
PHY IV: Rateless Codes, MIMO

COS 598a: Wireless Networking and Sensing Systems

Kyle Jamieson

1. Spinal Codes

2. Introduction to MIMO

3. SoftRate

Today

2

 0

 1

 2

 3

 4

 5

 6

 5 10 15 20 25 30

T
h

ro
u

g
h

p
u

t
(M

e
g

a
b

it
s
 p

e
r

S
e

c
o

n
d

)

S/N (dB)

BPSK (1 megabit/s)
QPSK (2 megabit/s)

QAM-16 (4 megabits/s)
QAM-64 (6 megabits/s)

Figure 1-4: Theoretical throughput in megabits per second using packets versus signal-to-
noise ratio for several modulations, assuming AGWN and a symbol rate of 1 mega-symbol
per second.

packets can be estimated using the following equation:

throughput = (1 − BER)n ∗ bitrate

This equation assumes the transmitter sends packets back-to-back, the receiver knows

the location of each packet boundary, the receiver can determine the integrity of the data

with no overhead, there is no error correction, and the symbol rate is 1 mega-symbol per

second.

Packets change the throughput versus S/N graph dramatically; Figure 1-4 shows through-

put in megabits per second versus S/N for 1500-byte packets after accounting for packet

losses caused by bit-errors. The range where each modulation delivers non-zero throughput

but suffers from loss is much smaller in Figure 1-4 than in Figure 1-3. For most S/N values

in the range from 5 to 30 dB, the best bit-rate delivers packets without loss.

Bit-rate selection is easier for links that behave as in Figure 1-4 than as in Figure 1-3;

the sender can start on the highest bit-rate and switch to another bit-rate whenever the

11

Fixed-rate codes require channel adaptation

3

• RRAA, Wong et al., 2006.
• SampleRate, Bicket, 2005.
• ARF, ONOE

• RBAR, Holland et al., 2001.
• CHARM, Judd et al., 2008.
• SoftRate, Vutukuru et al., 2009

Existing rate adaptation algorithms

4

SNR/BER-basedFrame-based

Estimate frame loss rate
at each bit rate

Data

ACK

Data

Lookup table:
SNR/BER à best rate

SNR using preamble

• Idea: Sender transmits information at a rate higherthan the
channel can sustain
– At first glance, this sounds disastrous!

• Receiver extracts information at the rate the channel can sustain
at that instant
– No adaptation loop is needed!

Rateless codes

5

Perry, Ianucci, Fleming, Balakrishnan, Shah. Spinal Codes, SIGCOMM 2012.

1. Encoding Spinal Codes

2. Decoding Spinal codes

3. Implementation and evaluation

Spinal Codes: Outline

6

• Start with a hash function hand an initial random v-bit states0
– Sender and receiver agree on hand s0 a priori

• Sender divides its n-bit messageM into k-bit chunksmi

• hmaps the state and a message chunk into a new state
– The v-bit states s1, …, s⌈n/k⌉are the spines

Spinal encoder: Computing the spines

7

Figure 1: Encoding process. Start with a hash function, h. Com-
pute spine values si = h(si�1, m̄i). Seed RNG with si. For pass `,
map c bits from RNG to symbol xi,`.

until the message is successfully decoded, or until the sender (or
receiver) gives up, causing the sender to proceed to the next message.
In practice, a single link-layer frame might comprise multiple coded
messages, as explained in §6.

When used in rateless mode, spinal encoder can produce as many

symbols as necessary from a given sequence of message bits. The
sequence of coded bits or symbols generated at a higher code rate is

a prefix of that generated at all lower code rates.

3.1 Spine Construction
At the core of the spinal code is a hash function, h, and a pseudo-

random number generator, RNG, known to both the transmitter and
receiver. h takes two inputs: (1) a n-bit state and (2) k message bits.
It returns a new n-bit state. That is,

h : {0,1}n ⇥{0,1}k ! {0,1}n .

The initial value, s0, of the n-bit state is known to both the encoder
and decoder, and may be considered (for now) to be the string 0n

without loss of generality.
As shown in Figure 1, the idea is to build a spine of n-bit states

by sequentially hashing together groups of k bits from the input
message. We denote bits mki+1 . . .mk(i+1) as m̄i, so the sequence of
states is simply

si = h(si�1, m̄i), s0 = 0n .

Each of these n/k states, or spine values (n being the number of
bits in the input message), is used to seed a random number genera-
tor, RNG. Each RNG generates a sequence of pseudo-random c-bit
numbers, which are converted into output symbols using a constella-
tion mapping function (§3.3). RNG is a deterministic function from
a n-bit seed and an index to a c-bit number:

RNG : {0,1}n ⇥N! {0,1}c.

The sequence of states computed by repeatedly applying h is
superficially similar to a traditional convolutional encoding, but
there are three key differences. First, the hash function has a richer
pseudo-random (and generally nonlinear) structure and operates
on a significantly larger n-bit state, where n is on the order of 32.
(Hash collisions are a potential concern; §8.5 shows that they can be
made extremely rare.) Traditional convolutional codes update their
state according to a linear (exclusive-or) function. The larger state
space of the spinal encoder gives rise to the second major difference:
the “constraint length” of this encoding goes all the way back to

I

Q

I

Q

Figure 2: Uniform (left) and truncated Gaussian (right) con-
stellation mapping functions. Same average power; c = 6; trun-
cated Gaussian with b = 2.

the start of the message, because the state at the end of any stage
depends on all the input message bits in the message until that point.
The third key difference is that, whereas a convolutional encoder
has a constant ratio of the number of input to output bits (i.e., a
fixed rate), the spinal code is rateless because one can generate
as many transmission symbols as desired using the RNG. h and
RNG together allow the spinal encoding to not only achieve good
separation between codewords, but also ratelessness.

3.2 Hash Function and RNG
We choose h uniformly using a random seed from a pairwise inde-

pendent family of hash functions H [24]. This property guarantees

that for two distinct hash inputs x and y, every pair of output values
a and b is equally likely. This property is standard and attainable
in practice. The encoder and decoder both know h, RNG, and the
initial value s0; if s0 is chosen pseudo-randomly, the resulting sym-
bol sequence is pseudo-random, providing resilience against “bad”
or adversarial input message sequences (one may view the use of a
pseudo-random s0 as analogous to a scrambler).

Because our requirements for RNG are similar to those for h,
one suitable choice for RNG is to combine h with a n-to-c-bit shift
register.

3.3 Rateless Symbol Generation
The output of the encoder is delivered in a series of passes of

n/k symbols each, as depicted in Figure 1. The encoder produces
symbols xi,1 for the first pass, where xi,1 is the output of a determin-
istic constellation mapping function acting on the first c-bit number
generated by the ith RNG (seeded by si). It produces symbols xi,`
for subsequent passes by generating additional outputs from each
of the random number generators. The encoder continues to loop
back and generate additional symbols until the receiver manages to
decode the message or the sender or receiver decides to give up on
the message.

Let b be a single c-bit input to the constellation mapping function.
For the BSC, the constellation mapping is trivial: c = 1, and the
sender transmits b. For the AWGN channel (with or without fading),
the encoder needs to generate I and Q under an average power
constraint. The constellation mapping function generates I and Q
independently from two separate RNG outputs of c bits each.

We examine the two constellation mappings shown in Figure 2.
The first is uniform, and the second produces a truncated Gaussian
via the standard normal CDF, F. In terms of the average power P,

Uniform: b! (u�1/2)
p

6P
Gaussian: b!F�1(g +(1�2g)u)

p
P/2

u =
b+1/2

2c

51

• Observe: State si contains information about chunks m1, …, mi
– A stage’s state depends on the message bits up to that stage

• So only state s⌈n/k⌉has information about entire message

Spinal encoder: Information flow

8

Figure 1: Encoding process. Start with a hash function, h. Com-
pute spine values si = h(si�1, m̄i). Seed RNG with si. For pass `,
map c bits from RNG to symbol xi,`.

until the message is successfully decoded, or until the sender (or
receiver) gives up, causing the sender to proceed to the next message.
In practice, a single link-layer frame might comprise multiple coded
messages, as explained in §6.

When used in rateless mode, spinal encoder can produce as many

symbols as necessary from a given sequence of message bits. The
sequence of coded bits or symbols generated at a higher code rate is

a prefix of that generated at all lower code rates.

3.1 Spine Construction
At the core of the spinal code is a hash function, h, and a pseudo-

random number generator, RNG, known to both the transmitter and
receiver. h takes two inputs: (1) a n-bit state and (2) k message bits.
It returns a new n-bit state. That is,

h : {0,1}n ⇥{0,1}k ! {0,1}n .

The initial value, s0, of the n-bit state is known to both the encoder
and decoder, and may be considered (for now) to be the string 0n

without loss of generality.
As shown in Figure 1, the idea is to build a spine of n-bit states

by sequentially hashing together groups of k bits from the input
message. We denote bits mki+1 . . .mk(i+1) as m̄i, so the sequence of
states is simply

si = h(si�1, m̄i), s0 = 0n .

Each of these n/k states, or spine values (n being the number of
bits in the input message), is used to seed a random number genera-
tor, RNG. Each RNG generates a sequence of pseudo-random c-bit
numbers, which are converted into output symbols using a constella-
tion mapping function (§3.3). RNG is a deterministic function from
a n-bit seed and an index to a c-bit number:

RNG : {0,1}n ⇥N! {0,1}c.

The sequence of states computed by repeatedly applying h is
superficially similar to a traditional convolutional encoding, but
there are three key differences. First, the hash function has a richer
pseudo-random (and generally nonlinear) structure and operates
on a significantly larger n-bit state, where n is on the order of 32.
(Hash collisions are a potential concern; §8.5 shows that they can be
made extremely rare.) Traditional convolutional codes update their
state according to a linear (exclusive-or) function. The larger state
space of the spinal encoder gives rise to the second major difference:
the “constraint length” of this encoding goes all the way back to

I

Q

I

Q

Figure 2: Uniform (left) and truncated Gaussian (right) con-
stellation mapping functions. Same average power; c = 6; trun-
cated Gaussian with b = 2.

the start of the message, because the state at the end of any stage
depends on all the input message bits in the message until that point.
The third key difference is that, whereas a convolutional encoder
has a constant ratio of the number of input to output bits (i.e., a
fixed rate), the spinal code is rateless because one can generate
as many transmission symbols as desired using the RNG. h and
RNG together allow the spinal encoding to not only achieve good
separation between codewords, but also ratelessness.

3.2 Hash Function and RNG
We choose h uniformly using a random seed from a pairwise inde-

pendent family of hash functions H [24]. This property guarantees

that for two distinct hash inputs x and y, every pair of output values
a and b is equally likely. This property is standard and attainable
in practice. The encoder and decoder both know h, RNG, and the
initial value s0; if s0 is chosen pseudo-randomly, the resulting sym-
bol sequence is pseudo-random, providing resilience against “bad”
or adversarial input message sequences (one may view the use of a
pseudo-random s0 as analogous to a scrambler).

Because our requirements for RNG are similar to those for h,
one suitable choice for RNG is to combine h with a n-to-c-bit shift
register.

