Adapting to the Wireless Channel

COS 598a: Wireless Networking and Sensing Systems

Kyle Jamieson

What is modulation?

- To *modulate* means to change. Change what?
 - The amplitude and phase (*i.e.*, angle) of a *carrier signal*
 - For 802.11 WiFi local area networks, this carrier signal is usually at 2.4 GHz or 5 GHz

Quadrature (Q)

- Digital modulation: Use only a finite set of choices (*i.e.*, symbols) for how to change the carrier and phase
 - Transmitter and receiver agree upon the symbols beforehand

From information bits to symbols...

- Simplest possible scheme
 - Pick two symbols (binary)
 - The information bit decides which symbol you transmit
 - So, this is called *binary phase shift keying*
 - Sending rate: 1 bit/symbol

...and back to bits!

Received BPSK constellation

Sending twice as fast

Quadrature phase shift keying (QPSK) Input Input bits="10" _ Obits="00" Input bits="11″ Input bits="01"

Sending 2 bits/symbol

...and back to bits, twice as fast!

Received QPSK constellation

Change modulations, increase bitrate

The wireless channel

Signal to noise ratio (SNR)

• Measured in *decibels (dB):* 10 times \log_{10} of a quantity

SNR (dB) = 10 log₁₀ (signal power / noise power) = 10 log₁₀ (1² / σ^2) (assuming Gaussian noise) = -20 log₁₀ σ

Modulation adaptation

Error control coding

Code rate: R = k/n

802.11: adapt code rate, modulation

Bit- rate	802.11 Stan- dards	DSSS or OFDM	Modulation	Bits per Symbol	Coding Rate	Mega- Symbols per
						second
1	b	DSSS	BPSK	1	1/11	11
2	b	DSSS	QPSK	2	1/11	11
5.5	b	DSSS	CCK	1	4/8	11
11	b	DSSS	CCK	2	4/8	11
6	a/g	OFDM	BPSK	1	1/2	12
9	a/g	OFDM	BPSK	1	3/4	12
12	a/g	OFDM	QPSK	2	1/2	12
18	a/g	OFDM	QPSK	2	3/4	12
24	a/g	OFDM	QAM-16	4	1/2	12
36	a/g	OFDM	QAM-16	4	3/4	12
48	a/g	OFDM	QAM-64	6	2/3	12
54	a/g	OFDM	QAM-64	6	3/4	12

BER vs SNR

Link/PHY checks packet integrity

Throughput = delivery rate \times bitrate = (1 – BER)ⁿ \times bitrate

Change coding rate

Packetized throughput

n = 1500 × 8 bits

Delivery rate vs BER

BER vs SNR

• For each modulation: *What are the SNRs required for BER < 10⁻⁵?*

• BPSK: 7 dB; QPSK: 12 dB; 16-QAM: 20 dB; 64-QAM: 26 dB

Packetized throughput

n = 1500 × 8 bits

Measuring time to send a packet

Assume unicast, RTS/CTS is disabled. Let's go to the spec (802.11b DSSS values):

tx_time(bitrate, r, N) = DIFS + backoff(r) + (r + 1) (SIFS + ACK + HEADER + $\frac{8 \cdot N}{\text{bitrate}}$)

Similar to MACAW

 Key difference: as long as medium is idle

SampleRate in operation

Gradual

Evaluation methodology

Indoor testbed: 45 node a/b/g

Outdoor testbed: 38 node b/g

- Select random links in testbed with non-zero throughput
- Test each link in isolation for 30 seconds
 - Sender transmits 1500-byte UDP unicast packets as fast as possible
- Run bit rate adaptation schemes: SampleRate, ARF, AARF, ONOE
- **Static best** comparison point: for each bitrate, fix bitrate, test throughput

Indoor 802.11a Performance

Evidence that ARF spends too much time trying higher bit rates

Hop count and throughput

