PATTERNS IN NETWORK ARCHITECTURE:

DATA-CENTRIC NETWORKING
DATA-CENTRIC NETWORKING

OLD TOPICS

1. A short topic on modeling in Alloy

2. A short topic on principles for layering

NEW TOPICS

3. An overview of data-centric networking (4 proposals)

4. David Rosenblum’s “Cautionary Tale”

5. Discussion of the “narrow waist” of the Internet
all forwarding rules for a single header

source

second middlebox

first middlebox

destination

fixed by prohibiting this forwarding rule, because it forwards through the header’s sender

this instance satisfies the specification because the second middlebox can be reached by forwarding (according to the current definition) from the first middlebox
all forwarding rules for a single header

this instance violates my theorem, which shows that middleboxes could be inserted in the wrong order

fixed by prohibiting middleboxes (which are “endpoints” as opposed to “routers”) from having more than one input link and one output link

this is fine for some networks, too restrictive for others
SPECIALIZE!

in a “routed network,” only routers can have more than one inlink or outlink

in a “peer network,” there can be no node loops
WE’RE ALMOST THERE . . .

... except that this satisfies the specification

orphan forwarding rules seem to be a problem no matter where they are

once we prohibit them, everything works
<table>
<thead>
<tr>
<th>Service Interactions</th>
<th>QoS</th>
<th>RELIABILITY</th>
<th>INTEGRITY (ENCRYPTION)</th>
<th>MOBILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>RELIABILITY</td>
<td>reliability converts bandwidth, probability, latency to goodput, which also propagates piecewise</td>
<td>reliability above encryption</td>
<td>reliability above mobility</td>
<td>filtering above mobility or far from endpoint</td>
</tr>
<tr>
<td>INTEGRITY</td>
<td>encryption decreases bandwidth and increases latency, both bad</td>
<td>encryption above</td>
<td>encryption above</td>
<td></td>
</tr>
<tr>
<td>MOBILITY</td>
<td>reliability above mobility</td>
<td>encryption above</td>
<td>encryption above</td>
<td></td>
</tr>
<tr>
<td>PACKET FILTERING</td>
<td>filtering increases latency (bad) and bandwidth (good)</td>
<td>filtering and encryption are independent only if session initiations are not encrypted</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RELIABILITY ABOVE ENCRYPTION

TCP reads and writes sequence and acknowledgment numbers

IPsec encrypts the IP payload, including TCP header and payload

HOWEVER, both reliability and encryption are implemented in an end-to-end session protocol

TLS combines them into one protocol
mcTLS extends it to support middleboxes—but they must be trusted!
CONTENT-DELIVERY NETWORK

client’s DNS lookup goes to DNS server of CDN, returns IP address of closest CDN server

client

closest CDN server

data source (CDN origin server)

GET data

HTTP response

distribute content to local servers
HTTP SUBSCRIBE-GET

client

S-GET data

HTTP response (never cached)

server

PUT data

from receipt of S-GET until its expiration, server responds with all updates to the requested URL

data source

THIS IS A KIND OF PUBLISH-SUBSCRIBE SYSTEM
NAMED DATA NETWORKING

MEMBERS

- members are producers of data, consumers of data (or both), routers

LINKS

- there is a fixed set of links—this is very important

NAMES

- names of unique, immutable data packets are also names of their producers or repositories
- so a member can have no names or many names, and a name can belong to more than one member

ROUTING

- routing is fairly normal, even using existing protocols
- route to name prefixes

SESSIONS

- these are interesting!
A SESSION HAS (AS ALWAYS) A DESTINATION NAME AND IDENTIFIER (NONCE)

A session consists of one interest packet and one data packet...

...although a data packet on a link can be shared among sessions

As with Web caching, a session might not extend all the way to its named destination.