3.3 Rateless Symbol Generation
The output of the encoder is delivered in a series of passes of

n/k symbols each, as depicted in Figure 1. The encoder produces
symbols xi,1 for the first pass, where xi,1 is the output of a determin-
istic constellation mapping function acting on the first c-bit number
generated by the ith RNG (seeded by si). It produces symbols xi,`
for subsequent passes by generating additional outputs from each
of the random number generators. The encoder continues to loop
back and generate additional symbols until the receiver manages to
decode the message or the sender or receiver decides to give up on
the message.

Let b be a single c-bit input to the constellation mapping function.
For the BSC, the constellation mapping is trivial: c = 1, and the
sender transmits b. For the AWGN channel (with or without fading),
the encoder needs to generate I and Q under an average power
constraint. The constellation mapping function generates I and Q
independently from two separate RNG outputs of c bits each.

We examine the two constellation mappings shown in Figure 2.
The first is uniform, and the second produces a truncated Gaussian
via the standard normal CDF, F. In terms of the average power P,

Uniform: b! (u�1/2)
p

6P
Gaussian: b!F�1(g +(1�2g)u)

p
P/2

u =
b+1/2

2c

51

• Each spine seeds a random number generator RNG
• RNG generates a sequence of c-bit numbers
• Encoder output is a series of passesof ⌈n/k⌉symbolsxi,l each

Spinal encoder: Computing the spines

9

Figure 1: Encoding process. Start with a hash function, h. Com-
pute spine values si = h(si�1, m̄i). Seed RNG with si. For pass `,
map c bits from RNG to symbol xi,`.

until the message is successfully decoded, or until the sender (or
receiver) gives up, causing the sender to proceed to the next message.
In practice, a single link-layer frame might comprise multiple coded
messages, as explained in §6.

When used in rateless mode, spinal encoder can produce as many

symbols as necessary from a given sequence of message bits. The
sequence of coded bits or symbols generated at a higher code rate is

a prefix of that generated at all lower code rates.

3.1 Spine Construction
At the core of the spinal code is a hash function, h, and a pseudo-

random number generator, RNG, known to both the transmitter and
receiver. h takes two inputs: (1) a n-bit state and (2) k message bits.
It returns a new n-bit state. That is,

h : {0,1}n ⇥{0,1}k ! {0,1}n .

The initial value, s0, of the n-bit state is known to both the encoder
and decoder, and may be considered (for now) to be the string 0n

without loss of generality.
As shown in Figure 1, the idea is to build a spine of n-bit states

by sequentially hashing together groups of k bits from the input
message. We denote bits mki+1 . . .mk(i+1) as m̄i, so the sequence of
states is simply

si = h(si�1, m̄i), s0 = 0n .

Each of these n/k states, or spine values (n being the number of
bits in the input message), is used to seed a random number genera-
tor, RNG. Each RNG generates a sequence of pseudo-random c-bit
numbers, which are converted into output symbols using a constella-
tion mapping function (§3.3). RNG is a deterministic function from
a n-bit seed and an index to a c-bit number:

RNG : {0,1}n ⇥N! {0,1}c.

The sequence of states computed by repeatedly applying h is
superficially similar to a traditional convolutional encoding, but
there are three key differences. First, the hash function has a richer
pseudo-random (and generally nonlinear) structure and operates
on a significantly larger n-bit state, where n is on the order of 32.
(Hash collisions are a potential concern; §8.5 shows that they can be
made extremely rare.) Traditional convolutional codes update their
state according to a linear (exclusive-or) function. The larger state
space of the spinal encoder gives rise to the second major difference:
the “constraint length” of this encoding goes all the way back to

I

Q

I

Q

Figure 2: Uniform (left) and truncated Gaussian (right) con-
stellation mapping functions. Same average power; c = 6; trun-
cated Gaussian with b = 2.

the start of the message, because the state at the end of any stage
depends on all the input message bits in the message until that point.
The third key difference is that, whereas a convolutional encoder
has a constant ratio of the number of input to output bits (i.e., a
fixed rate), the spinal code is rateless because one can generate
as many transmission symbols as desired using the RNG. h and
RNG together allow the spinal encoding to not only achieve good
separation between codewords, but also ratelessness.

3.2 Hash Function and RNG
We choose h uniformly using a random seed from a pairwise inde-

pendent family of hash functions H [24]. This property guarantees

that for two distinct hash inputs x and y, every pair of output values
a and b is equally likely. This property is standard and attainable
in practice. The encoder and decoder both know h, RNG, and the
initial value s0; if s0 is chosen pseudo-randomly, the resulting sym-
bol sequence is pseudo-random, providing resilience against “bad”
or adversarial input message sequences (one may view the use of a
pseudo-random s0 as analogous to a scrambler).

Because our requirements for RNG are similar to those for h,
one suitable choice for RNG is to combine h with a n-to-c-bit shift
register.

3.3 Rateless Symbol Generation
The output of the encoder is delivered in a series of passes of

n/k symbols each, as depicted in Figure 1. The encoder produces
symbols xi,1 for the first pass, where xi,1 is the output of a determin-
istic constellation mapping function acting on the first c-bit number
generated by the ith RNG (seeded by si). It produces symbols xi,`
for subsequent passes by generating additional outputs from each
of the random number generators. The encoder continues to loop
back and generate additional symbols until the receiver manages to
decode the message or the sender or receiver decides to give up on
the message.

Let b be a single c-bit input to the constellation mapping function.
For the BSC, the constellation mapping is trivial: c = 1, and the
sender transmits b. For the AWGN channel (with or without fading),
the encoder needs to generate I and Q under an average power
constraint. The constellation mapping function generates I and Q
independently from two separate RNG outputs of c bits each.

We examine the two constellation mappings shown in Figure 2.
The first is uniform, and the second produces a truncated Gaussian
via the standard normal CDF, F. In terms of the average power P,

Uniform: b! (u�1/2)
p

6P
Gaussian: b!F�1(g +(1�2g)u)

p
P/2

u =
b+1/2

2c

51

• A constellation mapping function translates c-bit numbers xi,l from the
RNG to in-phase (I) and quadrature (Q)
– Generates in-phase (I) and quadrature (Q) components

independently from two separate xi,l

Spinal encoder: RNG to symbols

10Figure 1: Encoding process. Start with a hash function, h. Com-
pute spine values si = h(si�1, m̄i). Seed RNG with si. For pass `,
map c bits from RNG to symbol xi,`.

until the message is successfully decoded, or until the sender (or
receiver) gives up, causing the sender to proceed to the next message.
In practice, a single link-layer frame might comprise multiple coded
messages, as explained in §6.

When used in rateless mode, spinal encoder can produce as many

symbols as necessary from a given sequence of message bits. The
sequence of coded bits or symbols generated at a higher code rate is

a prefix of that generated at all lower code rates.

3.1 Spine Construction
At the core of the spinal code is a hash function, h, and a pseudo-

random number generator, RNG, known to both the transmitter and
receiver. h takes two inputs: (1) a n-bit state and (2) k message bits.
It returns a new n-bit state. That is,

h : {0,1}n ⇥{0,1}k ! {0,1}n .

The initial value, s0, of the n-bit state is known to both the encoder
and decoder, and may be considered (for now) to be the string 0n

without loss of generality.
As shown in Figure 1, the idea is to build a spine of n-bit states

by sequentially hashing together groups of k bits from the input
message. We denote bits mki+1 . . .mk(i+1) as m̄i, so the sequence of
states is simply

si = h(si�1, m̄i), s0 = 0n .

Each of these n/k states, or spine values (n being the number of
bits in the input message), is used to seed a random number genera-
tor, RNG. Each RNG generates a sequence of pseudo-random c-bit
numbers, which are converted into output symbols using a constella-
tion mapping function (§3.3). RNG is a deterministic function from
a n-bit seed and an index to a c-bit number:

RNG : {0,1}n ⇥N! {0,1}c.

The sequence of states computed by repeatedly applying h is
superficially similar to a traditional convolutional encoding, but
there are three key differences. First, the hash function has a richer
pseudo-random (and generally nonlinear) structure and operates
on a significantly larger n-bit state, where n is on the order of 32.
(Hash collisions are a potential concern; §8.5 shows that they can be
made extremely rare.) Traditional convolutional codes update their
state according to a linear (exclusive-or) function. The larger state
space of the spinal encoder gives rise to the second major difference:
the “constraint length” of this encoding goes all the way back to

I

Q

I

Q

Figure 2: Uniform (left) and truncated Gaussian (right) con-
stellation mapping functions. Same average power; c = 6; trun-
cated Gaussian with b = 2.

the start of the message, because the state at the end of any stage
depends on all the input message bits in the message until that point.
The third key difference is that, whereas a convolutional encoder
has a constant ratio of the number of input to output bits (i.e., a
fixed rate), the spinal code is rateless because one can generate
as many transmission symbols as desired using the RNG. h and
RNG together allow the spinal encoding to not only achieve good
separation between codewords, but also ratelessness.

3.2 Hash Function and RNG
We choose h uniformly using a random seed from a pairwise inde-

pendent family of hash functions H [24]. This property guarantees

that for two distinct hash inputs x and y, every pair of output values
a and b is equally likely. This property is standard and attainable
in practice. The encoder and decoder both know h, RNG, and the
initial value s0; if s0 is chosen pseudo-randomly, the resulting sym-
bol sequence is pseudo-random, providing resilience against “bad”
or adversarial input message sequences (one may view the use of a
pseudo-random s0 as analogous to a scrambler).

Because our requirements for RNG are similar to those for h,
one suitable choice for RNG is to combine h with a n-to-c-bit shift
register.

3.3 Rateless Symbol Generation
The output of the encoder is delivered in a series of passes of

n/k symbols each, as depicted in Figure 1. The encoder produces
symbols xi,1 for the first pass, where xi,1 is the output of a determin-
istic constellation mapping function acting on the first c-bit number
generated by the ith RNG (seeded by si). It produces symbols xi,`
for subsequent passes by generating additional outputs from each
of the random number generators. The encoder continues to loop
back and generate additional symbols until the receiver manages to
decode the message or the sender or receiver decides to give up on
the message.

Let b be a single c-bit input to the constellation mapping function.
For the BSC, the constellation mapping is trivial: c = 1, and the
sender transmits b. For the AWGN channel (with or without fading),
the encoder needs to generate I and Q under an average power
constraint. The constellation mapping function generates I and Q
independently from two separate RNG outputs of c bits each.

We examine the two constellation mappings shown in Figure 2.
The first is uniform, and the second produces a truncated Gaussian
via the standard normal CDF, F. In terms of the average power P,

Uniform: b! (u�1/2)
p

6P
Gaussian: b!F�1(g +(1�2g)u)

p
P/2

u =
b+1/2

2c

51

xi,l !
xi,l + 1

2 − 2
c−1

2c 6P

Uniform Truncated Gaussian

Figure 1: Encoding process. Start with a hash function, h. Com-
pute spine values si = h(si�1, m̄i). Seed RNG with si. For pass `,
map c bits from RNG to symbol xi,`.

until the message is successfully decoded, or until the sender (or
receiver) gives up, causing the sender to proceed to the next message.
In practice, a single link-layer frame might comprise multiple coded
messages, as explained in §6.

When used in rateless mode, spinal encoder can produce as many

symbols as necessary from a given sequence of message bits. The
sequence of coded bits or symbols generated at a higher code rate is

a prefix of that generated at all lower code rates.

3.1 Spine Construction
At the core of the spinal code is a hash function, h, and a pseudo-

random number generator, RNG, known to both the transmitter and
receiver. h takes two inputs: (1) a n-bit state and (2) k message bits.
It returns a new n-bit state. That is,

h : {0,1}n ⇥{0,1}k ! {0,1}n .

