
Variational Autoencoders
Presented	by	Alex	Beatson

Materials	from	Yann	LeCun,	Jaan Altosaar,	Shakir Mohamed

Contents

1. Why	unsupervised	learning,	and	why	generative	models?	
(Selected	slides	from	Yann	LeCun’s keynote	at	NIPS	2016)

2. What	is	a	variational autoencoder?
(Jaan Altosaar’s blog	post)

3. A	simple	derivation	of	the	VAE	objective	from	importance	sampling
(Shakir Mohamed’s	slides)

Sections	2	and	3	were	done	as	a	chalk	talk	in	the	presentation

1.	Why	unsupervised	learning,	and	why	
generative	models?
• Selected	slides	from	Yann	LeCun’s keynote	at	NIPS	2016

Y LeCun

Supervised Learning

We can train a machine on lots of examples of tables, chairs,
dog, cars, and people
But will it recognize table, chairs, dogs, cars, and people it has
never seen before?

CAR

PLANE

CAR

Y LeCun
Obstacles to Progress in AI

Machines need to learn/understand how the world works

Physical world, digital world, people,….

They need to acquire some level of common sense

They need to learn a very large amount of background knowledge

Through observation and action

Machines need to perceive the state of the world

So as to make accurate predictions and planning

Machines need to update and remember estimates of the state of the world

Paying attention to important events. Remember relevant events

Machines neet to reason and plan

Predict which sequence of actions will lead to a desired state of the world

Intelligence & Common Sense =

Perception + Predictive Model + Memory + Reasoning & Planning

Y LeCun
What is Common Sense?

“The trophy doesn’t fit in the suitcase because it’s
too large/small”

(winograd schema)

“Tom picked up his bag and left the room”

We have common sense because we know how the
world works

How do we get machines to learn that?

Y LeCun
Common Sense is the ability to fill in the blanks

Infer the state of the world from partial information

Infer the future from the past and present

Infer past events from the present state

Filling in the visual field at the retinal blind spot

Filling in occluded images

Fillling in missing segments in text, missing words in speech.

Predicting the consequences of our actions

Predicting the sequence of actions leading to a result

Predicting any part of the past, present or future percepts from whatever
information is available.

That’s what predictive learning is

But really, that’s what many people mean by unsupervised learning

Y LeCun
The Necessity of Unsupervised Learning / Predictive Learning

The number of samples required to train a large learning machine (for any
task) depends on the amount of information that we ask it to predict.

The more you ask of the machine, the larger it can be.

“The brain has about 10^14 synapses and we only live for about 10^9
seconds. So we have a lot more parameters than data. This motivates the
idea that we must do a lot of unsupervised learning since the perceptual
input (including proprioception) is the only place we can get 10^5
dimensions of constraint per second.”

Geoffrey Hinton (in his 2014 AMA on Reddit)

(but he has been saying that since the late 1970s)

Predicting human-provided labels is not enough

Predicting a value function is not enough

Y LeCun
How Much Information Does the Machine Need to Predict?

“Pure” Reinforcement Learning (cherry)
The machine predicts a scalar

reward given once in a while.

A few bits for some samples

Supervised Learning (icing)
The machine predicts a category

or a few numbers for each input

Predicting human-supplied data

10 10,000 bits per sample→

Unsupervised/Predictive Learning (cake)
The machine predicts any part of

its input for any observed part.

Predicts future frames in videos

Millions of bits per sample

(Yes, I know, this picture is slightly offensive to RL folks. But I’ll make it up)

Y LeCun

Classical model-based optimal control

● Simulate the world (the plant) with an initial control sequence

● Adjust the control sequence to optimize the objective through gradient descent

● Backprop through time was invented by control theorists in the late 1950s

– it’s sometimes called the adjoint state method

– [Athans & Falb 1966, Bryson & Ho 1969]

Plant
Simulator

Command

Objective

Plant
Simulator

Command

Objective

Plant
Simulator

Command

Objective

Plant
Simulator

Command

Objective

Y LeCun

The Architecture
Of an

Intelligent System

Y LeCun

AI System: Learning Agent + Immutable Objective

● The agent gets percepts from the world

● The agent acts on the world

● The agents tries to minimize the long-term
expected cost.

World

Agent

Percepts /
Observations

Actions/
Outputs

Objective

Cost

State

Y LeCun

AI System: Predicting + Planning = Reasoning

● The essence of intelligence is the ability to
predict

● To plan ahead, we simulate the world

● The action taken minimizes the predicted cost

World

Agent

Percepts

Objective Cost

Agent State

Actions/
Outputs

Agent
World

Simulator

Actor

Predicted
Percepts

Critic
Predicted
Cost

Action
Proposals

Inferred
World State

Actor State

Y LeCun
What we need is Model-Based Reinforcement Learning

The essence of intelligence is the ability to predict

To plan ahead, we must simulate the world, so as to minimizes the
predicted value of some objective function.

