
2/12/17

1

1

The C Programming Language

Part 1

Princeton University
Computer Science 217: Introduction to Programming Systems For Your Amusement

“C is quirky, flawed, and an enormous success. While
accidents of history surely helped, it evidently satisfied a
need for a system implementation language efficient
enough to displace assembly language, yet sufficiently
abstract and fluent to describe algorithms and interactions
in a wide variety of environments.”

-- Dennis Ritchie

2

Goals of this Lecture
Help you learn about:

• The decisions that were made by the designers* of C
• Why they made those decisions
… and thereby…
• The fundamentals of C

Why?
• Learning the design rationale of the C language provides a richer

understanding of C itself
• A power programmer knows both the programming language and its

design rationale

* Dennis Ritchie, then later, members of standardization committees

3

Historical context - 1972
Operating systems were programmed in assembly language

(i.e., in machine instructions)
[Efficient; expressive; easy to translate to machine language; but not portable
from one computer instruction set to another; hard to write programs, hard to
debug, maintain…]

Application programs were in “high-level” languages such as
Algol, COBOL, PL/1, (newly invented) Pascal

Goals of these languages: Ease of programming,
expressiveness, structured programming, safety,
data structures, portability

Not fully achieved: safety, expressiveness, portability

Not even attempted: modularity

Goals for C language - 1972
Program operating-systems in a “high-level” language

Need: ease of programming, (reasonable) expressiveness,
structured programming, data structures, modularity,
compilable on a 64-kilobyte computer

Don’t even attempt: safety

When possible, have a bit of: portability

Goals for C language - 1972
Program operating-systems in a “high-level” language

Need: ease of programming, (reasonable) expressiveness, structured
programming, data structures, modularity, compilability

Don’t even attempt: safety

When possible, have a bit of: portability

Goals for Java language - 1995
(reasonable) ease of programming, (reasonable) expressiveness,

structured programming, data structures,

modularity, safety, portability, automatic memory management

It’s not that Java was particularly innovative (in these respects).
By 1995, decades of computer-science research had made it
straightforward to achieve all these goals at once.
In 1972, nobody knew how.

2/12/17

2

Goals of C

7

Designers wanted
C to:

But also:

Support system
programming

Support application
programming

Be low-level Be portable
Run fast Be portable
Be easy for people to
handle

Be easy for computers
to handle

Conflicting goals on multiple dimensions!

Agenda

Data Types

Operators

Statements

I/O Facilities

8

9

Primitive Data Types

• integer data types
• floating-point data types
• no character data type (use small integer types instead)
• no character string data type (use arrays of small ints instead)
• no logical or boolean data types (use integers instead)

10

Integer Data Types
• integer data types: char, short, int, long
• char is 1 byte

• Number of bits per byte is unspecified!
(but in the 21st century, pretty safe to assume it’s 8)

• sizes of other integer type is not fully specified but constrained:
• int is natural word size
• 2 ≤ sizeof(short) ≤ sizeof(int) ≤ sizeof(long)

On CourseLab
• Natural word size: 4 bytes (but not really!)
• char: 1 byte
• short: 2 bytes
• int: 4 bytes
• long: 8 bytes

What decisions
did the designers
of Java make?

Integer Literals

• Decimal: 123
• Octal: 0173 = 123
• Hexadecimal: 0x7B = 123
• Use "L" suffix to indicate long literal
• No suffix to indicate short literal; instead must use cast

Examples
• int: 123, 0173, 0x7B

• long: 123L, 0173L, 0x7BL
• short: (short)123, (short)0173, (short)0x7B

11 12

Unsigned Integer Data Types
Both signed and unsigned integer data types

2/12/17

3

13

Unsigned Integer Data Types
Both signed and unsigned integer data types

• signed integer types: int, short, long
• unsigned integer types: unsigned char, unsigned short,
unsigned int, and unsigned long

• char might mean signed char or unsigned char;
• Define conversion rules for mixed-type expressions

• Generally, mixing signed and unsigned converts signed to
unsigned

• See King book Section 7.4 for details

What decisions
did the designers
of Java make?

14

Unsigned Integer Literals

Decisions
• Default is signed
• Use "U" suffix to indicate unsigned literal

Examples
• unsigned int:

• 123U, 0173U, 0x7BU
• 123, 0173, 0x7B will work just fine in practice; technically

there is an implicit cast from signed to unsigned, but in these
cases it shouldn’t make a difference.

