
Type analysis

Lennart Beringer

COS320, Compiling Techniques, Spring 2011
See cos320/typelecture.pdf

February 2011

Lennart Beringer Type analysis



Where are we?

Program analysis

and optimization

(target−independent)

language specific, may reject programs

code generation,

register allocation,

frame layout,...

Instruction selection,

Program analysis

and optimization

(target dependent)

Lexer

Parser

Token

stream

Absyn
Typed

sbsyn
Type

checker

Syntactic Semantic analysis Backend

analysis

Purpose & core challenges of type analysis
Step-by-step development of type system for FUN-like (but
slightly different) language
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Motivation

Purpose of type systems (I)
For programmers:

help to eliminate common programming mistakes,
particularly those that may lead to runtime errors
provide abstraction and modularization discipline: can
substitute code with code of equal type without breaking
surrounding code (interface/signature types)

For language designers:
structuring principle for programs
basis for studying (interaction between) language features
such as exceptions, references, IO-side effects,. . .
formal basis for reasoning about program behaviour
(verification, security analysis,. . . )

Lennart Beringer Type analysis



Motivation

Purpose of type systems (I)
For programmers:

help to eliminate common programming mistakes,
particularly those that may lead to runtime errors
provide abstraction and modularization discipline: can
substitute code with code of equal type without breaking
surrounding code (interface/signature types)

For language designers:

structuring principle for programs
basis for studying (interaction between) language features
such as exceptions, references, IO-side effects,. . .
formal basis for reasoning about program behaviour
(verification, security analysis,. . . )

Lennart Beringer Type analysis



Motivation

Purpose of type systems (I)
For programmers:

help to eliminate common programming mistakes,
particularly those that may lead to runtime errors
provide abstraction and modularization discipline: can
substitute code with code of equal type without breaking
surrounding code (interface/signature types)

For language designers:
structuring principle for programs
basis for studying (interaction between) language features
such as exceptions, references, IO-side effects,. . .
formal basis for reasoning about program behaviour
(verification, security analysis,. . . )

Lennart Beringer Type analysis



Motivation

Purpose of type systems (II)
For compiler writers:

provide information for later phases:
does value v fit into a single register? (size of data types)
how should stack frame for function f be organized?
(number and types of parameters and return value)
support generation of efficient code: less code for
error-handling (casting) needs to be inserted, sharing of
representations (source of confusion eliminated by types)
post-Y2k-compilers: typed intermediate languages: model
each intermediate code representations as separate
language, use types to communicate structural code
invariants and analysis results between compiler phases
(example: different types for caller/callee-registers)

“refined” type systems: provide alternative formalism for
program analysis and optimization
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Motivation

Language level errors

Can eliminate many programmer mistakes, and ensure “good”
(safe!) runtime behaviour:
Memory safety: can’t dereference anything that’s not a pointer

(can’t forge pointers), including nullPtr
Control flow safety: can’t jump to address that doesn’t contain

code, can’t overwrite code (e.g. return address)
Type safety: typing predictions come true at run time (“this

expression will produce a string”), so
operator-operand mismatches eliminated

Contrast this with C, where lots of (implicit) casting happens,
and lots of errors ensue (out of bounds, buffer overflows, seg
faults, security violations,. . . ).
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Type systems: limitations

Static type systems are usually:
unable to eliminate all runtime errors:

division by zero
exception behaviour often not modeled/enforced

conservative, i.e. will reject some legal programs due to
undecidability. Example:

if f (x) then 1 else (5 + tt)

where f is some function that takes long to compute but
always returns tt.

Nevertheless useful, even for more complex properties:
termination, security
resource consumption, adherence to usage protocols

Dynamic type systems not considered in this lecture.
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Fundamental & algorithmic tasks

Practical tasks (compiler writer): develop algorithms for
type inference: given an expression e, calculate whether there

is some type τ such that e : τ holds. If so, return
the best such type, or (a representation of) all
fitting types. May need program annotations.

type checking: given a fully type-decorated program, check that
the decoration indeed respects the typing rules

Theoretical tasks (language designer):
uniqueness of typings, existence of best types
decidability & complexity of above tasks/algorithms
type soundness: give precise definition of “good behaviour”

(runtime model, error model), and prove that
well-typed programs don’t do wrong.