The initial value, s0, of the n-bit state is known to both the encoder
and decoder, and may be considered (for now) to be the string 0n

without loss of generality.
As shown in Figure 1, the idea is to build a spine of n-bit states

by sequentially hashing together groups of k bits from the input
message. We denote bits mki+1 . . .mk(i+1) as m̄i, so the sequence of
states is simply

si = h(si�1, m̄i), s0 = 0n .

Each of these n/k states, or spine values (n being the number of
bits in the input message), is used to seed a random number genera-
tor, RNG. Each RNG generates a sequence of pseudo-random c-bit
numbers, which are converted into output symbols using a constella-
tion mapping function (§3.3). RNG is a deterministic function from
a n-bit seed and an index to a c-bit number:

RNG : {0,1}n ⇥N! {0,1}c.

The sequence of states computed by repeatedly applying h is
superficially similar to a traditional convolutional encoding, but
there are three key differences. First, the hash function has a richer
pseudo-random (and generally nonlinear) structure and operates
on a significantly larger n-bit state, where n is on the order of 32.
(Hash collisions are a potential concern; §8.5 shows that they can be
made extremely rare.) Traditional convolutional codes update their
state according to a linear (exclusive-or) function. The larger state
space of the spinal encoder gives rise to the second major difference:
the “constraint length” of this encoding goes all the way back to

I

Q

I

Q

Figure 2: Uniform (left) and truncated Gaussian (right) con-
stellation mapping functions. Same average power; c = 6; trun-
cated Gaussian with b = 2.

the start of the message, because the state at the end of any stage
depends on all the input message bits in the message until that point.
The third key difference is that, whereas a convolutional encoder
has a constant ratio of the number of input to output bits (i.e., a
fixed rate), the spinal code is rateless because one can generate
as many transmission symbols as desired using the RNG. h and
RNG together allow the spinal encoding to not only achieve good
separation between codewords, but also ratelessness.

3.2 Hash Function and RNG
We choose h uniformly using a random seed from a pairwise inde-

pendent family of hash functions H [24]. This property guarantees

that for two distinct hash inputs x and y, every pair of output values
a and b is equally likely. This property is standard and attainable
in practice. The encoder and decoder both know h, RNG, and the
initial value s0; if s0 is chosen pseudo-randomly, the resulting sym-
bol sequence is pseudo-random, providing resilience against “bad”
or adversarial input message sequences (one may view the use of a
pseudo-random s0 as analogous to a scrambler).

Because our requirements for RNG are similar to those for h,
one suitable choice for RNG is to combine h with a n-to-c-bit shift
register.

3.3 Rateless Symbol Generation
The output of the encoder is delivered in a series of passes of

n/k symbols each, as depicted in Figure 1. The encoder produces
symbols xi,1 for the first pass, where xi,1 is the output of a determin-
istic constellation mapping function acting on the first c-bit number
generated by the ith RNG (seeded by si). It produces symbols xi,`
for subsequent passes by generating additional outputs from each
of the random number generators. The encoder continues to loop
back and generate additional symbols until the receiver manages to
decode the message or the sender or receiver decides to give up on
the message.

Let b be a single c-bit input to the constellation mapping function.
For the BSC, the constellation mapping is trivial: c = 1, and the
sender transmits b. For the AWGN channel (with or without fading),
the encoder needs to generate I and Q under an average power
constraint. The constellation mapping function generates I and Q
independently from two separate RNG outputs of c bits each.

We examine the two constellation mappings shown in Figure 2.
The first is uniform, and the second produces a truncated Gaussian
via the standard normal CDF, F. In terms of the average power P,

Uniform: b! (u�1/2)
p

6P
Gaussian: b!F�1(g +(1�2g)u)

p
P/2

u =
b+1/2

2c

51

a) Start with a square constellation
– Recall, distance of each symbol from origin determines power
– So, a circle traces constant power points

b) Maintaining inter-point spacing, move points inside circle
– This is shaping gain:we maintain error probability, hence throughput, but

reduce the average signal power
– Now can add more points, increasing throughput (c)to restore average

power to as it was before.

Digression: What’s the best constellation
shape?

11

(a) (b) (c)

Perry, Ianucci, Fleming, Balakrishnan, Shah. Spinal Codes, SIGCOMM 2012.

1. Encoding Spinal Codes

2. Decoding Spinal codes
– “Maximum-likelihood” decoding
– The Bubble Decoder
– Puncturing for higher rate

3. Implementation and evaluation

Spinal Codes: Outline

12

Decode by replaying the encoder

Sender transmits “1”, “0”:
hs0

1

h

0

w w

hs0

0

× ×
¢ ¢

Instead of inverting the hash function, the decoder
replays all four possibilities:

Transmitted
symbols

h

0✔� ✔� ✔�

hs0

1

h

0

× ×¢ ¢

hs0

0

h

1

× ×
¢

¢

hs0

1

h

1

× ×¢

¢

✔�

¢ Replayed symbol
× Received symbol

• How to decide between the four possible messages?

• Measure total distance between:
– Received symbols, corrupted by noise (×), and
– Replayed symbols (¢)

• Sum across stages: the distance increases at first incorrect symbol

Decode by measuring distance

14

hs0

0

h

0

× ×
¢ ¢

hs0

1

h

0

× ×¢ ¢

hs0

0

h

1

× ×
¢

¢

hs0

1

h

1

× ×¢

¢

✔� ✔� ✔�

✔�

¢ Replayed symbol
× Received symbol

• Recall: The encoder sends multiple passes over the same
message blocks

Adding additional passes

15

Figure 1: Encoding process. Start with a hash function, h. Com-
pute spine values si = h(si�1, m̄i). Seed RNG with si. For pass `,
map c bits from RNG to symbol xi,`.

until the message is successfully decoded, or until the sender (or
receiver) gives up, causing the sender to proceed to the next message.
In practice, a single link-layer frame might comprise multiple coded
messages, as explained in §6.

When used in rateless mode, spinal encoder can produce as many

symbols as necessary from a given sequence of message bits. The
sequence of coded bits or symbols generated at a higher code rate is

a prefix of that generated at all lower code rates.

3.1 Spine Construction
At the core of the spinal code is a hash function, h, and a pseudo-

random number generator, RNG, known to both the transmitter and
receiver. h takes two inputs: (1) a n-bit state and (2) k message bits.
It returns a new n-bit state. That is,

h : {0,1}n ⇥{0,1}k ! {0,1}n .

The initial value, s0, of the n-bit state is known to both the encoder
and decoder, and may be considered (for now) to be the string 0n

without loss of generality.
As shown in Figure 1, the idea is to build a spine of n-bit states

by sequentially hashing together groups of k bits from the input
message. We denote bits mki+1 . . .mk(i+1) as m̄i, so the sequence of
states is simply

si = h(si�1, m̄i), s0 = 0n .

Each of these n/k states, or spine values (n being the number of
bits in the input message), is used to seed a random number genera-
tor, RNG. Each RNG generates a sequence of pseudo-random c-bit
numbers, which are converted into output symbols using a constella-
tion mapping function (§3.3). RNG is a deterministic function from
a n-bit seed and an index to a c-bit number:

RNG : {0,1}n ⇥N! {0,1}c.

The sequence of states computed by repeatedly applying h is
superficially similar to a traditional convolutional encoding, but
there are three key differences. First, the hash function has a richer
pseudo-random (and generally nonlinear) structure and operates
on a significantly larger n-bit state, where n is on the order of 32.
(Hash collisions are a potential concern; §8.5 shows that they can be
made extremely rare.) Traditional convolutional codes update their
state according to a linear (exclusive-or) function. The larger state
space of the spinal encoder gives rise to the second major difference:
the “constraint length” of this encoding goes all the way back to

I

Q

I

Q

Figure 2: Uniform (left) and truncated Gaussian (right) con-
stellation mapping functions. Same average power; c = 6; trun-
cated Gaussian with b = 2.

the start of the message, because the state at the end of any stage
depends on all the input message bits in the message until that point.
The third key difference is that, whereas a convolutional encoder
has a constant ratio of the number of input to output bits (i.e., a
fixed rate), the spinal code is rateless because one can generate
as many transmission symbols as desired using the RNG. h and
RNG together allow the spinal encoding to not only achieve good
separation between codewords, but also ratelessness.

3.2 Hash Function and RNG
We choose h uniformly using a random seed from a pairwise inde-

pendent family of hash functions H [24]. This property guarantees

that for two distinct hash inputs x and y, every pair of output values
a and b is equally likely. This property is standard and attainable
in practice. The encoder and decoder both know h, RNG, and the
initial value s0; if s0 is chosen pseudo-randomly, the resulting sym-
bol sequence is pseudo-random, providing resilience against “bad”
or adversarial input message sequences (one may view the use of a
pseudo-random s0 as analogous to a scrambler).

Because our requirements for RNG are similar to those for h,
one suitable choice for RNG is to combine h with a n-to-c-bit shift
register.

3.3 Rateless Symbol Generation
The output of the encoder is delivered in a series of passes of

n/k symbols each, as depicted in Figure 1. The encoder produces
symbols xi,1 for the first pass, where xi,1 is the output of a determin-
istic constellation mapping function acting on the first c-bit number
generated by the ith RNG (seeded by si). It produces symbols xi,`
for subsequent passes by generating additional outputs from each
of the random number generators. The encoder continues to loop
back and generate additional symbols until the receiver manages to
decode the message or the sender or receiver decides to give up on
the message.

Let b be a single c-bit input to the constellation mapping function.
For the BSC, the constellation mapping is trivial: c = 1, and the
sender transmits b. For the AWGN channel (with or without fading),
the encoder needs to generate I and Q under an average power
constraint. The constellation mapping function generates I and Q
independently from two separate RNG outputs of c bits each.

We examine the two constellation mappings shown in Figure 2.
The first is uniform, and the second produces a truncated Gaussian
via the standard normal CDF, F. In terms of the average power P,

Uniform: b! (u�1/2)
p

6P
Gaussian: b!F�1(g +(1�2g)u)

p
P/2

u =
b+1/2

2c

51

• What’s a reasonable strategy for decoding now?

