
Searching the Deep Web

What is Deep Web?

- * Information accessed *only* through HTML form pages
 - database queries
 - results embedded in HTML pages
- Also can included other information on Web can't directly index
 - Javascript output
 - simulate, extract info from results?
 - unlabeled images, video, music, ...
 - password protected Web pages
- compare invisible Web
 - pages on servers with no paths from crawler seeds

1

Growth estimates

- 43,000-96,000 Deep Web sites est. in 2000
 - -7500 terabytes $\Rightarrow 500$ times surface Web
 - estimate by overlap analysis underestimates
- 307,000 Deep Web sites est. 2004 (2007 CACM)
 - 450,000 Web databases: avg. 1.5 per site
 - 1,258,000 unique Web query interfaces (forms)
 - avg. 2.8 per database
 - 72% at depth 3 or less
 - 94% databases have some interface at depth 3 or less
 - · exclude non-query forms, site search
 - estimate extrapolation from sampling

4

Random sampling

- are 2,230,124,544 valid IPv4 addresses
- · randomly sample 1 million of these
- take 100,000 IP address sub-sample
- For sub-sample
 - make HTTP connection & determine if Web server
 - crawl Web servers to depth 10
- · For full sample
 - make HTTP connection & determine if Web server
 - crawl Web servers to depth 3

5

7

Analysis of data from samples

• Find

unique query interfaces for site

- # Web databases guery interface to see if uses same database
- # deep Web sites not include forms that are site searches

6

8

- not include forms that are site searches
- Extrapolate to entire IP address space

Approaches to getting deep Web data

- Application programming interfaces
 - allow search engines get at data
 - a few popular site provide
 - not unified interfaces
- virtual data integration
 - a.k.a. mediating
 - "broker" user query to relevant data sources
 issue query real time
 - issue query real t
- Surfacing
 - a.k.a warehousing
 - build up HTML result pages in advance

Virtual Data Integration

· In advance:

- identify pool of databases with HTML access pages
 - crawl
- develop model and query mapping for each source: mediator system
 - domains + semantic models
 - identify content/topics of source
 - develop "wrappers" to "translate" queries

Virtual Data Integration

• When receive user query:

 – from pool choose set of database sources to query

9

11

- · based on source content and query content
- · real-time content/topic analysis of query
- develop appropriate query for each data source
- integrate (federate) results for user
 - extract info
 - combine (rank?) results

Mediated scheme

• Mappings form inputs → elements of mediated scheme query over mediated scheme

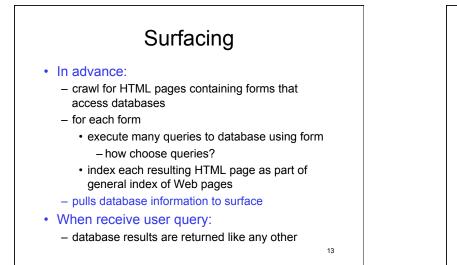
 \rightarrow queries over each form user query \rightarrow query over mediated scheme

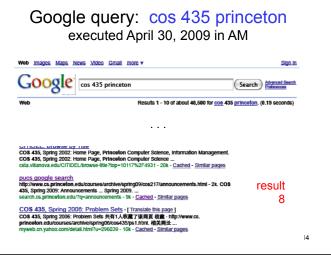
- · creating mediated scheme
 - manually
 - by analysis of forms HARD

10

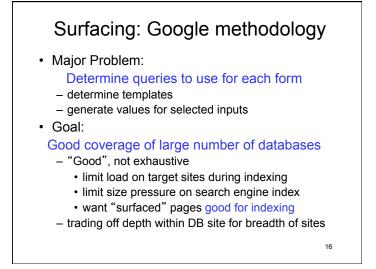
12

Virtual Integration: Issues


- · Good for specific domains
 - easier to do
 - viable when commercial value
- Doesn't scale well


Last time

- Intro to Deep Web issues
- Approaches to getting deep Web data
 virtual integration


