
COS 226 Algorithms and Data Structures Spring 2017

Written Exam 1
J. Lumbroso

There are 10 questions on this exam, worth a total of 70 points. You have 80 minutes. There is one question per
lecture, numbered corresponding to the lectures, The questions are not in order of difficulty. If a question seems
difficult to you, skip it and come back to it.

Policies. The exam is closed book and closed Internet, except that you are allowed to use a one page cheatsheet
(8.5-by-11 paper, one sides, in your own handwriting). No calculators or other electronic devices are permitted.
Give your answers and show your work in the space provided. You have 80 minutes to complete the test. This
exam is preprocessed by computer. If you use pencil (and eraser), write darkly. Write all answers
inside the designated rectangles. Do not write on corner marks.

Discussing this exam. Discussing the contents of this exam before solutions have been posted is a serious
violation of the Honor Code.

This exam. Do not remove this exam from this room. In the space below, print your name and NetID ; write
and sign the Honor Code pledge.

“I pledge my honor that I have not violated the Honor Code during this examination.”

Name:

NetID:

Room:

P01 P02 P02A P03 P03A P04 P04A P04B P05 P05A
Precept:

NONE

dr
af

t

Q1. Union-Find (10 points).

(i) [6 pts] Consider the WeightedQuickUnionUF.java (WQUF) data structure is used for a social network in
the following way:

• the sites of the WQUF data structure are people (you can assume they are stored with a name);

• the operation union(x, y) is called on people x and y when these two people are friends of each other.

Finally, if x and y are friends of each other, and y and z are friends of each other, then we consider that x and z
are friendly. See the figure below for an illustrative example.

x

friends of x

friendly
with x

y

z

If N is the total number of person (or site of the WQUF data structure), which of the following questions can
be answered in at most linear time in the worst case using only find queries to the WQUF data structure defined
above?

Fill in a bubble on each line to indicate whether it is True or False that each task can be addressed by writing a
client method, which uses only makes calls to the public API of WQUF and which runs in linear time in the worst
case.

True False

A. Determine whether two distinct given people, x and y, are friends.

B. Determine whether two distinct given people, x and y, are friendly (see definition above).

C. Given a person, x, iterate over all people that are friendly with x and distinct from x (for
instance to print the name of each person).

dr
af

t

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

(ii) [4 pts] Consider the following tree representing the inner state of a WeightedQuickUnionUF.java
(WQUF) data structure which has been modified to allow for path compression (as implemented in the code is
provided in the course slides).

1

2 3

4

5

6 7

8

9

10

Which of the following diagrams can be obtained from the above WQUF data structure after making exactly one
find operation? Each diagram is to be considered independently from the others.

Fill in a bubble on each line to indicate whether it is True or False that a tree can be the result of calling find
exactly once on the above WQUF with path compression.

True False

Diagram E.
Diagram F.
Diagram G.
Diagram H.

1

2 3 4 5

6 7

8

9

10

1

2 3

4

5

6 7

8

9

10

1

2 3

4

5

6

78

9

10

1

2 3

4

5

6

7

89

10

E. F.

G. H.

dr
af

t

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Q2. Analysis of Algorithms (9 points).

We are interested in the problem of finding a pair of duplicate elements in an array containing N unsorted integers.
We consider three different methods:

• Method I. We use two nested loops, to consider every pair of elements of the array. For each pair, we
check to see if the elements are identical (and stop iterating over the pairs as soon as we have found a pair
of duplicates).

• Method II. We sort the elements using quicksort (1 pivot, first element is pivot, no 3-way partitioning).
Once the array is sorted, the duplicates contiguous, next to each other, so we simply iterate to find two
adjacent elements that are identical (and stop iterating as soon as we have found a pair of duplicates).

• Method III. We use a hash table. We iterate over the array. For each element, we check if it is contained
in the hash table: if it is not, we add it to the hash table; if it is, we have detected a pair of duplicates (and
we may stop).