• unsigned long:
• 123UL, 0173UL, 0x7BUL

• unsigned short:
• (unsigned short)123, (unsigned short)0173,
(unsigned short)0x7B

15

Signed and Unsigned Integer Literals
The rules: Literal Data Type

dd…d int
long
unsigned long

0dd…d
0xdd…d

int
unsigned int
long
unsigned long

dd…dU
0dd…dU
0xdd…dU

unsigned int
unsigned long

dd…dL
0dd…dL
0xdd…dL

long
unsigned long

dd…dUL
0dd…dUL
0xdd…dUL

unsigned long

The type is the
first one that can
represent the literal
without overflow

16

Character Data Types
Back in 1972, some computers had 6-bit bytes,

some had 7-bit bytes, some had 8-bit bytes;
the C language had to accommodate all these

By 1985, pretty much all computers had 8-bit bytes
• The ASCII character code fits in 7 bits
• One character per byte
• It would be a very strange 21st-century C compiler that supported

other than 8-bit bytes

The C character type
• char can hold an ASCII character
• char might be signed or unsigned,

but since 0 ≤ ASCII ≤ 127 it doesn’t really matter
• if you’re using these for arithmetic, you might care to specify
signed char or unsigned char

17

Character Literals
• single quote syntax: 'a'
• Use backslash (the escape character) to express special

characters

Examples (with numeric equivalents in ASCII):
'a' the a character (97, 01100001B, 61H)
'\o141' the a character, octal character form
'\x61' the a character, hexadecimal character form
'b' the b character (98, 01100010B, 62H)
'A' the A character (65, 01000001B, 41H)
'B' the B character (66, 01000010B, 42H)
'\0' the null character (0, 00000000B, 0H)
'0' the zero character (48, 00110000B, 30H)
'1' the one character (49, 00110001B, 31H)
'\n' the newline character (10, 00001010B, AH)
'\t' the horizontal tab character (9, 00001001B, 9H)
'\\' the backslash character (92, 01011100B, 5CH)
'\'' the single quote character (96, 01100000B, 60H)

18

Strings and String Literals

Issue: How should C represent strings and string
literals?

Rationale:
• Natural to represent a string as a sequence of contiguous chars
• How to know where char sequence ends?

• Store length before char sequence?
• Store special “sentinel” char after char sequence?

2/12/17

4

19

Strings and String Literals
Decisions

• Adopt a convention
• String is a sequence of contiguous chars
• String is terminated with null char (‘\0’)

• Use double-quote syntax (e.g. "hello") to represent a string literal
• Provide no other language features for handling strings

• Delegate string handling to standard library functions

Examples
• 'a' is a char literal
• "abcd" is a string literal
• "a" is a string literal

How many
bytes?

What decisions did the
designers of Java make?

Unicode and UTF-8
Back in 1970s, English
was the only language in
the world, so we only
needed this alphabet:

ASCII: American Standard
Code for Information Interchange

In the 21st century, it turns
out that there are other
people and languages out
there, so we need:

Unicode and UTF-8
But Unicode characters are 24 bits;
how to encode them in 8-bit bytes?

Obvious solution: 3 bytes per char.

Problem 1: Then, ′\n′=0x0a might not
mean newline (if it’s one of the bytes of a
3-byte sequence)

Problem 2: wastes a lot of space
for English text

Solution: UTF-8 encoding of Unicode
http://www.cprogramming.com/tutorial/unicode.html
(This won’t be on the exam…)

22

Logical Data Types

• no logical or Boolean data type
• Represent logical data using type char

• Or any integer type
• Or any primitive type!!!

• Convention: 0 ⇒ FALSE, ≠0 ⇒ TRUE
• Convention used by:

• Relational operators (<, >, etc.)
• Logical operators (!, &&, ||)
• Statements (if, while, etc.)

23

Aside: Logical Data Type Shortcuts
Note

• Using integer data to represent logical data permits shortcuts

…
int i;
…
if (i) /* same as (i != 0) */

statement1;
else

statement2;
…

24

Aside: Logical Data Type Dangers
Note

• The lack of logical data type hampers compiler's ability to detect
some errors with certainty

…
int i;
…
i = 0;
…
if (i = 5)

statement1;
…

What happens
in Java?

What happens
in C?

2/12/17

5

25

Floating-Point Data Types
Back in 1972, each brand of computer had a different (and

slightly incompatible) representation of floating-point numbers

This was standardized in 1985; now practically all
computers use the IEEE 754 Floating Point standard,
designed by Prof. William Kahan of the Univ. of California at Berkeley
• three floating-point data types:
float, double, and long double

• sizes unspecified, but constrained:
sizeof(float) ≤ sizeof(double) ≤ sizeof(long double)

On CourseLab (and on pretty much any 21st-century computer)
• float: 4 bytes
• double: 8 bytes
• long double: 16 bytes

26

Floating-Point Literals

• fixed-point or “scientific” notation
• Any literal that contains decimal point or "E" is floating-point
• The default floating-point type is double
• Append "F" to indicate float
• Append "L" to indicate long double

Examples
• double: 123.456, 1E-2, -1.23456E4
• float: 123.456F, 1E-2F, -1.23456E4F
• long double: 123.456L, 1E-2L, -1.23456E4L

Data Types Summary: C vs. Java
Java only

• boolean, byte

C only
• unsigned char, unsigned short, unsigned int, unsigned
long

Sizes
• Java: Sizes of all types are specified, and portable
• C: Sizes of all types except char are system-dependent

Type char
• Java: char is 2 bytes (to hold all 1995-era Unicode values)
• C: char is 1 byte

27

Continued next lecture

28

Agenda

Data Types

Operators

Statements

I/O Facilities

29