Common formalism: derivation system (cf. formal logic), i.e. set
of judgments and typing rules, tree-shaped derivations
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Type system for simple expressions (I)

Starting point: abstract syntax

e ::= . . . | − 1 | 0 | 1 | . . . | tt | ff
| e ⊕ e | if e then e else e

⊕ ::= + | − | × | ∧ | ∨ | < | =

Step 1: define notion of types
Aim: separate integer expressions from boolean
expressions, to prevent operations like 5 + tt.
Thus: τ ::= bool | int

Next: define derivation system
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Derivation systems

Judgments J: logical statement (claim) that may or may not be
true. Truth can only be determined once an
interpretation is defined (we use intuition. . . ).

Inference rules: Axioms: NAME
J

SC

Rules : NAME
JHyp0

. . . JHypn

JConcl
SC

Derivation system: inductive interpretation of rules, i.e. finite
trees where nodes are rule instantiations (axioms
in leaves), root is overall conclusion

Type inference: construct a proof tree for the root judgment
Type checking: check well-formedness of a purported proof tree
Type soundness: given an interpretation of judgments, prove
that derivability implies validity. Proof typically by induction:
axioms establish valid judgments, non-axioms preserve validity
(assuming side conditions)
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Type system for simple expressions (II)

Step 2: decide on forms of judgments

` e : τ

Intuitive interpretation: “evaluating expression e
yields value of type τ .”

Step 3: define inference rules, ideally syntax-directed: one
rule/axiom for each syntax former

Axioms (for atomic expressions):

TT
` tt : bool

FF
` ff : bool

NUM
` n : int

n ∈ {. . . ,−1,0,1, . . .}
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Type system for simple expressions (III)

Rules for non-atomic expressions: one hypothesis for each
subexpression.

Built-in operators: prevent application of built-in operators to
wrong kinds of arguments.

IOP
` e1 : int ` e2 : int
` e1 ⊕ e2 : int

⊕ ∈ {+,−,×}

BOP
` e1 : bool ` e2 : bool
` e1 ⊕ e2 : bool

⊕ ∈ {∧,∨}

COP
` e1 : int ` e2 : int
` e1 ⊕ e2 : bool

⊕ ∈ {<,=}

Conditionals: branch condition should be boolean, arms should
agree on their type (τ ), and overall type is τ , too

ITE
` e1 : bool ` e2 : τ ` e3 : τ

` if e1 then e2 else e2 : τ
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Type system for simple expressions (IV)

Inference can happen top-down or bottom-up.

Exercise
Perform syntax-directed inference for the expressions

3 + (if (3 < 5) ∧ ((2 + 2) = 5) then 7 else (2 ∗ 5))

3 + (if (3 < 5) ∧ ((2 + 2) = 5) then 7 else (5 + tt)).
Are the derivations/final judgments unique?

Exercise (homework)
Define a simple type system for above expressions e that
counts the number of atomic subexpressions.

Next: type system for languages with variables, functions,
references, and products/records. These features require new
types, judgment forms, and rules
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Adding variables (I)

Starting point (absyn): extend syntax of expressions:

e ::= . . . | x

where x ranges over identifiers
Step 1 (types): no changes – still only booleans and integers

Step 2 (judgments): expressions can contain variables, hence
we can only associate types with expressions if we
are given the types of the variables (assumptions).

Contexts
A (typing) context Γ is a partial function mapping variables to
types, usually written in the form x0 : τ0, . . . xn : τn, where all the
xi are distinct. Note: not all identifiers are required to occur.