The session identifier prevents routing loops.
Applications and Abstractions
A Cautionary Tale

David S. Rosenblum
Felicitous Computing Institute
School of Computing
National University of Singapore
My Net Cred

- **SIENA** Internet-scale publish/subscribe system
 - *Collaboration with Alex Wolf & Antonio Carzaniga*

- Formerly Principal Architect and CTO of

- Confidentiality in Internet-scale publish/subscribe

- **ROAR:** Rendezvous on a Ring
 - *PhD of Costin Raiciu, collaboration with Mark Handley*

- Some papers in ACM TOCS, PODC, SIGCOMM, ICNP

- Ten patents for work at
Question 0

What is (an) abstraction?

“the process of considering something independently of its associations, attributes, or concrete accompaniments”

[Oxford American Dictionary]

- Implementation independence
- Widespread applicability and reusability
Question 1
Why are abstractions needed?

- for understanding and reasoning
- for designing and implementing

My focus in this talk is on abstractions for building applications that are to be deployed on the Internet
Question 2

What abstractions are needed?

- Communication paradigms
- Storage paradigms
- Structuring and coordination paradigms
- Formal logical models of these
- Formal quantitative models of these

My own interests are in communication paradigms and probabilistic models
The Thesis of This Talk

General-purpose abstractions for building applications can lose their generality and/or abstractness once realized at Internet scale.

There may be many approaches for realizing an abstraction, but each one employs its own assumptions, algorithms, protocols, optimizations and heuristics.

Those choices can strongly constrain the set of applications able to use the realization naturally, effectively and efficiently.
Motivating Example

Publish/Subscribe

- Natural abstraction for multi-way, asynchronous dissemination of data
- At application level, middleware or brokers provide decoupling, anonymity, matching, caching, authentication, and many other services
- Many conceivable applications at Internet scale
Internet-Scale Pub/Sub Applications

\[\text{symbol} = \text{“AAPL”} \quad \text{and price} > 700.00 \]

\[\text{symbol} = \text{“AAPL”}, \text{price} = 701.23, \text{shares} = 5000, \text{[etc.]} \]

Stock Quotes
Internet-Scale Pub/Sub Applications

\[\text{bus} = (10 \text{ or } 30 \text{ or } 51 \text{ or } 143 \text{ or } 188) \text{ and nextnextstop} = 16069 \]

\[\text{bus} = 143, \text{ capacity} = 0.9, \text{ stop} = 16089, \text{ nextstop} = 16079, \text{ nextnextstop} = 16069 \]

Location-Dependent Travel Alerts

\[\text{bus arrivals, taxi dispatching, traffic incidents, etc.} \]
Internet-Scale Pub/Sub Application Characteristics

<table>
<thead>
<tr>
<th>Subscriptions</th>
<th>Application</th>
<th>Notifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selectivity</td>
<td>Stock Quotes</td>
<td>Frequency</td>
</tr>
<tr>
<td>Churn</td>
<td></td>
<td>Uniqueness</td>
</tr>
<tr>
<td></td>
<td>Software Updates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Travel Alerts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>News Alerts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MMOGs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Battlefield Awareness</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Location Updates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Social Network Alerts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Context Awareness</td>
<td></td>
</tr>
</tbody>
</table>

- **Selectivity**
- **Churn**
- **Application**
- **Notifications**
 - Frequency
 - Uniqueness
SIENA

- General-purpose realization of publish/subscribe at Internet scale
- Designed as a decentralized overlay of brokers
- Full content-based matching of notifications to subscriptions with best-effort delivery
- Self-describing notifications—no notification types, predefined topic hierarchies, etc.
SIENA
Subscription Forwarding

s1: "price < 700"
SIENA
Subscription Merging

s1 covers s2

s1 covers s2
s2: “price < 600”
SIENA

Notification Delivery

n1: “price = 550”
SIENA

Implied Ideal Application Characteristics

• Many publishers and many subscribers
 To justify decentralized implementation

• Notifications much more frequent than subscriptions
 To justify subscription forwarding

• Low subscription churn
 To justify subscription forwarding and merging

• High subscription selectivity
 To justify content-based matching in brokers

• Subscription similarity correlated with network locality
 To justify subscription merging
SIENA