• Take the average distancefrom the replayed symbol (¢),across all
received symbols (×, ×)
– Intuition: As number of passes increases, noise and bursts of

interference average out and impact the metric less

Adding additional passes

16

hs0

0

h

0

× ×
¢ ¢

hs0

1

h

0

× ×¢ ¢

hs0

0

h

1

× ×
¢

¢

hs0

1

h

1

× ×¢

¢

✔� ✔� ✔�

✔�

×

×

×

× ×

××

×

¢ Replayed symbol
× Received symbol

• Consider all 2n possible messages that could have been sent
– The ML decoder minimizes probability of error

• Pick the message Mʹthat minimizes the vector distance between:
– The vector of all received constellation points y
– The vector of constellation points sent if Mʹwere the message, x(M)́

• In further detail:
1. xt,l(M)́:tth constellation point sent in the lth pass for Mʹ
2. yt,l:tth constellation point received in the lth pass

The Maximum Likelihood (ML) decoder

17

M̂ = arg min
!M ∈{0,1}n

y− x !M()
2

M̂ = arg min
!M ∈{0,1}n

yt, l − xt, l !M()
2

all t, l
∑

• Observe: Hypotheses whose initial stages share the same
symbol guesses are identical in those stages

ML decoding over a tree

18

hs0

0

h

0

× ×
¢ ¢

hs0

1

h

0

× ×¢ ¢

hs0

0

h

1

× ×
¢

¢

hs0

1

h

1

× ×¢

¢

✔� ✔� ✔�

✔�

• Observe: Hypotheses whose initial stages share the same
symbol guesses are identical in those stages

• Therefore we can mergethese initial identical stages:

ML decoding over a tree

19

hs0

0
h

0

×

×

¢

¢

hs0

1 h

0

×

×

¢

¢

h

1

×
¢

h

1

×
¢

✔�

✔�

✔�

• General tree properties:
– n/k levels, one per spine
– Branching factor 2k (per choice

of k-bit message chunk)

• Let s t́ be the tth spine value
associated with all messages that
share s t́

• We find cost of a particular
message by summing costs on
path from root to leaf

ML decoding over a tree

20

h

0
h

0

×

×

¢

¢

h

s0

1 h

0

×

×

¢

¢

h

1

×
¢

h

1

×
¢

✔�

✔�

✔�

s1

s2

y1,1 − x1,1 "s1 = 0()
2

y1,1 − x1,1 "s1 =1()
2

• Suppose the sender transmits L
passes, in a poor channel

• Average (sum) metric across
passes, and label branches

• However, the tree has 2n leaves to
compare so this approach is still
impracticable (too
computationally demanding)

ML decoding over a tree: Multiple passes

21

h

0
h

0

×

×

¢

¢

h

s0

1 h

0

×

×

¢

¢

h

1

×
¢

h

1

×
¢

✔�

✔�

✔�

s1

s2

y1,l − x1,l "s1 = 0()
2

l=1

L

∑

y1,l − x1,l "s1 =1()
2

l=1

L

∑

• Observation: Suppose the ML message M*and some other
message Mʹdiffer only in the ith bit
– Only symbols including and after index ⌈i/k⌉will disagree
– So the earlierthe error in M ,́ the largerthe cost
– Can show that the “runners-up” to M* differ only in the last

O(log n) bits

• Consider the best 100 leaves in the ML tree:
– Tracing back through the tree, they will have a common

ancestorwith M* in O(log n) steps
– This suggests a strategy in which we only keep a limited

number of ancestors

Efficiently exploring the tree

22

• Maintain a beamof Btree node ancestors to explore, each to a
certain depth d

• Expand each ancestor, score every child, propagate best child
score for each ancestor, pick Bbest survivors

• Example: B= d= 2, k = 1 (lighter color = better score)

Bubble decoder

23
Figure 3: Sequential decoding process using the bubble decoder with B = 2, d = 2, k = 1. (a) At the beginning of step i, the partial
trees have depth d� 1. (b) Grow them out to depth d. (c) Propagate the smallest path costs back through the tree. (d) Select the B
best children, pruning the rest. Advance to the next step and repeat.

cost message needs to be validated. We find that adding even just
one tail symbol works well.

4.5 Decoding Time and Space Complexity
A single decoding attempt requires n/k� d steps. Each step

explores B2kd nodes at a cost of L RNG evaluations each, where L
is the number of passes. Each step selects the best B candidates in
O(B2k) comparisons using the selection algorithm. The overall cost
is O(n

k BL2kd) hashes and O(n
k B2k) comparisons.

Storage requirements are O(B2kd(k + n)) for the beam and the
partial trees, plus O(n

k B(k + logB)) for message prefixes.
If B is polynomial in n, or if B is constant and d = O(logn),

the total number of states maintained and the time complexity of
operations remains polynomial in n. If both B and d are constant, the
complexity of the bubble decoder is linear in n. Our experimental
results are for such linear-time configurations, with B maximized
subject to a compute budget (§8.5).

In comparison, LDPC and Raptor decoders use several iterations
of belief propagation (a global operation involving the entire mes-
sage). Turbo decoders also require many full runs of the BCJR [2] or
Viterbi algorithm [40]. All told, LDPC, Raptor, and turbo decoders
perform several tens to thousands of operations per bit.

A spinal decoder with an appropriate choice of parameters per-
forms a comparable number of operations per bit to these codes,
achieves competitive throughput (§8), and is parallelizable (§7.2).
The spinal decoder has the additional advantage that the decoder
can run as symbols arrive because it operates sequentially over the
received data, potentially reducing decode latency.

4.6 Capacity Results
For the AWGN channel with the uniform constellation mapping,

we establish that a polynomial-time decoder achieves rates within a
small constant (⇡ 0.25 bits/symbol) of capacity. The proof appears
in the appendix. A recent companion paper [3] states and establishes
capacity results for the AWGN channel with the Gaussian constella-
tion, and for the BSC: the spinal decoder achieves capacity under

these settings.

THEOREM 1 (AWGN CHANNEL PERFORMANCE). Let

Cawgn(SNR) be the AWGN channel capacity per channel use.

With the uniform constellation, a bubble decoder polynomial in n
achieves BER! 0 as n! • for any number of passes L such that

L
h
Cawgn(SNR)�d

i
> k,

Figure 4: Puncturing schedule. In each subpass, the sender
transmits symbols for spine values marked by dark circles;
shaded circles represent spine values that have already been
sent in a previous subpass.

with the degree of the polynomial inversely proportional to

(Cawgn(SNR)�d � k/L) and

d ⌘ d (c,P⇤,SNR)⇡ 3(1+SNR)2�c +
1
2

log
⇣pe

6

⌘
. (3)

This result suggests that with the uniform constellation mapping,
by selecting a large enough c = W(log(1 + SNR)), it is possible
to achieve rates within 1

2 log(pe/6) ⇡ 0.25 of Cawgn(SNR). As
mentioned above, it is possible to close this theoretical gap with an
appropriately chosen Gaussian constellation mapping. In simula-
tion with finite n, however, we do not see significant performance
differences between the Gaussian and uniform mappings.

5. PUNCTURING
In §3, the sender transmits one symbol per spine value per pass.

If it takes ` passes to decode the message, the rate achieved is k/`
bits per symbol, with a maximum of k. Moreover, at moderate SNR,

when ` is a small integer, quantization introduces plateaus in the
throughput. Because the decoding cost is exponential in k, we cannot
simply increase k to overcome these disadvantages.

Spinal codes may be punctured to achieve both high and finer-
grained rates, without increasing the cost of decoding. Rather than
sending one symbol per spine value per pass, the sender skips some
spine values and, if required, fills them in subsequent “subpasses”
before starting the next pass.

Figure 4 shows transmission schedule we implemented (others
are possible). Each pass is divided into eight subpasses (rows in
the figure). Within a subpass, only the spine values corresponding

53

beam

• The bubble decoder operates in n/k − dsteps
– Each step explores B·2kd nodes, evaluating the RNG Ltimes
– Selecting the best Bcandidates takes B·2k comparisons

• Overall cost: O((n/k)BL·2kd) hashes, O((n/k)B·2k) comparisons

• Comparison with LDPC belief propagation algorithms
– These operate in iterations, too, involve all message bits
– But, these are also quite parallelizable
– Hard to give exact head-to-head comparison

Decoding complexity

24

• Spinal codes as described so far uses different numbers of passes
to adjust the rate

• Two problems in Spinal codes as described so far:

1. Must transmit one full pass, so max out at kbits/symbol
• Increase k? No: Decoding cost is exponential in k

1. Sending Lpasses reduces rate to k/L—abrupt drop
• Introduces plateaus in the rate versus SNR curve

Adjusting the rate

25

• Idea: Systematically skip some spines
– Sender and receiver agree on the pattern beforehand
– Receiver can now attempt a decode before a pass concludes

• Decoder algorithm unchanged, missing symbols get zero score

• Max rate of this puncturing: 8·kbits/symbol

Puncturing for higher and finer-controlled
rates

26

Figure 3: Sequential decoding process using the bubble decoder with B = 2, d = 2, k = 1. (a) At the beginning of step i, the partial
trees have depth d� 1. (b) Grow them out to depth d. (c) Propagate the smallest path costs back through the tree. (d) Select the B
best children, pruning the rest. Advance to the next step and repeat.

cost message needs to be validated. We find that adding even just
one tail symbol works well.

4.5 Decoding Time and Space Complexity
A single decoding attempt requires n/k� d steps. Each step

explores B2kd nodes at a cost of L RNG evaluations each, where L
is the number of passes. Each step selects the best B candidates in
O(B2k) comparisons using the selection algorithm. The overall cost
is O(n

k BL2kd) hashes and O(n
k B2k) comparisons.

Storage requirements are O(B2kd(k + n)) for the beam and the
partial trees, plus O(n

k B(k + logB)) for message prefixes.
If B is polynomial in n, or if B is constant and d = O(logn),

the total number of states maintained and the time complexity of
operations remains polynomial in n. If both B and d are constant, the
complexity of the bubble decoder is linear in n. Our experimental
results are for such linear-time configurations, with B maximized
subject to a compute budget (§8.5).

In comparison, LDPC and Raptor decoders use several iterations
of belief propagation (a global operation involving the entire mes-
sage). Turbo decoders also require many full runs of the BCJR [2] or
Viterbi algorithm [40]. All told, LDPC, Raptor, and turbo decoders
perform several tens to thousands of operations per bit.

A spinal decoder with an appropriate choice of parameters per-
forms a comparable number of operations per bit to these codes,
achieves competitive throughput (§8), and is parallelizable (§7.2).
The spinal decoder has the additional advantage that the decoder
can run as symbols arrive because it operates sequentially over the
received data, potentially reducing decode latency.

4.6 Capacity Results
For the AWGN channel with the uniform constellation mapping,

we establish that a polynomial-time decoder achieves rates within a
small constant (⇡ 0.25 bits/symbol) of capacity. The proof appears
in the appendix. A recent companion paper [3] states and establishes
capacity results for the AWGN channel with the Gaussian constella-
tion, and for the BSC: the spinal decoder achieves capacity under

these settings.

THEOREM 1 (AWGN CHANNEL PERFORMANCE). Let

Cawgn(SNR) be the AWGN channel capacity per channel use.

With the uniform constellation, a bubble decoder polynomial in n
achieves BER! 0 as n! • for any number of passes L such that

L
h
Cawgn(SNR)�d

i
> k,

Figure 4: Puncturing schedule. In each subpass, the sender
transmits symbols for spine values marked by dark circles;
shaded circles represent spine values that have already been
sent in a previous subpass.

with the degree of the polynomial inversely proportional to

(Cawgn(SNR)�d � k/L) and

d ⌘ d (c,P⇤,SNR)⇡ 3(1+SNR)2�c +
1
2

log
⇣pe

6

⌘
. (3)

This result suggests that with the uniform constellation mapping,
by selecting a large enough c = W(log(1 + SNR)), it is possible
to achieve rates within 1

2 log(pe/6) ⇡ 0.25 of Cawgn(SNR). As
mentioned above, it is possible to close this theoretical gap with an
appropriately chosen Gaussian constellation mapping. In simula-
tion with finite n, however, we do not see significant performance
differences between the Gaussian and uniform mappings.

5. PUNCTURING
In §3, the sender transmits one symbol per spine value per pass.

If it takes ` passes to decode the message, the rate achieved is k/`
bits per symbol, with a maximum of k. Moreover, at moderate SNR,

when ` is a small integer, quantization introduces plateaus in the
throughput. Because the decoding cost is exponential in k, we cannot
simply increase k to overcome these disadvantages.