Today

- Approaches to getting deep Web data
 Surfacing
- Semi-structured documents
 XML

as it appeared on Learn more	ache of <u>http://search.cs.princeton.</u> Apr 22, 2009 12:39:09 GMT. The <u>s</u> ns are highlighted: cos 435 prince	current page could have chan		
	Compute announcements Main Site Only All	Princeton Universion Sear	ity	cacheo versior of pucs
here. 4/17: Fourth assignme	ncements Announcements will be posted		t 585. Search took 0.02 seconds. ncements.html - 2k	google search
- Spring 2009. Directory G Assignments Announce	2009: Announcements meral information Schedule mether Polities Inceton.edu/courses/archive.	/spring09/cos217/annou	ncements.html - 2k	
- Spring 2009. Directory G Assignments Project Page	2009: Announcements eneral Information Schedule and Announcements Inceton.edu/courses/archive	/spring09/cos435/annou	nce.html - 2k	
- Spring 2006. Directory G Work of the Course Project	2006: Announcements neral information Schedule and Readings ct Page Announsements nection, edu/courses/archive			

Query Templates

- · given form with n inputs
- choose subset of inputs to vary => template
 - choose from text boxes & select menues
 "state" select menu, "search box" text box, "year" select menu
 - values for choosen inputs will vary
 - rest of inputs set to defaults or "don't care"
 - want small number choosen inputs
 - yield smaller number form submissions to index

17

Building Query Templates

- Want "informative templates": when vary choosen input values, pages generated are "sufficiently distinct"
- · Building informative templates
 - start with templates for single choosen input
 - repeat:
 - extend "informative templates" by 1 input
 - determine "informativeness" for each new template

18

20

Informative Templates Informative if generates "sufficiently distinct" pages use page signature for "informativeness" test Signatures create clusters pages One cluster per signature Informative if

(# clusters) / (# possible pages from template) exceeds a threshold

19

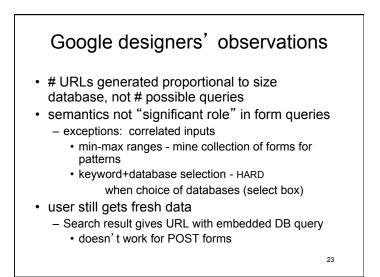
Generating values generic text boxes: any words for one box: • select seed words from form page to start • use each seed word as input to text box • extract more keywords from results - tf-idf analysis - remove words occur in too many of pages in results - remove words occur in only 1 page of results • repeat until no new keywords or reach max

choose subset of keywords found

Generating values

choosing subset of words for generic boxes

- cluster keywords based on words on page generated by keyword
 - words on page characterize keyword
- choose 1 candidate keyword per cluster
- sort candidate keywords based on page length of form result
- choose keywords in decreasing page-length order until have desired number


21

Generating values

text boxes with fixed types: well-defined set values

- type can be recognized with high precision
 - relatively few types over many domains
 zip code, date, ...
 - often distinctive input names
 - test types using sample of values

22

became part of Google Search in results of "more than 1000 queries per second" 2009 impact of "long tail of queries" top 10,000 forms acct for only 50% Deep Web results top 100,000 forms acct for only 85% Deep Web results Need surface as many sites as possible domain independent approach important wish to automatically extract database data (relational) from surfaced pages

Google deep web crawl for "entity pages"

- · builds on work just seen
- · simpler than that work specialized
- entities versus text content

- examples

- · products on shopping sites
- · movies on review sites
- structured: well-defined attributes
- motivation
 - crawl product entities for advertisement use

Major steps: 1: URL template generation

- · get list of "entity-oriented deep-web sites"
- extract search forms

 usually home page
- produce one template per search form
 - observe usually one main text input field
 - set other fields to default
 - observe get "good behavior" doing this

26

28

Major steps, 2: Query generation find guery words to use in main text field

- use Google query log for site for candidates – site URL clicked? How many times?
- isolate entity keywords from queries
 - example: "HP touchpad reviews"
 - identify common patterns to remove
 - analyze query logs using known entities
 - Freebase "community curated" entity keywords
- expand using Freebase
 - Freebase entities organized by domain/category

27

25

Next challenges

- Web is MUCH more dynamic than when most of work we've discussed was done and much more interactive
- Other challenges to further extend ability to extract and organize data:
 - Automatically extract data from general pages
 - Combining data from multiple sources
 - general, not custom, solution