
COS 126 General Computer Science Spring 2014

Programming Exam 1

This exam is semi-open: you may read the course website, the booksite, any direct links from
those two, the textbook, any printed or written notes, and your past coursework on your computer.
You may not use other websites. You must not post, write, or send information to anywhere. No
other communication is permitted, except with course staff members. Do not remove this exam
from the exam room. Return it to course staff at the end of the exam.

Upload your code to the dropbox. As with the COS 126 assignments, you can submit your
code multiple times for testing, but only the last version will be graded.

Your code will be graded primarily on correctness. You will lose a substantial number of
points if your program does not compile or has the wrong API. However, efficiency, clarity, and
code style are also factors in your grade. Remember to include headers and comments in your code.
Headers MUST include your name, netID and precept number.

Print your name, netID and precept number on this page (now), and write out and sign the
Honor Code pledge before turning in this paper. It is a violation of the Honor Code to discuss this
exam until everyone in the class has taken the exam. You have 90 minutes to complete the test.

Write out and sign the Honor Code pledge before turning in the test:
“I pledge my honor that I have not violated the Honor Code during this examination.”

Pledge:

Signature:

P01 12:30 TTh David Pritchard
P01A 12:30 TTh Donna Gabai
P01B 12:30 TTh Aleksey Boyko
P02 1:30 TTh Borislav Hristov
P02A 1:30 TTh Terry Yannan Wang
P02B 1:30 TTh Aleksey Boyko
P02C 1:30 TTh Nanxi Kang
P02D 1:30 TTh Xinyi Fan
P03 2:30 TTh Borislav Hristov
P03A 2:30 TTh Bebe Shi
P04 3:30 TTh Kevin Lee
P04A 3:30 TTh Victor Shaoqing Yang
P05 7:30 TTh Kevin Lee
P06 10:00 WF Mojgan Ghasemi
P07 11:00 WF Mojgan Ghasemi
P08 12:30 WF Donna Gabai
P08A 12:30 WF Maia Ginsburg
P09 1:30 WF David Pritchard
P09A 1:30 WF Maia Ginsburg
P09B 1:30 WF Judi Israel
P10 2:30 WF Judi Israel

Name:

NetID:

Precept:

Problem Value Score

1 14

2A 8

2B 8

Total 30



As you are no doubt aware, it snows during the winter in Princeton. In this exam, you will write
two programs dealing with snow statistics and simulations. Part 1 is described on this page. The
second program is divided into part 2A and part 2B. We encourage you to proceed sequentially
through part 1, part 2A, and part 2B. However, part 2A can be finished independently of part 1.

After completing each part and testing it on your own computer, you can test it online. Go to the
Assignments page (refresh the page if necessary) and click on the Submit link for this exam.

Part 1: SnowStats (14 points)

In the first half of this exam, you will write a program that reads Princeton’s daily snowfall and
temperature data from standard input, and prints out the total number of days worth of data, the
total snowfall, and the coldest temperature.

The input format is as follows. Each line contains a decimal number (representing the inches of
snowfall on that day) and an integer (representing the temperature in degrees Fahrenheit on that
day), separated by a space. For example, here are the contents of a text file called snow.txt with
this format:

8.0 21

2.0 24

0.0 45

2.4 30

1.9 19

4.4 26

You can obtain the text file snow.txt, and other text files used by the dropbox script, at

http://www.cs.princeton.edu/~cos126/docs/data/Snow/

Your first program, SnowStats.java, should (in its main() method) read this data and output the
number of days, total snowfall, and coldest temperature. Your output should match the following
example. When we run

java-introcs SnowStats < snow.txt

the output should be

Number of days: 6

Total snow: 18.700000000000003

Coldest temperature: 19

Note that we have some rounding error in the total snowfall, which is fine; the second half of the
exam avoids this problem by using formatted printing which limits the number of decimal places
printed.

The file can have any number of days (lines of data); there will always be at least one day. You
may assume that the daily temperature is never more than 200 degrees.