Spinal codes may be punctured to achieve both high and finer-
grained rates, without increasing the cost of decoding. Rather than
sending one symbol per spine value per pass, the sender skips some
spine values and, if required, fills them in subsequent “subpasses”
before starting the next pass.

Figure 4 shows transmission schedule we implemented (others
are possible). Each pass is divided into eight subpasses (rows in
the figure). Within a subpass, only the spine values corresponding

53

• Sender and receiver need to maintain synchronization
– Sender uses a short sequence number protected by a highly

redundant code

• Unusual property of Spinal codes: Shortermessage length n is
moreefficient
– This is in opposition to the trend most codes follow
– Divide the link-layer frame into shorter checksum-protected

code blocks

• If half-duplex radio, when should sender wait for feedback?
– For more information, see RateMore (MobiCom ‘12)

Framing at the link layer

27

Perry, Ianucci, Fleming, Balakrishnan, Shah. Spinal Codes, SIGCOMM 2012.

1. Encoding Spinal Codes

2. Decoding Spinal codes
– “Maximum-likelihood” decoding
– The Bubble Decoder
– Puncturing for higher rate

3. Performance evaluation

Spinal Codes: Outline

28

• Software simulation: Simulated wireless channel (additive white
Gaussian noise and Rayleigh fading)

• Hardware platform: Airblue(Xilinx Virtex-5 FPGA, USRP2 radio)
– Real 10, 20 MHz bandwidth channels in 2.4 GHz ISM band

Methodology

29

• Gap to capacity: How much more
noise could a capacity-achieving
code tolerate at same rate?
– Smaller gap is better

– e.g.: This code achieves six
bits/symbol at 20 dB SNR,
for a 2 dB gap to capacity

24 25 26 27 28 29 210

computation (branch evaluations per bit)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

fr
ac

ti
on

of
ca

pa
ci

ty
ac

hi
ev

ed

k = 1
k = 2
k = 3
k = 4
k = 5
k = 6

Figure 12: How compute budget per bit (B2k/k) affects perfor-
mance in the SNR range 2-24 dB, for different k. A choice of
k = 4 yields codes that perform well over the entire range of
budgets. This graph also shows that B = 256 is a good choice.

�5 0 5 10 15 20 25 30 35
SNR (dB)

0

1

2

3

4

5

6

7

8

9

ra
te

(b
it

s
pe

r
sy

m
bo

l)

Shannon boundc=1
c=2
c=3
c=4
c=5
c=6

Figure 13: Throughput with different densities of output sym-
bols. c = 6 is a good choice for this range of SNRs.

of B according to its price/performance ratio. As computation be-
comes cheaper, increasingly higher budgets can be used, translating
to higher B, to get better performance. From this graph, we conclude
that k = 4 is a good choice for the SNR range we are targeting. For
our experimental compute budgets, B = 256 is a reasonable choice.

Picking c. The number of output bits, c, limits the maximum
throughput. When c is small, even if the channel’s SNR can support

a high rate, there are simply too few bits transmitted to decode with
high throughput. Figure 13 shows that c = 6 is the right choice for
the range of SNR values we are concerned with.

Peak-to-average power ratio (PAPR). A practical modulation
scheme should have a modest PAPR, defined in terms of the output
waveform y(t) as 10 · log10

max |y(t)|2
mean|y(t)|2 . High PAPR is a problem be-

cause the linearity of radio components degrades when waveforms
have large peaks. In a non-OFDM wireless system, dense constel-
lations usually have a high PAPR: for QAM-4 it is 0 dB, while for
QAM-• it is 4.77 dB.

These results, however, do not carry over to the 802.11a/g OFDM
stack, which our PHY uses. For such OFDM systems using scram-
bling, PAPR is typically 5-12 dB [29], depending on the transmitted

symbols. As shown in Table 1, OFDM obscures all but negligible
differences between the PAPRs of dense constellations and standard

WiFi constellations.

Code block length. A strength of the spinal code is good memory
in the encoding, so bad information from a burst of noise can be
corrected by all following symbols if necessary. But this memory
also has a price: once a path is pruned out, the probability of the
decoder resynchronizing to a useful path is low. The decoder has
to receive more symbols until the true path is not pruned. However
small this probability, for fixed k and B, a longer code block means
more opportunities for the true path to be lost. Hence, longer code

Constellation Mean PAPR 99.99% below
QAM-4 7.34 dB 11.31 dB
QAM-64 7.31 dB 11.41 dB
QAM-220 7.31 dB 11.43 dB
Trunc. Gaussian, b = 2 7.29 dB 11.47 dB

Table 1: Empirical PAPR for 802.11a/g OFDM with various
constellations, showing negligible effect of constellation density.
Each row summarizes 5 million experiments.

�5 0 5 10 15 20 25 30 35
SNR (dB)

�6

�5

�4

�3

�2

�1

0

ga
p

to
ca

pa
ci

ty
(d

B
)

n = 64
n = 128
n = 256
n = 512
n = 1024
n = 2048

Figure 14: Effect of code block length on performance (k = 4,
B = 256). Some puncturing artifacts can be seen above 25 dB,
where less than one pass is transmitted on average.

blocks require either more symbols per bit or a larger B in order to
decode, even with the same SNR, as reflected in Figure 14.

9. CONCLUSION
This paper described the design, implementation, and evaluation

of rateless spinal codes. The key idea in spinal codes is the sequential
application of a random hash function to the message bits to produce
a sequence of coded bits and symbols for transmission. We described
a novel, efficient, capacity-achieving bubble decoder for spinal codes.
Our experimental results show that spinal codes out-perform Raptor,
Strider, and the best envelope of 802.11n LDPC codes by significant
amounts over a range of channel conditions and code block sizes.
Our hardware prototype in Airblue [25] runs at 10 Mbits/s on FPGA
hardware, and we estimate it can run at 50 Mbits/s in silicon.

This paper opens up several avenues for future work. First, devel-
oping a wireless network architecture atop spinal codes that provides
a different wireless link abstraction from today: a link is that is
always reliable at all SNR above some well-defined threshold, but
which produces outages below the threshold, eliminating highly
variable packet delays. Second, developing a good link-layer pro-
tocol for rateless codes to deal with the issues raised in §6. Third,
investigating the joint-decoding properties of codes that use hash
functions. And last but not least, the ideas presented in this paper
may provide a constructive framework for de-randomizing, and real-
izing in practice, a variety of random-coding arguments widely used
in information-theoretic proofs.

ACKNOWLEDGMENTS
We thank Joseph Lynch for helping us collect hardware results and
Aditya Gudipati for support in implementing Strider. We thank
David Andersen, Nick Feamster, Daniel Halperin, Mark Handley,
Kyle Jamieson, Henry Pfister, Tom Richardson, Pramod Viswanath,
Lizhong Zheng, and the SIGCOMM reviewers for helpful comments.
Three generous graduate fellowships supported this work: the Irwin
and Joan Jacobs Presidential Fellowship (Perry and Iannucci); the
Claude E. Shannon Assistantship (Perry), and the Intel Fellowship
(Fleming). Intel also partially supported the Airblue platform. We
thank the members of the MIT Center for Wireless Networks and

58

R
at

e
(b

its
 p

er
 s

ym
bo

l)

0

2

4

6

8

2 dB

1. How well do Spinal codes perform versus other codes:
– Rateless codes such as Raptor and Strider?
– Rated codes such as LDPC?

2. How should one choose various parameters:
– Bits per chunk k,beam width B, output bits c?

Performance evaluation: Questions

30

• Simulated AWGN channel: no link-layer performance effects here

• LDPC envelope: Choose best-performing rated LDPC code at each SNR to mimic the
best a rate adaptation strategy could do

• Strider+: Strider + puncturing: finer rate control, but significant gap to capacity

Spinal codes: Higher rate on AWGN channel

31

�5 0 5 10 15 20 25 30 35
SNR (dB)

0

1

2

3

4

5

6

7

8

9

ra
te

(b
it

s
pe

r
sy

m
bo

l)

Shannon boundSpinal, n = 256, k=4, B = 256
Spinal, n = 1024, k=4, B = 256
Strider, n = 50490
Strider+, n = 50490
LDPC envelope
Raptor, n = 9500

< 10dB 10-20dB > 20dB
SNR range

0.0

0.2

0.4

0.6

0.8

1.0

fr
ac

ti
on

of
ca

pa
ci

ty
ac

hi
ev

ed

spinal
raptor
strider
strider+

�5 0 5 10 15 20 25 30 35
SNR (dB)

�8

�7

�6

�5

�4

�3

�2

�1

0

ga
p

to
ca

pa
ci

ty
(d

B
)

Spinal, n = 256, k=4, B = 256

Spinal, n = 1024, k=4, B = 256

Strider, n = 50490

Strider+, n = 50490

LDPC envelope
Raptor, n = 9500

Figure 6: Rates achieved by spinal code with k = 4, B = 256, d = 1, and the other codes (Strider+ is Strider with our puncturing
enhancement). Experiments at each SNR average Raptor performance over 100-300 kbits of data, Strider over 5-20 Mbits, LDPC
over 2 Mbits, and spinal codes over 0.6 to 3 Mbits.

8.2 AWGN Channel Performance
Figure 6 shows three charts comparing Raptor codes, Strider, and

LDPC codes to spinal codes from experiments run on the standard
code parameters for each code. The first two charts show the rates
as a function of SNR, while the third shows the gap to capacity.
The two spinal code curves (256 and 1024 bits) both come closer to
Shannon capacity than any of the other codes across all SNR values
from �5 dB to 35 dB. The gap-to-capacity curves show that spinal
codes consistently maintain a smaller gap than all the other codes.

We aggregate by SNR to summarize gains under different con-
ditions. Above an SNR of 20 dB, spinal codes obtain a rate 21%
higher than Raptor/QAM-256, 40% higher than Strider, and 54%
higher than the LDPC envelope. Between 10 and 20 dB, spinal
codes achieve a rate 25% higher than Strider and 12% higher than
Raptor/QAM-256. At SNRs below 10 dB, spinal codes achieve a
rate 20% higher than Raptor/QAM-256 and 32% higher than Strider.

Strider. Strider uses 33 parallel rate-1/5 turbo codes with QPSK
modulation, so without puncturing, the rates it achieves track the
expression (2/5) ·33/` bits/symbol, where ` is the number of passes
required for successful decoding. In the tested SNR range, Strider
needs at least ` = 2 passes to decode, for a maximum rate of 6.6
bits/symbol. The puncturing enhancement we added (Strider+) pro-
duces the more graded set of achieved rates shown in Figure 6. At
low SNR, we find that Strider is unable to successfully decode as
many messages as spinal codes. Another source of inefficiency
in Strider is that the underlying rate-1/5 turbo code has a non-
negligible gap to capacity. The results (without puncturing) are
generally consistent with Figure 4a in the Strider paper [12]; it is
important to note that the “omniscient” scheme discussed in that
paper is constrained to modulation and coding schemes in 802.11a/g,
and as such has a significant gap to the Shannon capacity.