Example: Γ = x : int,y : bool,z : int
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Variables (II)

Step 2 (ctd’): judgments with contexts: Γ ` e : τ

Step 3.1 (axioms): essentially no changes for constant
expressions (just add Γ):

TT
Γ ` tt : bool

FF
Γ ` ff : bool

NUM
Γ ` n : int

n ∈ {. . . ,−1,0,1, . . .}

Novel rule (context lookup): VAR
x : τ ∈ Γ

Γ ` x : τ
Step 3.2 (rules for composite expressions): essentially no

changes (just add Γ everywhere)

Shortcoming? cannot add a binding to variables.
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Variables (III)

Extension by let-binding (ML-style)
Step 1: add new composite expression former:

e ::= . . . | let x = e in e end

Step 2: define update operation Γ[x : τ ] on contexts:
delete any binding for x in Γ (if existent), then add
binding x : τ . No changes in format of judgments

Step 3: new typing rule:

LET
Γ ` e1 : σ Γ[x : σ] ` e2 : τ

Γ ` let x = e1 in e2 end : τ

Exercise
Perform inference (i.e. find τ if existent) for

b : bool ` if b then let x = 3 in x end else 4 : τ

x : int, y : int ` let x = x < y in if x then y else 0 end : τ

x : int, y : int ` let x = x < y in if x then y else x end : τ
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Functions (I)

Starting point (absyn): two characteristic operations:

Function formation

e ::= . . . | fun f (x) = e1 in e2 end

declares function f with formal parameter x and body e1. Name
f may be referred to in e1 (recursion) and e2. Name x only in e1.

Function application

Denoted by juxtaposition : e ::= . . . | e e

Step 1 (types): Function/arrow type:

τ ::= . . . | τ1 → τ2

models functions with argument type τ1 and return
type τ2

Step 2 (judgment form): no change
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Functions (II)

Aim: prevent application of functions to arguments of wrong
type. And prevent applications e e′ where e is not a function.

Step 3: Rule for function formation:

FUN

Γ[f : τ1 → τ2][x : τ1] ` e1 : τ2
Γ[f : τ1 → τ2] ` e2 : τ

Γ ` fun f (x) = e1 in e2 end : τ

First hypothesis verifies construction/declaration of
f . Second hypothesis verifies its use. Note that
types τ1 and τ2 have to be guessed.
Rule for function application:

APP
Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1e2 : τ2

Exercise (homework)
Define an expression that declares and uses the factorial
function, and write down its typing derivation.
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type. And prevent applications e e′ where e is not a function.

Step 3: Rule for function formation:

FUN

Γ[f : τ1 → τ2][x : τ1] ` e1 : τ2
Γ[f : τ1 → τ2] ` e2 : τ

Γ ` fun f (x) = e1 in e2 end : τ

First hypothesis verifies construction/declaration of
f . Second hypothesis verifies its use. Note that
types τ1 and τ2 have to be guessed.
Rule for function application:

APP
Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1e2 : τ2
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References

Starting point (absyn): three characteristic operations:

Allocation, read, write (assign)

e ::= . . . | alloc e | !e | e:=e

Step 1 (types): τ ::= . . . | ref τ | unit
Type ref τ models locations that can hold values
of type τ .

Step 2 (judgment form): no change

Step 3 (rules): ALLOC
Γ ` e : τ

Γ ` alloc e : ref τ
READ

Γ ` e : ref τ
Γ ` !e : τ

WRITE
Γ ` e1 : ref τ Γ ` e2 : τ

Γ ` e1:=e2 : unit

Exercise (homework)
Redo factorial, but use a reference to hold the result.
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Products

Starting point (absyn): two characteristic operations:

Product formation, projections

e ::= . . . | 〈e1, . . . ,en〉 | #ne

Step 1 (types): τ ::= . . . | 〈τ1, . . . , τn〉 (n = 0 amounts to
unit)

Step 2 (judgment form): no change

Step 3 (rules): PROD
Γ ` e1 : τ1 . . . Γ ` en : τn

Γ ` 〈e1, . . . ,en〉 : 〈τ1, . . . , τn〉

PROJ
Γ ` e : 〈τ1, . . . , τn〉

Γ ` #ke : τk
1 ≤ k ≤ n
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Subtyping

Motivating observation

Expressions of type 〈τ1, . . . , τn〉 can be used as values of type
〈τ1, . . . , τm〉 for any m ≤ n. Simply forget additional entries.