You can test your part 1 code online before starting part 2.

http://www.cs.princeton.edu/~cos126/docs/data/Snow/


In part 2 of the exam, you will write a program SnowMelt that simulates how fast the snow will
melt, depending on the level of salt used to help melt it. The API has three methods: meltage()

and printArray() described below, and main() described in part 2B.

Part 2A: SnowMelt methods (8 points)

The first method that you must create for this part must have the signature

public static double meltage(double currSnow, int temp, int salt)

This method computes the following: if there is currSnow inches of snow on the ground, the
temperature today is temp, and we are using a salt percent salt solution, how much of that snow
will melt? It should return the number given by the formula

min{currSnow, (1 + currSnow)(temp−32+2×salt)/18}
For example, if currSnow is 8.0, temp is 21, and salt is 10, then this formula evaluates to

min{8.0, (1 + 8.0)(21−32+2×10)/18} = min{8.0, 9.00.5} = min{8.0, 3.0} = 3.0

You will need to use Math.pow() to compute this.

Once you’ve written your code, you can test it in DrJava in the interactions pane by typing in the
command SnowMelt.meltage(8.0, 21, 10) (without a semicolon, then press Enter). It should
print 3.0.

The second method that you must create for this part must have the signature

public static void printArray(double[] arr)

It should perform formatted printing of each element of the array using the format specifier

StdOut.printf("%8.3f", ____);

where ____ is a double value you want to print. Naturally, to print all of the elements, you will
need a loop. After all elements are printed, your method should print a newline.

Once completed, here is one way that you can perform a very basic test of your method: in DrJava’s
interactions pane, enter SnowMelt.printArray(new double[3]), which should cause

0.000 0.000 0.000

to be printed.

You can test your part 2A code online before starting part 2B.



Part 2B: SnowMelt main (8 points)

You will now write a main() method for SnowMelt with the following behavior: it reads a data
file from standard input, in the same format as part 1, and takes any number of integer command-
line arguments, representing possible salt concentrations Princeton might use to treat its hallowed
sidewalks. Your program must print a table representing the amount of snow left on the ground
after each day, for each of the specified salt percentages. We begin with an example and then
describe other important details further below on this page. Read it all before starting to code.

For example, the following command asks your program to simulate two possible scenarios, one
using a 10% salt solution, and one using a 5% salt solution:

java-introcs SnowMelt 10 5 < snow.txt

It produces the following output; the left column is for a 10% salt solution, the right column is for
a 5% salt solution, and each row gives the amount of snow left on the ground after each day.

5.000 7.115

3.000 7.822

0.000 0.000

0.000 0.677

0.387 1.769

0.869 4.620

We now explain how you should generate this table. Each day, your simulation should (a) increase
the amount of snow on the ground by the new snowfall, (b) call meltage() on the new total snow,
and (c) reduce the amount of snow on the ground by the meltage. The snow left at the end of one
day remains there at the start of the next day.

For example, consider a 10% salt solution, using the first two days of snow.txt:
8.0 21

2.0 24

...

1. On the first day, 8.0 inches of snow falls. Of this snow, meltage(8.0, 21, 10) will melt,
which is 3.0 inches (this example was given in part 2A). So after one day, 8.0 − 3.0 = 5.0
inches of snow remains on the ground.

2. On the second day, 2.0 more inches of snow falls, which when added to the 5.0 inches already
on the ground, gives a total of 7.0 inches. Of this snow, meltage(7.0, 24, 10) inches will
melt, which is 4.0. So after two days, 7.0− 4.0 = 3.0 inches of snow remains on the ground.

Thus, the first column of the sample output above starts with 5.000 and 3.000 in the top rows.

Like the example above, assume that before the first day, there is no snow on the ground.

Use an array of double values to simulate the remaining snow under the different salt concentra-
tions. Print each row using printArray.

If you are unable to complete the program for multiple command-line arguments, we will award
partial credit for a solution that works when it takes exactly one command-line argument.

Remember to submit your completed code online and to use the “Check All Submitted Files” button.