Raptor. We are unaware of any previously reported Raptor result
for the AWGN channel that achieves rates as high as those shown
in our implementation [26]. We believe that one reason for the
good performance is that we have a careful demapping scheme that
attempts to preserve as much soft information as possible. That
said, spinal codes still perform 12%–21% better across the entire
SNR range, with the greatest gains at low and high SNRs. There
are two reasons for better performance: first, spinal codes naturally
incorporate soft information, while Raptor (and also Strider) loses
information in the mapping/demapping steps, and second, the LT
code used in Raptor has some information loss. We experimented
with Raptor/QAM-64 as well, finding that it performs a little better
at low-to-medium SNR (16% worse than spinal codes, rather than
20%), but does much worse (54%) at high SNR. The dense QAM-
256 constellation does entail a significantly higher decoding cost for
Raptor, whereas spinal codes naturally support dense constellations.

�5 0 5 10 15 20 25 30 35
SNR (dB)

0

1

2

3

4

5

6

7

8

9

ra
te

(b
it

s
pe

r
sy

m
bo

l)

Shannon bound
Spinal, rateless
Spinal, fixed rate

6 8 10 12 14
SNR (dB)

0

1

2

3

4

5

ra
te

(b
it

s
pe

r
sy

m
bo

l)

Shannon bound
Spinal, rateless
Spinal, fixed rate

Figure 7: Throughput of the rateless spinal code compared to
various rated versions of the spinal code.

LDPC. The primary reason why spinal codes do better than the
best envelope of LDPC codes has to do with the ability of rateless
codes to take advantage of “lucky” channel conditions. We term this
the hedging effect. Intuitively, hedging is the ability to decode in
less time when the noise is low, without sacrificing reliability. This
property is more general than the LDPC comparison. In particular,
Figure 7 demonstrates that the rateless spinal code outperforms
every rated version of the spinal code at every SNR.

Constant SNR means that the distribution of the noise does not
vary, but the realized noise does vary substantially over time. Be-
cause rated codes cannot adapt to realized noise, they must be risk-
averse to ensure a high probability of decoding. Hence, they tend to
occupy the channel for longer than strictly necessary. By contrast,
rateless codes can use the channel for less time when the realized
noise is small and thus achieve higher rates. Due to the law of large
numbers (precisely, concentration), this effect diminishes with in-
creasing message length. For the same reason, rated codes approach
capacity only for long message sizes.

Small code block sizes. The results presented above picked favor-
able code block (message) sizes for each code. For many Internet
applications, including audio and games, the natural packet size
is in the 64-256-byte range, rather than tens of thousands of bits.
Understanding the performance of different codes in this regime
would help us evaluate their effectiveness for such applications.

Figure 8 shows the rates achieved by spinal codes, Raptor, and
Strider at three small packet sizes: 1024, 2048, and 3072 bits. Each
column shows the results obtained for data transfers in the SNR
range 5 to 25 dB. In this range, spinal codes outperform Raptor by
between 14% and 20% for these packet sizes.

The gains over Strider are substantial (2.5⇥ to 10⇥) even when
puncturing is used. To handle small packets in Strider, we used
the same number of layers and reduced the number of symbols per

56

• Constant SNR means constant
averagenoise power
– But, noise impacting any

particular symbol(s)may be
higher or lower

• Rated codes must be risk averse
(send at lower rate)

• Rateless codes can decode with
fewer symbols when noise is
momentarily lower

• But this result requires perfect
and instantaneous feedback
so the ratelesscode knows
when to stop

Rateless codes can “hedge their bets”

32

�5 0 5 10 15 20 25 30 35
SNR (dB)

0

1

2

3

4

5

6

7

8

9

ra
te

(b
it

s
pe

r
sy

m
bo

l)

Shannon boundSpinal, n = 256, k=4, B = 256
Spinal, n = 1024, k=4, B = 256
Strider, n = 50490
Strider+, n = 50490
LDPC envelope
Raptor, n = 9500

< 10dB 10-20dB > 20dB
SNR range

0.0

0.2

0.4

0.6

0.8

1.0

fr
ac

ti
on

of
ca

pa
ci

ty
ac

hi
ev

ed

spinal
raptor
strider
strider+

�5 0 5 10 15 20 25 30 35
SNR (dB)

�8

�7

�6

�5

�4

�3

�2

�1

0

ga
p

to
ca

pa
ci

ty
(d

B
)

Spinal, n = 256, k=4, B = 256

Spinal, n = 1024, k=4, B = 256

Strider, n = 50490

Strider+, n = 50490

LDPC envelope
Raptor, n = 9500

Figure 6: Rates achieved by spinal code with k = 4, B = 256, d = 1, and the other codes (Strider+ is Strider with our puncturing
enhancement). Experiments at each SNR average Raptor performance over 100-300 kbits of data, Strider over 5-20 Mbits, LDPC
over 2 Mbits, and spinal codes over 0.6 to 3 Mbits.

8.2 AWGN Channel Performance
Figure 6 shows three charts comparing Raptor codes, Strider, and

LDPC codes to spinal codes from experiments run on the standard
code parameters for each code. The first two charts show the rates
as a function of SNR, while the third shows the gap to capacity.
The two spinal code curves (256 and 1024 bits) both come closer to
Shannon capacity than any of the other codes across all SNR values
from �5 dB to 35 dB. The gap-to-capacity curves show that spinal
codes consistently maintain a smaller gap than all the other codes.

We aggregate by SNR to summarize gains under different con-
ditions. Above an SNR of 20 dB, spinal codes obtain a rate 21%
higher than Raptor/QAM-256, 40% higher than Strider, and 54%
higher than the LDPC envelope. Between 10 and 20 dB, spinal
codes achieve a rate 25% higher than Strider and 12% higher than
Raptor/QAM-256. At SNRs below 10 dB, spinal codes achieve a
rate 20% higher than Raptor/QAM-256 and 32% higher than Strider.

Strider. Strider uses 33 parallel rate-1/5 turbo codes with QPSK
modulation, so without puncturing, the rates it achieves track the
expression (2/5) ·33/` bits/symbol, where ` is the number of passes
required for successful decoding. In the tested SNR range, Strider
needs at least ` = 2 passes to decode, for a maximum rate of 6.6
bits/symbol. The puncturing enhancement we added (Strider+) pro-
duces the more graded set of achieved rates shown in Figure 6. At
low SNR, we find that Strider is unable to successfully decode as
many messages as spinal codes. Another source of inefficiency
in Strider is that the underlying rate-1/5 turbo code has a non-
negligible gap to capacity. The results (without puncturing) are
generally consistent with Figure 4a in the Strider paper [12]; it is
important to note that the “omniscient” scheme discussed in that
paper is constrained to modulation and coding schemes in 802.11a/g,
and as such has a significant gap to the Shannon capacity.

Raptor. We are unaware of any previously reported Raptor result
for the AWGN channel that achieves rates as high as those shown
in our implementation [26]. We believe that one reason for the
good performance is that we have a careful demapping scheme that
attempts to preserve as much soft information as possible. That
said, spinal codes still perform 12%–21% better across the entire
SNR range, with the greatest gains at low and high SNRs. There
are two reasons for better performance: first, spinal codes naturally
incorporate soft information, while Raptor (and also Strider) loses
information in the mapping/demapping steps, and second, the LT
code used in Raptor has some information loss. We experimented
with Raptor/QAM-64 as well, finding that it performs a little better
at low-to-medium SNR (16% worse than spinal codes, rather than
20%), but does much worse (54%) at high SNR. The dense QAM-
256 constellation does entail a significantly higher decoding cost for
Raptor, whereas spinal codes naturally support dense constellations.

�5 0 5 10 15 20 25 30 35
SNR (dB)

0

1

2

3

4

5

6

7

8

9

ra
te

(b
it

s
pe

r
sy

m
bo

l)

Shannon bound
Spinal, rateless
Spinal, fixed rate

6 8 10 12 14
SNR (dB)

0

1

2

3

4

5

ra
te

(b
it

s
pe

r
sy

m
bo

l)

Shannon bound
Spinal, rateless
Spinal, fixed rate

Figure 7: Throughput of the rateless spinal code compared to
various rated versions of the spinal code.

LDPC. The primary reason why spinal codes do better than the
best envelope of LDPC codes has to do with the ability of rateless
codes to take advantage of “lucky” channel conditions. We term this
the hedging effect. Intuitively, hedging is the ability to decode in
less time when the noise is low, without sacrificing reliability. This
property is more general than the LDPC comparison. In particular,
Figure 7 demonstrates that the rateless spinal code outperforms
every rated version of the spinal code at every SNR.

Constant SNR means that the distribution of the noise does not
vary, but the realized noise does vary substantially over time. Be-
cause rated codes cannot adapt to realized noise, they must be risk-
averse to ensure a high probability of decoding. Hence, they tend to
occupy the channel for longer than strictly necessary. By contrast,
rateless codes can use the channel for less time when the realized
noise is small and thus achieve higher rates. Due to the law of large
numbers (precisely, concentration), this effect diminishes with in-
creasing message length. For the same reason, rated codes approach
capacity only for long message sizes.

Small code block sizes. The results presented above picked favor-
able code block (message) sizes for each code. For many Internet
applications, including audio and games, the natural packet size
is in the 64-256-byte range, rather than tens of thousands of bits.
Understanding the performance of different codes in this regime
would help us evaluate their effectiveness for such applications.

Figure 8 shows the rates achieved by spinal codes, Raptor, and
Strider at three small packet sizes: 1024, 2048, and 3072 bits. Each
column shows the results obtained for data transfers in the SNR
range 5 to 25 dB. In this range, spinal codes outperform Raptor by
between 14% and 20% for these packet sizes.

The gains over Strider are substantial (2.5⇥ to 10⇥) even when
puncturing is used. To handle small packets in Strider, we used
the same number of layers and reduced the number of symbols per

56

• Rayleigh fading channel changing every τsymbols (multipath fading)
with average SNR as shown on x-axis

• Measure codes’ performance without knowing τ
– Shorter coherence time is harder on the code
– Conclude that Spinal can adapt to unknown channel conditions

better than Strider+

Spinal codes tolerate unknown channels well

33

1024 2048 3072
message length (bits)

0.0

0.2

0.4

0.6

0.8

1.0

fr
ac

ti
on

of
ca

pa
ci

ty
ac

hi
ev

ed

spinal
raptor
strider
strider+

Figure 8: Average fraction of capacity in range 5-20 dB for
spinal codes, Raptor and Strider at different message sizes.

0 2 4 6 8 10 12 14
SNR (dB)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ra
te

(b
it

s
pe

r
sy

m
bo

l)

Simulation with hardware parameters
Hardware over-the-air experiment

0

5

10

15

20

25

30

35

M
bp

s

Figure 9: Rates achieved by the hardware over-the-air experi-
ment, compared to a software simulation with similar parame-
ters. Throughput (right axis) shows equivalent link rate for a
20 MHz 802.11a/g channel.

layer, which is a reasonable method. It is possible that reducing the
number of layers might help, but it is unclear how best to handle
smaller sizes in Strider.

8.3 Hardware Over-the-air Results
Figure 9 shows the results obtained by measuring the Airblue

spinal code implementation in over-the-air experiments for n =
192 bits, k = 4, c = 7, d = 1, and B = 4. Each + sign in the
figure is the rate measured by transmitting at least 20 messages
over a 10 MHz band. The measured on-air decoding performance
closely tracks the results of a similarly configured software simulator
across a large SNR range (the range achievable using commodity
USRP2/RFX2400 radio frontends), providing important real-world
validation of the code’s performance. Differences include effects of
fixed-point precision, but should not affect the take-away point: a
reasonable implementation is both achievable and operational.