Implied Ideal Application Characteristics

- Many publishers and many subscribers
 not Stock Quotes

- Notifications much more frequent than subscriptions
 not Software Updates

- Low subscription churn
 not location-dependent applications

- High subscription selectivity
 not Software Updates

- Subscription similarity correlated with network locality
 not Stock Quotes, Software Updates, MMOGs, etc.
SIENA

Implied Ideal Application Characteristics

- Few applications have all these characteristics

 Traffic alerts

 Social interaction alerts

 others?
Other approaches induce similar limitations

- **Gryphon**
 - Subscription flooding over tree of clusters
 - *Applicable if subscriptions are few and stable*

- **Hermes**
 - Rendezvous nodes allocated to content types
 - *Applicable if load is spread evenly by type*

- **PreCache**
 - Trie- and kd-tree-based subscription storage
 - *Applicable if subscription churn is very low*
Conclusion

• **Conceptually**, publish/subscribe is a very general abstraction
• But it loses generality once realized *at Internet scale*
• And it does so for reasons that have little to do with the peculiarities of the Internet
• **Adaptability** as a compromise
 - ROAR’s partitioning/replication tradeoff
 - Alex and Antonio’s content-based networking (CBN)
Question 3
How can research ... be fostered ...?

• With respect to abstractions for building ...
 I would like to have better formal logical and probabilistic models ...
 ... for exploration of and reasoning about ...
 ... the design space induced by a network abstraction like publish/subscribe.
WHAT IS THE “NARROW WAIST” OF THE INTERNET?
WHAT IS THE “NARROW WAIST” OF THE INTERNET?

THE UNVARYING PART OF THE PROTOCOL STACK

- application protocols
- IP, TCP, UDP
- link protocols

THE MOST POPULAR PROTOCOL, WHERE MOST INVESTMENT IS NOW

this appears to be the justification for HTTP

THE PROTOCOLS THAT EVERY NETWORKED MACHINE MUST UNDERSTAND

a new (to me) example involving ssh:

- application
- IP
- link
- application
- IP
- link

seems like a good definition
WE HAVE READ CLAIMS THAT BOTH . . .

. . . HTTP

. . . AND NAMED DATA NETWORKING

. . . SHOULD BE THE NEW “NARROW WAIST” OF THE INTERNET.

What do you think of that?
LIKE PUBLISH/SUBSCRIBE, THIS IS A NICE ABSTRACTION

As David Rosenblum found for publish/subscribe, can you think of any aspect of the NDN proposal that might not work for every application?
As David Rosenblum found for publish/subscribe, can you think of any aspect of the NDN proposal that might not work for every application?

(even for data-oriented applications)

NDN requires an interest packet for every data packet. In some cases, this could double the number of packets transmitted over the Internet.

each session, retrieving one data packet, leaves session state in a number of routers—

— not very fault-tolerant

— seems to need a lot of state
CELLPHONES ARE PART OF THE INTERNET, TOO

“... smartphones alone far outnumber tethered Internet hosts”

cellular networks will inevitably become more integrated with the rest of the Internet, because of costs

WHAT CELLPHONE SERVICE (TEXTING, VOICE, VIDEO) NEEDS

- the ability to FIND a private device and INITIATE communication to it

- long-distance, low-jitter, high-bandwidth communication, always less than 150 ms latency

- except for lawful intercept, voice is not stored anywhere

- conserve the battery of a mobile device, despite the fact that some communication is bursty
WHAT THE INTERNET OF THINGS NEEDS

10 billion networked things in 2010, 50 billion networked things in 2020

- the ability to FIND a private device and INITIATE communication to it
- conserve the batteries of very small devices
- upload massive, unprecedented amounts of data
- monthly communication cost of $2 per device

CONCLUSION:

WHAT CELLPHONES AND THE INTERNET OF THINGS NEED . . .

. . . IS ROUGHLY THE OPPOSITE OF WHAT DATA-CENTRIC NETWORKING NEEDS