we have proven the main theorem.