For each method, provide the order of growth of the best case run time (under the uniform hashing assumption).

constant logarithmic linear linearithmic quadratic

A. Order of growth of best case of Method I

B. Order of growth of best case of Method II

C. Order of growth of best case of Method III

Same question, assuming now that the array does not contain any duplicate.

constant logarithmic linear linearithmic quadratic

D. Order of growth of best case of Method I

E. Order of growth of best case of Method II

F. Order of growth of best case of Method III

dr
af

t

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Q3. Stacks and Queues (6 points).

Consider the following program. (Recall that % is the remainder operator; for example, 5 % 2 is equal to 1.)

import edu.princeton.cs.algs4.Queue;
import edu.princeton.cs.algs4.Stack;
import edu.princeton.cs.algs4.StdOut;

public class Ordering {
static final int MAX = 10;

public static void main(String[] args) {
Queue<Integer> queue = new Queue<Integer>();
Stack<Integer> stack = new Stack<Integer>();

for (int i = 0; i < MAX; i++) {
if (i % 2 == 0)

queue.enqueue(i);
else

stack.push(i);
}

for (int i = 0; i < MAX; i++) {
int j;
if (i % 2 == 0)

j = queue.dequeue();
else

j = stack.pop();
StdOut.print(j + " ");

}
StdOut.println();

}
}

Write the sequence of numbers that the main method of the above class prints out?dr
af

t

Jérémie Lumbroso
0 9 2 7 4 5 6 3 8 1

Q4. Elementary Sorts (6 points).

(i) [2 pts] How many inversions does the permutation 4 1 3 2 5 6 contain?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(ii) [4 pts] Recall that the operations that we often count to measure performance are the array comparisons
(which involve comparing two cells of an array) and array exchanges (which involve swapping the contents of two
cells in an array).

Consider the following property:

Every exchange made by the sorting algorithm decreases the number of inversions of the sequence by exactly 1.

Indicate whether or not this property applies to each of the elementary sorts.

True False

A. Selection sort

B. Insertion sort

C. Shell sort

dr
af

t

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Q5. Mergesort (6 points).

(i) [3 pts] Below are several statements made about the standard (top-down) mergesort.

Fill in a bubble on each line to indicate whether each statement is True or False.

True False

A. Any two items are compared with one another no more than once during mergesort.

B. A single key can be involved in as many as ∼ N compares when mergesorting an array
containing N distinct keys.

C. When mergesorting an array of N keys, the number of calls to merge() is ∼ N . (Recall that
merge() is called only on subarrays of length 2 or more.)

(ii) [3 pts] We now assume it is possible to merge two sorted sublists (of any size) in constant time1.

Express the average running time, as a function of N , of the standard textbook 2-way mergesort, modified only
to use this new (imaginary) constant-time merging algorithm.

1This assumption is physically impossible with our current knowledge in CS. We only make this assumption in the context of this
exam question!

dr
af

t

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso
N [order of growth]

Q6. Quicksort (9 points).

Answer these questions about fully sorting an array using quicksort with 3-way partitioning.

(i) [3 pts] Suppose that the input is a randomly-ordered array with 9N elements, having 3N occurrences of the
letter x and 6N occurrences of y, with the alphabetical order, x < y.

Fill in the one bubble on each row that best describes the number of compares used in each case. If you obtain a
fractional coefficient, for the number of comparisons, round to the closest integer.

∼ 8N ∼ 9N ∼ 10N ∼ 11N ∼ 12N ∼ 13N ∼ 14N ∼ 15N ∼ 16N

A. Best case

B. Average case

C. Worst case

(ii) [6 pts] Suppose that the input is a randomly-ordered array with 5N elements, having N occurrences of the
letter x, N occurrences of y, and 3N occurrences of z, with the alphabetical order, x < y < z.

Fill in the one bubble on each row that best describes the number of compares used in each case. If you obtain a
fractional coefficient, for the number of comparisons, round to the closest integer.

∼ 8N ∼ 9N ∼ 10N ∼ 11N ∼ 12N ∼ 13N ∼ 14N ∼ 15N ∼ 16N

D. Best case

E. Average case

F. Worst case

dr
af

t

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Q7. Priority Queues / Heaps (7 points).