Indeed: any operation we may perform on an expression of the
latter type (i.e. a projection #ke, which is only well-typed if
k ≤ m) is also legal on expressions of the former type.

General idea
Type τ is a subtype of σ if all values of type τ may also count as
values of type σ. Operations that handle arguments of type σ
must also handle arguments of type τ .

Axiomatize this idea in new judgment form subtyping: τ <: σ.
Again, we justify the axiomatization only informally.
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Subtyping (II)

How to use subtyping: subsumption rule

SUB
Γ ` e : τ

Γ ` e : σ
τ <: σ

Models the intuition that a τ -value may be
provided whenever a σ-value is expected,
i.e. interpretation as subset of values.

How to establish subtyping: Separate derivation system.

Pre-order rules

SREFL
τ <: τ

STRANS
τ1 <: τ2 τ2 <: τ3

τ1 <: τ3

These two rules deal with the base types int, bool,unit.
Next slides: rules that propagate subtpying through the various
type formers.
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Subtyping (III): propagation through products

Products (width): may truncate products

SPROD
〈τ1, . . . , τn〉 <: 〈τ1, . . . , τm〉

m < n

Thought experiment: suppose n < m instead. Take some e
with, say, Γ ` e : 〈int,bool〉. By (hypothetical) rule
SPROD and SUB, have Γ ` e : 〈int,bool, int〉. So
Γ ` #3e : int is well-typed. But this will crash!

Products: depth

PPROD
Γ ` e : 〈τ1, . . . , τn〉
Γ ` e : 〈σ1, . . . , σn〉

∀ i . τi <: σi
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Subtyping (IV): propagation through function type

Propagation of subtyping through functions

PFUN
Γ ` e : τ1 → τ2

Γ ` e : σ1 → σ2
σ1 <: τ1, τ2 <: σ2

Return position covariant: weaker guarantee on result
Argument position contravariant: stronger constraint on

arguments (e.g. longer products),

Example: f (x) = let z = #1x in 〈even(z), z〉 end.

Have PFUN
Γ ` f : 〈int〉 → 〈bool, int〉
Γ ` f : 〈int, int〉 → 〈bool〉

.

Rule thus correctly sanctions the application
let arg = 〈3,4〉 in let res = f arg in #1res end end.
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Subtyping (V): interaction with references

Guess

PREF
Γ ` e : ref τ
Γ ` e : ref σ

???

τ = σ (invariance)

Reason: read/write yield conflicting conditions

Read motivates
τ <: σ

ref τ <: ref σ
: if e evaluates to a

reference holding τ values, and any (τ -)value we
extract from that location (i.e. !e) can also be
interpreted as a σ-value, we should be allowed to
consider e as holding σ-values, so that ` !e : σ.

Write motivates
σ <: τ

ref τ <: ref σ
: if e evaluates to a

reference to which we may write a τ value
(i.e. Γ ` e : ref τ ), and if any σ-value (say
Γ ` e′ : σ) may be considered a τ -value, then we
should be able to assign e′ to e, i.e. allow
Γ ` e:=e′ : unit
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HW 4: type inference/checking

Differences between FUN and above language:
functions declared at top-level, annotated with argument
and return types
products start at 0

Challenge:
subtyping destroys property that an expression has at
most one type.
rule SUB destroys syntax-directedness, and doesn’t make
the expression any smaller. Can apply SUB at any point.

Task:
reformulate type system so that it is syntax-directed:
modify the rules such that subtyping is integrated
differently, BUT EXACTLY THE SAME JUDGMENTS
SHOULD BE DERIVABLE using least common
supertypes (“joins”) and greatest common subtype
(“meets”). Implement calculation of meets and joins.
use these to implement syntax-directed inference
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