8.4 Fading Channel Performance
This section describes experiments with spinal codes and Strider+

over a fading channel model [36]. The model is a Rayleigh fading
environment with two parameters (s2,t). The transmitted signal
x is transformed according to y = hx + n, where y is the received
signal, n is Gaussian noise of power s2, and h is a complex fading
coefficient randomized every t symbols to a complex number with
uniform phase and Rayleigh magnitude.

The first experiment shows the performance of the codes on fading
channels, with both codes incorporating detailed fading information.

In the second experiment, neither decoder is given fading infor-
mation. As such, this experiment evaluates the robustness of the
codes to varying conditions and to inaccurate estimates of channel
parameters, as might occur in practice.

Figures 10 and 11 show the results of both experiments for three
different coherence times, specified as multiples of one symbol time.

�5 0 5 10 15 20 25 30 35
SNR (dB)

0

1

2

3

4

5

6

7

8

9

ra
te

(b
it

s
pe

r
sy

m
bo

l)

spinal; � = 1 symbols
spinal; � = 10 symbols
spinal; � = 100 symbols
strider+; � = 1 symbols
strider+; � = 10 symbols
strider+; � = 100 symbols

Figure 10: Performance of spinal codes and strider in a simula-
tion model of a Rayleigh fading environment. The decoders are
given exact fading channel parameters.

�5 0 5 10 15 20 25 30 35
SNR (dB)

0

1

2

3

4

5

6

7

8

9

ra
te

(b
it

s
pe

r
sy

m
bo

l)

spinal; � = 1 symbols
spinal; � = 10 symbols
spinal; � = 100 symbols
strider+; � = 1 symbols
strider+; � = 10 symbols
strider+; � = 100 symbols

Figure 11: Performance of the AWGN decoders on the Rayleigh
simulation. This experiment examines the decoders’ resilience
to varying or inaccurate channel information.

In both graphs, the top curve is the capacity of the fading channel.
It is noteworthy that spinal codes perform roughly similarly at all
the measured coherence times when fading information is available.
Compared to Strider+, at 10 dB, the improvement is between 11%
and 20% (without puncturing in Strider, the gains are between 19%
and 28%). At an SNR of 20 dB, the gains are between 13% and
20% (without puncturing, between 28% and 33%). When no fading
information is available, spinal codes achieve much higher rates than
Strider+ (Figure 11).

These results show that spinal codes perform well across a wide
range of time-varying conditions, and that spinal decoding is robust
even when the decoder does not have accurate fading information.

8.5 Exploration of Spinal Code Parameters
Collision probability. Spines for two distinct messages can con-
verge when there is a hash collision, i.e., h(si, m̄i) = h(s0i, m̄

0
i). Colli-

sions degrade the decoder’s ability to discriminate between candidate
messages with different prefixes. The probability that colliding mes-

sages exist can be made exponentially small in the message length n
by choosing n � 3n (cf. the Birthday Paradox).

In practice, it is not necessary to eliminate all collisions to achieve
high performance. A collision potentially reduces performance if
it occurs between the correct message and another candidate in the
beam. Each iteration explores B2kd nodes. In a decode attempt, a
node collides with the correct one with probability⇠ (n/k)2�n B2kd ,
so these events are rare if n � log(B)+ log(n)+ kd. For example,
with n = 256, k = 4, B = 256, d = 1, and n = 32, a collision occurs
only once per 214 decodes on average.

Picking k and B. Figure 12 shows that k = 4 performs well across
a range of compute budgets (the x axis is proportional to B2k/k).
Smaller values of k under-perform at higher SNRs; larger values of k
don’t do well at low compute budgets. Each decoder can use a value

57

Fading channel
Shannon capacity

Spinal

Strider

• Each decoder can choose Bwithout restriction; how to choose k?
– Consider decoder compute budget: B·2k operations per kbits
– Conclude that k= 4 is a good choice (maximizes rate)
– Also claim that B= 256 is a reasonable choice

Choosing chunk length

34

24 25 26 27 28 29 210

computation (branch evaluations per bit)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

fr
ac

ti
on

of
ca

pa
ci

ty
ac

hi
ev

ed

k = 1
k = 2
k = 3
k = 4
k = 5
k = 6

Figure 12: How compute budget per bit (B2k/k) affects perfor-
mance in the SNR range 2-24 dB, for different k. A choice of
k = 4 yields codes that perform well over the entire range of
budgets. This graph also shows that B = 256 is a good choice.

�5 0 5 10 15 20 25 30 35
SNR (dB)

0

1

2

3

4

5

6

7

8

9

ra
te

(b
it

s
pe

r
sy

m
bo

l)

Shannon boundc=1
c=2
c=3
c=4
c=5
c=6

Figure 13: Throughput with different densities of output sym-
bols. c = 6 is a good choice for this range of SNRs.

of B according to its price/performance ratio. As computation be-
comes cheaper, increasingly higher budgets can be used, translating
to higher B, to get better performance. From this graph, we conclude
that k = 4 is a good choice for the SNR range we are targeting. For
our experimental compute budgets, B = 256 is a reasonable choice.

Picking c. The number of output bits, c, limits the maximum
throughput. When c is small, even if the channel’s SNR can support

a high rate, there are simply too few bits transmitted to decode with
high throughput. Figure 13 shows that c = 6 is the right choice for
the range of SNR values we are concerned with.

Peak-to-average power ratio (PAPR). A practical modulation
scheme should have a modest PAPR, defined in terms of the output
waveform y(t) as 10 · log10

max |y(t)|2
mean|y(t)|2 . High PAPR is a problem be-

cause the linearity of radio components degrades when waveforms
have large peaks. In a non-OFDM wireless system, dense constel-
lations usually have a high PAPR: for QAM-4 it is 0 dB, while for
QAM-• it is 4.77 dB.

These results, however, do not carry over to the 802.11a/g OFDM
stack, which our PHY uses. For such OFDM systems using scram-
bling, PAPR is typically 5-12 dB [29], depending on the transmitted

symbols. As shown in Table 1, OFDM obscures all but negligible
differences between the PAPRs of dense constellations and standard

WiFi constellations.

Code block length. A strength of the spinal code is good memory
in the encoding, so bad information from a burst of noise can be
corrected by all following symbols if necessary. But this memory
also has a price: once a path is pruned out, the probability of the
decoder resynchronizing to a useful path is low. The decoder has
to receive more symbols until the true path is not pruned. However
small this probability, for fixed k and B, a longer code block means
more opportunities for the true path to be lost. Hence, longer code

Constellation Mean PAPR 99.99% below
QAM-4 7.34 dB 11.31 dB
QAM-64 7.31 dB 11.41 dB
QAM-220 7.31 dB 11.43 dB
Trunc. Gaussian, b = 2 7.29 dB 11.47 dB

Table 1: Empirical PAPR for 802.11a/g OFDM with various
constellations, showing negligible effect of constellation density.
Each row summarizes 5 million experiments.

�5 0 5 10 15 20 25 30 35
SNR (dB)

�6

�5

�4

�3

�2

�1

0

ga
p

to
ca

pa
ci

ty
(d

B
)

n = 64
n = 128
n = 256
n = 512
n = 1024
n = 2048

Figure 14: Effect of code block length on performance (k = 4,
B = 256). Some puncturing artifacts can be seen above 25 dB,
where less than one pass is transmitted on average.

blocks require either more symbols per bit or a larger B in order to
decode, even with the same SNR, as reflected in Figure 14.

9. CONCLUSION
This paper described the design, implementation, and evaluation

of rateless spinal codes. The key idea in spinal codes is the sequential
application of a random hash function to the message bits to produce
a sequence of coded bits and symbols for transmission. We described
a novel, efficient, capacity-achieving bubble decoder for spinal codes.
Our experimental results show that spinal codes out-perform Raptor,
Strider, and the best envelope of 802.11n LDPC codes by significant
amounts over a range of channel conditions and code block sizes.
Our hardware prototype in Airblue [25] runs at 10 Mbits/s on FPGA
hardware, and we estimate it can run at 50 Mbits/s in silicon.

This paper opens up several avenues for future work. First, devel-
oping a wireless network architecture atop spinal codes that provides
a different wireless link abstraction from today: a link is that is
always reliable at all SNR above some well-defined threshold, but
which produces outages below the threshold, eliminating highly
variable packet delays. Second, developing a good link-layer pro-
tocol for rateless codes to deal with the issues raised in §6. Third,
investigating the joint-decoding properties of codes that use hash
functions. And last but not least, the ideas presented in this paper
may provide a constructive framework for de-randomizing, and real-
izing in practice, a variety of random-coding arguments widely used
in information-theoretic proofs.

ACKNOWLEDGMENTS
We thank Joseph Lynch for helping us collect hardware results and
Aditya Gudipati for support in implementing Strider. We thank
David Andersen, Nick Feamster, Daniel Halperin, Mark Handley,
Kyle Jamieson, Henry Pfister, Tom Richardson, Pramod Viswanath,
Lizhong Zheng, and the SIGCOMM reviewers for helpful comments.
Three generous graduate fellowships supported this work: the Irwin
and Joan Jacobs Presidential Fellowship (Perry and Iannucci); the
Claude E. Shannon Assistantship (Perry), and the Intel Fellowship
(Fleming). Intel also partially supported the Airblue platform. We
thank the members of the MIT Center for Wireless Networks and

58

∝ B·2k/k

• Can send at most 2·coutput bits per symbol, so caps maximum rate

• Choose cso that the rate cap isn’t a problem at operational SNRs

• c= 6 is a reasonable choice

Choosing number of output bits c

35

24 25 26 27 28 29 210

computation (branch evaluations per bit)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

fr
ac

ti
on

of
ca

pa
ci

ty
ac

hi
ev

ed

k = 1
k = 2
k = 3
k = 4
k = 5
k = 6

Figure 12: How compute budget per bit (B2k/k) affects perfor-
mance in the SNR range 2-24 dB, for different k. A choice of
k = 4 yields codes that perform well over the entire range of
budgets. This graph also shows that B = 256 is a good choice.

�5 0 5 10 15 20 25 30 35
SNR (dB)

0

1

2

3

4

5

6

7

8

9

ra
te

(b
it

s
pe

r
sy

m
bo

l)

Shannon boundc=1
c=2
c=3
c=4
c=5
c=6

Figure 13: Throughput with different densities of output sym-
bols. c = 6 is a good choice for this range of SNRs.

of B according to its price/performance ratio. As computation be-
comes cheaper, increasingly higher budgets can be used, translating
to higher B, to get better performance. From this graph, we conclude
that k = 4 is a good choice for the SNR range we are targeting. For
our experimental compute budgets, B = 256 is a reasonable choice.

Picking c. The number of output bits, c, limits the maximum
throughput. When c is small, even if the channel’s SNR can support

a high rate, there are simply too few bits transmitted to decode with
high throughput. Figure 13 shows that c = 6 is the right choice for
the range of SNR values we are concerned with.

Peak-to-average power ratio (PAPR). A practical modulation
scheme should have a modest PAPR, defined in terms of the output
waveform y(t) as 10 · log10

max |y(t)|2
mean|y(t)|2 . High PAPR is a problem be-

cause the linearity of radio components degrades when waveforms
have large peaks. In a non-OFDM wireless system, dense constel-
lations usually have a high PAPR: for QAM-4 it is 0 dB, while for
QAM-• it is 4.77 dB.