Agent
World

Simulator

Actor

Critic

World
Simulator

Actor

Critic

World
Simulator

Actor

Critic

World
Simulator

Actor

Critic

Perception

Y LeCun

Unsupervised Learning

Y LeCun
Energy-Based Unsupervised Learning

Learning an energy function (or contrast function) that takes
Low values on the data manifold

Higher values everywhere else

Y1

Y2

Y LeCun

Capturing Dependencies Between Variables
with an Energy Function

The energy surface is a “contrast function” that takes low values on the data
manifold, and higher values everywhere else

Special case: energy = negative log density

Example: the samples live in the manifold

Y1

Y2

Y 2=(Y 1)
2

Y LeCun

Energy-Based Unsupervised Learning

● Energy Function: Takes low value on data manifold, higher values everywhere else

● Push down on the energy of desired outputs. Push up on everything else.

● But how do we choose where to push up?

Plausible futures

 (low energy)

Implausible futures

 (high energy)

Y LeCun
Learning the Energy Function

parameterized energy function E(Y,W)
Make the energy low on the samples

Make the energy higher everywhere else

Making the energy low on the samples is easy

But how do we make it higher everywhere else?

Y LeCun
Seven Strategies to Shape the Energy Function

 1. build the machine so that the volume of low energy stuff is constant
PCA, K-means, GMM, square ICA

 2. push down of the energy of data points, push up everywhere else
Max likelihood (needs tractable partition function)

 3. push down of the energy of data points, push up on chosen locations
 contrastive divergence, Ratio Matching, Noise Contrastive Estimation,

Minimum Probability Flow

 4. minimize the gradient and maximize the curvature around data points
score matching

 5. train a dynamical system so that the dynamics goes to the manifold
denoising auto-encoder

 6. use a regularizer that limits the volume of space that has low energy
Sparse coding, sparse auto-encoder, PSD

 7. if E(Y) = ||Y - G(Y)||^2, make G(Y) as "constant" as possible.
Contracting auto-encoder, saturating auto-encoder

Y LeCun

#1: constant volume of low energy
Energy surface for PCA and K-means

 1. build the machine so that the volume of low energy stuff is constant
PCA, K-means, GMM, square ICA...

E (Y)=∥WT
WY−Y∥2

PCA K-Means,
Z constrained to 1-of-K code

E (Y)=min
z∑i

∥Y−W
i
Z
i
∥2

Y LeCun

#6. use a regularizer that limits
the volume of space that has low energy

 Sparse coding, sparse auto-encoder, Predictive Sparse Decomposition

”Why	generative	models”	take-aways:

• Any	energy-based	unsupervised	learning	method	can	be	seen	as	a	
probabilistic	model	by	estimating	the	partition	function
• I	claim	that	any	unsupervised	learning	method	can	be	seen	as	energy-
based,	and	can	thus	be	transformed	into	a	generative	or	probabilistic	
model
• Explicit	probabilistic	models	are	useful,	because	once	we	have	one,	
we	can	use	it	“out	of	the	box”	for	any	of	a	variety	of	“common	sense”	
tasks.	No	extra	training	or	special	procedures	required.

anomaly	detection,	denoising,	filling	in	the	blanks/super-
resolution,	compression	/	representation	(inferring	latent	variables),	
scoring	“realism”	of	samples,	generating	samples,	….

2.	What	is	a	variational autoencoder?

• Tutorial	by	Jaan Altosaar:	https://jaan.io/what-is-variational-
autoencoder-vae-tutorial/

“What	is	a	VAE”	take-aways:

DL	interpretation:
• A	VAE	can	be	seen	as	a	denoising compressive	autoencoder
• Denoising =	we	inject	noise	to	one	of	the	layers.	Compressive	=	the	
middle	layers	have	lower	capacity	than	the	outer	layers.

Probabilistic	interpretation:
• The	“decoder”	of	the	VAE	can	be	seen	as	a	deep	(high	
representational	power)	probabilistic	model	that	can	give	us	explicit	
likelihoods
• The	“encoder”	of	the	VAE	can	be	seen	as	a	variational distribution	
used	to	help	train	the	decoder

2.	From	importance	sampling	to	VAEs

• Selected	slides	from	Shakir Mohamed’s	talk	at	the	Deep	Learning	
Summer	School	2016

Machines that Imagine and Reason 40

Importance Sampling

Conditions
• q(z|x)>0, when f(z)p(z) ≠ 0.
• Easy to sample from q(z).