Consider the following implementation of the MaxPQ abstract data type, which is identical to the textbook’s
implementation with the exception of the method delMax, which has been modified.

1 public class MaxPQ<Key> implements Iterable<Key> {
2 private Key[] pq; // store items at indices 1 to n
3 private int n; // number of items on priority queue
4 // ...
5
6 /* "sink", "swim" and "resize" are the same implementations as the textbook */
7
8 private void swim(int k) { ... }
9

10 private void sink(int k) { ... }
11
12 private void resize(int capacity) {
13 Key[] temp = (Key[]) new Object[capacity];
14 for (int i = 1; i <= n; i++) {
15 temp[i] = pq[i];
16 }
17 pq = temp;
18 }
19
20 public Key delMax() {
21 if (isEmpty())
22 throw new NoSuchElementException("Priority queue underflow");
23 Key max = pq[1];
24 exch(1, n--);
25 swim(n);
26 pq[n+1] = null;
27 if ((n > 0) && (n == (pq.length - 1) / 4))
28 resize(pq.length / 2);
29 return max;
30 }
31 }

The method delMax contains a bug, which can be fixed by modifying a single line of code. Please indicate below
which line of code to modify, by filling the corresponding bubble.

20 21 22 23 24 25 26 27 28 29 30
Line of code to modify

Please indicate below what you would replace the original line of code with.

dr
af

t

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso
sink(1);

Q8. Binary Trees and BSTs (5 points).

If the in-order traversal of that binary tree prints nodes labeled C D E N P X Y, and the post-order traversal of
a binary tree prints nodes labeled D C E P Y X N, then what sequences of labels does the pre-order traversal
print?

(You may use the space below as scratch work. Make sure you only enter the sequence of labels in the above box.)
dr

af
t

Jérémie Lumbroso
 N
 / \
 E X
 / / \
 C P Y
 \
 D

Jérémie Lumbroso
N E C D X P Y

dr
af

t

Q9. Left-Leaning Red-Black BSTs (4 points).

Consider the following left-leaning red-black BST.

Midterm, Fall 2014

6

4

12

18

10

red link

8

28

22

20

24

32

26

16

30

2

14

Suppose that you insert the key 7 into this left-leaning red-black BST above.

(a) Which of the following color flips result from the insertion of key 7 into the original LLRB? Fill in all the
boxes which apply.

Color flip 6
Color flip 7
Color flip 8
Color flip 10
Color flip 12
Color flip 14
Color flip 16
Color flip 18

Midterm, Spring 2015

8

3
rotate 8 right

T3
3

8
rotate 3 left

3

81

color flip 3

T2T1

T1

T3T2

T1 T2 T3 T4

3

81

T1 T2 T3 T4

dr
af

t

Jérémie Lumbroso

Jérémie Lumbroso

(b) Which of the following rotations result from the insertion of key 7 into the original LLRB? Fill in all the
boxes which apply.

Rotate 6 left
Rotate 6 right
Rotate 7 left
Rotate 7 right
Rotate 8 left
Rotate 8 right
Rotate 10 left
Rotate 10 right
Rotate 12 left
Rotate 12 right
Rotate 14 left
Rotate 14 right
Rotate 16 left
Rotate 16 right
Rotate 18 left
Rotate 18 right

Midterm, Spring 2015

8

3
rotate 8 right

T3
3

8
rotate 3 left

3

81

color flip 3

T2T1

T1

T3T2

T1 T2 T3 T4

3

81

T1 T2 T3 T4

dr
af

t

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Q10. Hashing (5 points).

Recall that hashing involves storing keys in a table, at the address computed by a hash function. When the hash
function provides the same address for two different keys, we say that there is a collision.

Separate chaining and linear probing are two different strategies to address collisions. For each property below,
indicate whether it is more characteristic of either separate chaining or linear probing.

Separate chaining Linear probing

A. Less wasted space.

B. Performance degrades gracefully.

C. The degradation caused by bad hash function tends to be am-
plified by a phenomenon called clustering.

D. Better cache performance.

E. Easier to implement delete.

dr
af

t

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

Jérémie Lumbroso