These results, however, do not carry over to the 802.11a/g OFDM
stack, which our PHY uses. For such OFDM systems using scram-
bling, PAPR is typically 5-12 dB [29], depending on the transmitted

symbols. As shown in Table 1, OFDM obscures all but negligible
differences between the PAPRs of dense constellations and standard

WiFi constellations.

Code block length. A strength of the spinal code is good memory
in the encoding, so bad information from a burst of noise can be
corrected by all following symbols if necessary. But this memory
also has a price: once a path is pruned out, the probability of the
decoder resynchronizing to a useful path is low. The decoder has
to receive more symbols until the true path is not pruned. However
small this probability, for fixed k and B, a longer code block means
more opportunities for the true path to be lost. Hence, longer code

Constellation Mean PAPR 99.99% below
QAM-4 7.34 dB 11.31 dB
QAM-64 7.31 dB 11.41 dB
QAM-220 7.31 dB 11.43 dB
Trunc. Gaussian, b = 2 7.29 dB 11.47 dB

Table 1: Empirical PAPR for 802.11a/g OFDM with various
constellations, showing negligible effect of constellation density.
Each row summarizes 5 million experiments.

�5 0 5 10 15 20 25 30 35
SNR (dB)

�6

�5

�4

�3

�2

�1

0

ga
p

to
ca

pa
ci

ty
(d

B
)

n = 64
n = 128
n = 256
n = 512
n = 1024
n = 2048

Figure 14: Effect of code block length on performance (k = 4,
B = 256). Some puncturing artifacts can be seen above 25 dB,
where less than one pass is transmitted on average.

blocks require either more symbols per bit or a larger B in order to
decode, even with the same SNR, as reflected in Figure 14.

9. CONCLUSION
This paper described the design, implementation, and evaluation

of rateless spinal codes. The key idea in spinal codes is the sequential
application of a random hash function to the message bits to produce
a sequence of coded bits and symbols for transmission. We described
a novel, efficient, capacity-achieving bubble decoder for spinal codes.
Our experimental results show that spinal codes out-perform Raptor,
Strider, and the best envelope of 802.11n LDPC codes by significant
amounts over a range of channel conditions and code block sizes.
Our hardware prototype in Airblue [25] runs at 10 Mbits/s on FPGA
hardware, and we estimate it can run at 50 Mbits/s in silicon.

This paper opens up several avenues for future work. First, devel-
oping a wireless network architecture atop spinal codes that provides
a different wireless link abstraction from today: a link is that is
always reliable at all SNR above some well-defined threshold, but
which produces outages below the threshold, eliminating highly
variable packet delays. Second, developing a good link-layer pro-
tocol for rateless codes to deal with the issues raised in §6. Third,
investigating the joint-decoding properties of codes that use hash
functions. And last but not least, the ideas presented in this paper
may provide a constructive framework for de-randomizing, and real-
izing in practice, a variety of random-coding arguments widely used
in information-theoretic proofs.

ACKNOWLEDGMENTS
We thank Joseph Lynch for helping us collect hardware results and
Aditya Gudipati for support in implementing Strider. We thank
David Andersen, Nick Feamster, Daniel Halperin, Mark Handley,
Kyle Jamieson, Henry Pfister, Tom Richardson, Pramod Viswanath,
Lizhong Zheng, and the SIGCOMM reviewers for helpful comments.
Three generous graduate fellowships supported this work: the Irwin
and Joan Jacobs Presidential Fellowship (Perry and Iannucci); the
Claude E. Shannon Assistantship (Perry), and the Intel Fellowship
(Fleming). Intel also partially supported the Airblue platform. We
thank the members of the MIT Center for Wireless Networks and

58

• Longercode block means more opportunities to prune correct path
– So Spinal codes achieves betterperformance (smaller gap to

capacity) with smallercode block length n

• We can see artifacts due to puncturing at higher SNRs

Spinal codes: Better at sending short
messages

36

24 25 26 27 28 29 210

computation (branch evaluations per bit)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

fr
ac

ti
on

of
ca

pa
ci

ty
ac

hi
ev

ed

k = 1
k = 2
k = 3
k = 4
k = 5
k = 6

Figure 12: How compute budget per bit (B2k/k) affects perfor-
mance in the SNR range 2-24 dB, for different k. A choice of
k = 4 yields codes that perform well over the entire range of
budgets. This graph also shows that B = 256 is a good choice.

�5 0 5 10 15 20 25 30 35
SNR (dB)

0

1

2

3

4

5

6

7

8

9

ra
te

(b
it

s
pe

r
sy

m
bo

l)

Shannon boundc=1
c=2
c=3
c=4
c=5
c=6

Figure 13: Throughput with different densities of output sym-
bols. c = 6 is a good choice for this range of SNRs.

of B according to its price/performance ratio. As computation be-
comes cheaper, increasingly higher budgets can be used, translating
to higher B, to get better performance. From this graph, we conclude
that k = 4 is a good choice for the SNR range we are targeting. For
our experimental compute budgets, B = 256 is a reasonable choice.

Picking c. The number of output bits, c, limits the maximum
throughput. When c is small, even if the channel’s SNR can support

a high rate, there are simply too few bits transmitted to decode with
high throughput. Figure 13 shows that c = 6 is the right choice for
the range of SNR values we are concerned with.

Peak-to-average power ratio (PAPR). A practical modulation
scheme should have a modest PAPR, defined in terms of the output
waveform y(t) as 10 · log10

max |y(t)|2
mean|y(t)|2 . High PAPR is a problem be-

cause the linearity of radio components degrades when waveforms
have large peaks. In a non-OFDM wireless system, dense constel-
lations usually have a high PAPR: for QAM-4 it is 0 dB, while for
QAM-• it is 4.77 dB.

These results, however, do not carry over to the 802.11a/g OFDM
stack, which our PHY uses. For such OFDM systems using scram-
bling, PAPR is typically 5-12 dB [29], depending on the transmitted

symbols. As shown in Table 1, OFDM obscures all but negligible
differences between the PAPRs of dense constellations and standard

WiFi constellations.

Code block length. A strength of the spinal code is good memory
in the encoding, so bad information from a burst of noise can be
corrected by all following symbols if necessary. But this memory
also has a price: once a path is pruned out, the probability of the
decoder resynchronizing to a useful path is low. The decoder has
to receive more symbols until the true path is not pruned. However
small this probability, for fixed k and B, a longer code block means
more opportunities for the true path to be lost. Hence, longer code

Constellation Mean PAPR 99.99% below
QAM-4 7.34 dB 11.31 dB
QAM-64 7.31 dB 11.41 dB
QAM-220 7.31 dB 11.43 dB
Trunc. Gaussian, b = 2 7.29 dB 11.47 dB

Table 1: Empirical PAPR for 802.11a/g OFDM with various
constellations, showing negligible effect of constellation density.
Each row summarizes 5 million experiments.

�5 0 5 10 15 20 25 30 35
SNR (dB)

�6

�5

�4

�3

�2

�1

0

ga
p

to
ca

pa
ci

ty
(d

B
)

n = 64
n = 128
n = 256
n = 512
n = 1024
n = 2048

Figure 14: Effect of code block length on performance (k = 4,
B = 256). Some puncturing artifacts can be seen above 25 dB,
where less than one pass is transmitted on average.

blocks require either more symbols per bit or a larger B in order to
decode, even with the same SNR, as reflected in Figure 14.

9. CONCLUSION
This paper described the design, implementation, and evaluation

of rateless spinal codes. The key idea in spinal codes is the sequential
application of a random hash function to the message bits to produce
a sequence of coded bits and symbols for transmission. We described
a novel, efficient, capacity-achieving bubble decoder for spinal codes.
Our experimental results show that spinal codes out-perform Raptor,
Strider, and the best envelope of 802.11n LDPC codes by significant
amounts over a range of channel conditions and code block sizes.
Our hardware prototype in Airblue [25] runs at 10 Mbits/s on FPGA
hardware, and we estimate it can run at 50 Mbits/s in silicon.

This paper opens up several avenues for future work. First, devel-
oping a wireless network architecture atop spinal codes that provides
a different wireless link abstraction from today: a link is that is
always reliable at all SNR above some well-defined threshold, but
which produces outages below the threshold, eliminating highly
variable packet delays. Second, developing a good link-layer pro-
tocol for rateless codes to deal with the issues raised in §6. Third,
investigating the joint-decoding properties of codes that use hash
functions. And last but not least, the ideas presented in this paper
may provide a constructive framework for de-randomizing, and real-
izing in practice, a variety of random-coding arguments widely used
in information-theoretic proofs.

ACKNOWLEDGMENTS
We thank Joseph Lynch for helping us collect hardware results and
Aditya Gudipati for support in implementing Strider. We thank
David Andersen, Nick Feamster, Daniel Halperin, Mark Handley,
Kyle Jamieson, Henry Pfister, Tom Richardson, Pramod Viswanath,
Lizhong Zheng, and the SIGCOMM reviewers for helpful comments.
Three generous graduate fellowships supported this work: the Irwin
and Joan Jacobs Presidential Fellowship (Perry and Iannucci); the
Claude E. Shannon Assistantship (Perry), and the Intel Fellowship
(Fleming). Intel also partially supported the Airblue platform. We
thank the members of the MIT Center for Wireless Networks and

58

• Spinal Codes give performance close to Shannon capacity

• Eliminate the need to run a bit rate adaptation algorithm

• Simpler design and better performance

Spinal Codes: Conclusion

37

1. Spinal Codes

2. Introduction to MIMO

3. SoftRate

Today

38

AP can estimate the channel, so can decode User A’s signal ()

Single-input, single-output (SISO)

Access Point (AP)User A Channel

A send AP receive

Channel

Phase plot:

Single-input, single-output (SISO)

User B

AP can estimate the channel, so can decode User B’s signal ()

B send AP receive

Channel

Phase plot:

One received signal (), two sent (,), so AP can’t decode

Interfering transmissions in SISO

User B

User A

Phase plot:

AP receive from B alone
AP receive from A alone

AP receive (A + B)

90°

0°180°

270°

Send

Antenna 1

Antenna 2

• Now, the AP hears two received signals, one on each antenna:

42

Multiple-input, multiple-output: MIMO

Access Point

Antenna 1 2

User A

User A

Leveraging MIMO to detect two users

2
Antenna 1

User B

User A

90°

0°180°

270°

Antenna 1

Antenna 2

Mixture of A and B

+ =
90°

0°180°

270°

User A
90°

0°180°

270°

User B

A2
A2

A1A1

• MIMO zero-forcing (Paulraj et al., Foschini et al.):
1. Rotateone antenna’s signal ()
2. Sumthe two antennas’ signals together (+)

44

Zero-forcing overcomes interference

90°

0°180°

270°

User A

A2

A1

90°

0°180°

270°

User B

RotateRotate

A2

A1

SumSum

Zero-forcing cancels B, revealing A
Can re-run to cancel A, revealing B

Does zero-forcing work all the time?

2
Antenna 1

User A

User B

90°

0°180°

270°

User A
90°

0°180°

270°

User B

A2

A2

A1

A1

Very similar channels reduce signal power relative to the
background noise: this is called noise amplification

Almost zero