532 11. SAMPLING METHODS

Figure 11.8 Importance sampling addresses the prob-
lem of evaluating the expectation of a func-
tion f(z) with respect to a distribution p(z)
from which it is difficult to draw samples di-
rectly. Instead, samples {z(l)} are drawn
from a simpler distribution q(z), and the
corresponding terms in the summation are
weighted by the ratios p(z(l))/q(z(l)).

p(z) f(z)

z

q(z)

Furthermore, the exponential decrease of acceptance rate with dimensionality is a
generic feature of rejection sampling. Although rejection can be a useful technique
in one or two dimensions it is unsuited to problems of high dimensionality. It can,
however, play a role as a subroutine in more sophisticated algorithms for sampling
in high dimensional spaces.

11.1.4 Importance sampling
One of the principal reasons for wishing to sample from complicated probability

distributions is to be able to evaluate expectations of the form (11.1). The technique
of importance sampling provides a framework for approximating expectations di-
rectly but does not itself provide a mechanism for drawing samples from distribution
p(z).

The finite sum approximation to the expectation, given by (11.2), depends on
being able to draw samples from the distribution p(z). Suppose, however, that it is
impractical to sample directly from p(z) but that we can evaluate p(z) easily for any
given value of z. One simplistic strategy for evaluating expectations would be to
discretize z-space into a uniform grid and to evaluate the integrand as a sum of the
form

E[f] ≃
L∑

l=1

p(z(l))f(z(l)). (11.18)

An obvious problem with this approach is that the number of terms in the summation
grows exponentially with the dimensionality of z. Furthermore, as we have already
noted, the kinds of probability distributions of interest will often have much of their
mass confined to relatively small regions of z space and so uniform sampling will be
very inefficient because in high-dimensional problems, only a very small proportion
of the samples will make a significant contribution to the sum. We would really like
to choose the sample points to fall in regions where p(z) is large, or ideally where
the product p(z)f(z) is large.

As in the case of rejection sampling, importance sampling is based on the use
of a proposal distribution q(z) from which it is easy to draw samples, as illustrated
in Figure 11.8. We can then express the expectation in the form of a finite sum over

Integral problem

w(s) =
p(z)

q(z)
z(s) ⇠ q(z)

p(x) =

Z
p(x|z)p(z)dz

Proposal p(x) =

Z
p(x|z)p(z)q(z)

q(z)
dz

Importance Weight p(x) =

Z
p(x|z)p(z)

q(z)
q(z)dz

Monte Carlo p(x) =
1

S

X

s

w(s)p(x|z(s))

Notation
Always think of q(z|x)
but often will write q(z)
for simplicity.

Machines that Imagine and Reason 41

Importance Sampling to Variational Inference

Integral problem p(x) =

Z
p(x|z)p(z)dz

Proposal p(x) =

Z
p(x|z)p(z)q(z)

q(z)
dz

Importance Weight p(x) =

Z
p(x|z)p(z)

q(z)
q(z)dz

Jensen’s inequality
log

Z
p(x)g(x)dx �

Z
p(x) log g(x)dx

log p(x) �
Z

q(z) log

✓
p(x|z)p(z)

q(z)

◆
dz

Variational lower bound Eq(z)[log p(x|z)]�KL[q(z)kp(z)]

=

Z
q(z) log p(x|z)�

Z
q(z) log

q(z)

p(z)

Machines that Imagine and Reason

Penalty

42

Variational Free Energy

Interpreting the bound:

ReconstructionApprox. Posterior

• Approximate posterior distribution q(z|x): Best match to true posterior
p(z|x), one of the unknown inferential quantities of interest to us.

• Reconstruction cost: The expected log-likelihood measures how well
samples from q(z|x) are able to explain the data x.

• Penalty: Ensures that the explanation of the data q(z|x) doesn’t deviate
too far from your beliefs p(z). A mechanism for realising Ockham’s razor.

F(x, q) = Eq(z)[log p(x|z)]�KL[q(z)kp(z)]

Machines that Imagine and Reason 43

Other Families of Variational Bounds

Variational Free Energy

F(x, q) = Eq(z)[log p(x|z)]�KL[q(z)kp(z)]

Multi-sample Variational Objective

F(x, q) = Eq(z)

"
log

1

S

X

s

p(z)

q(z)
p(x|z)

#

Renyi Variational Objective

F(x, q) =
1

1� ↵
Eq(z)

2

4

log

1

S

X

s

p(z)

q(z)
p(x|z)

!1�↵
3

5

Other generalised families exist. Optimal solution is the same for all objectives.

“From	importance	sampling	to	VAE”	take-
aways:
• The	VAE	objective	function	can	be	derived	in	a	way	that	I	think	is	
pretty	unobjectionable	to	Bayesians	and	frequentists	alike.	
• Treat	the	decoder	as	a	likelihood	model	we	wish	to	train	with	
maximum	likelihood.	We	want	to	use	importance	sampling	as	p(x|z)	is	
low	for	most	z.	
• The	encoder	is	a	trainable	importance	sampling	distribution,	and	the	
VAE	objective	is	a	lower	bound	to	the	likelihood	by	Jensen’s	
inequality.

