
Final Project "Tips & Tricks"
COS126 - Spring 2017

Project Context 1827

No universal acceptance of the atomic nature of matter

Botanist Robert Brown notices erratic motion of pollen grains

in water. This motion is later called: Brownian motion.

Project Context 1905

Einstein publishes a revolutionary paper:

Brownian motion is caused by smaller moving particles
colliding with the larger pollen grains.

Density of particles affects displacement in Brownian motion.

Jean Baptist Perrin experimentally validated Einstein’s
theory and equations.

Your Task: Redo Perrin’s experiments!
Not so difficult with computers and your COS126 skills!

Project Context 1908

Experiment Overview

1
Record a microscopic video of
particles undergoing Brownian
motion

Experiment Overview

video

2
Convert the video
into a set of frames

Experiment Overview

video Frames 3

Detect Beads in
every frame

Experiment Overview

video Frames Beads

frame i frame i+1

4

Compare positions
of beads in every
two consecutive
frames

Experiment Overview

video Frames Beads

frame i frame i+1

7.1833
4.7932
2.1693
5.5287
5.4292
2.1893
5.7294
3.1141
4.5576
1.9898
 ……

5

Record all bead
displacements
across consecutive
fames.

Experiment Overview

video Frames Beads

frame i frame i+1

7.1833
4.7932
2.1693
5.5287
5.4292
2.1893
5.7294
 …… Avogadro’s

Number Displacements

Project Overview
Given as input

BeadFinder.java

Detects all the “Beads”

in a given frame.

BeadTracker.java

Outputs displacements

of beads over successive

frames.

Avogadro.java Computes Avogadro’s number from a given set of displacements.

+ Blob.java Represents
a set of adjacent pixels.

+ readme.txt Shows
performance analysis.

Project Requirements
Implement the following:

(1) Blob.java 
Represents a set of adjacent pixels.

(2) BeadFinder.java 
Detects all the “Beads” in a given picture.

(3) BeadTracker.java 
Outputs displacements of beads over consecutive frames.

(4) Avogadro.java 
Computes Avogadro’s number from a given set of
displacements.

(5) Readme File
Shows performance analysis.

Project Requirements
Implement the following:

(1) Blob.java 
Represents a set of adjacent pixels.

(2) BeadFinder.java 
Detects all the “Beads” in a given picture.

(3) BeadTracker.java
Outputs displacements of beads over consecutive frames.

(4) Avogadro.java 
Computes Avogadro’s number from a given set of
displacements.

(5) Readme File
Shows performance analysis.

Blob.java

Blob: Any group of adjacent
light pixels.  
Adjacency is based on
not

How many blobs are there?

Assume each block to be a pixel

1

2

3

4

65

Blob.java

Blob: Any group of adjacent
light pixels.  
Adjacency is based on
not

How many blobs are there?

Assume each block to be a pixel

Blob.java

Blob: Any group of adjacent
light pixels.  
Adjacency is based on
not

How many blobs are there?

Assume each block to be a pixel

Bead: A blob with a number
of pixels that is at least min.  

How many beads are there?
(assume min=5)

Blob.java

Blob: Any group of adjacent
light pixels.  
Adjacency is based on
not

How many blobs are there?

Assume each block to be a pixel

Bead: A blob with a number
of pixels that is at least min.  

How many beads are there?
(assume min=5)

1

2

Blob.java
public class Blob {
 …
 public void add(int x, int y)

 public int mass()

 public double distanceTo(Blob that)

…
}

adds a point to the blob

returns # of
points in the blob

measures distance between this
and that blob

Distance is measured between
the centers of mass
(avgX, avgY)

x
x

public class Blob {
 public Blob()
 public int mass()
 public void add(int x, int y)
 public double distanceTo(Blob that)
 public String toString()
 public static void main(String[] args)
}

Do not store every added point. We are only
interested in the center of mass of the points.

Blob.java
 Test in main every  

 public method.

Checklist has tips for implementing toString()
and for handling corner cases.

Project Requirements
Implement the following:

(1) Blob.java 
Represents a set of adjacent pixels.

(2) BeadFinder.java 
Detects all the “Beads” in a given picture.

(3) BeadTracker.java
Outputs displacements of beads over consecutive frames.

(4) Avogadro.java 
Computes Avogadro’s number from a given set of
displacements.

(5) Readme File
Shows performance analysis.

BeadFinder.java

A Luminance  
Threshold tau

Input:

An Image

Original Image

threshold (monochrome luminance > 180)

After Applying a Luminance Threshold tau

BeadFinder.java

A Luminance  
Threshold tau

Input:

An Image

Constructor stores all blobs in the
image

Returns through  
Blob [] getBeads(int min)  
all blobs that have at least min points

F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F

visited[][]Pixels

Detecting All Blobs

For each pixel p:
If it is white enough
Create a blob from all  
its adjacent light pixels

For each pixel p

If p is white enough  
 AND p is not visited

Create a new Blob

Start DFS from p
Mark p as visited

F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F

Detected  
Blobs

For each pixel p

If p is white enough  
 AND p is not visited

Create a new Blob

Start DFS from p
Mark p as visited

Detecting All Blobs

T F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F

Detected  
Blobs

First pixel is dark

For each pixel p

If p is white enough  
 AND p is not visited

Create a new Blob

Start DFS from p
Mark p as visited

Detecting All Blobs

T T T T F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F

Detected  
Blobs

Skip dark pixels and mark  
them as visited

For each pixel p

If p is white enough  
 AND p is not visited

Create a new Blob

Start DFS from p
Mark p as visited

Detecting All Blobs

T T T T T T T T F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F

Detected  
Blobs

Skip dark pixels and mark  
them as visited

For each pixel p

If p is white enough  
 AND p is not visited

Create a new Blob

Start DFS from p
Mark p as visited

Detecting All Blobs

T T T T T T T T T T T
T F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F

Detected  
Blobs

Skip dark pixels and mark  
them as visited

For each pixel p

If p is white enough  
 AND p is not visited

Create a new Blob

Start DFS from p
Mark p as visited

Detecting All Blobs

T T T T T T T T T T T
T T T T T T T T T T T
T F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F

Detected  
Blobs

This pixel is light and has not  
been visited before. Iteration  
in the for loop is suspended  

and DFS starts

For each pixel p

If p is white enough  
 AND p is not visited

Create a new Blob

Start DFS from p
Mark p as visited

Detecting All Blobs

T T T T T T T T T T T
T T T T T T T T T T T
T T T T T F F F F F F
F T T T T T F F F F F
F T T T T F F F F F F
F F T T F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F

Detected  
Blobs

DFS adds all ‘light’ pixels  
adjacent to this pixel to a blob. 

All pixels visited by the DFS  
are marked as visited

For each pixel p

If p is white enough  
 AND p is not visited

Create a new Blob

Start DFS from p
Mark p as visited

Detecting All Blobs

T T T T T T T T T T T
T T T T T T T T T T T
T T T T T F F F F F F
F T T T T T F F F F F
F T T T T F F F F F F
F F T T F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F

For loop proceeds and ignores  
this pixel because it is marked 

as visited

Detected  
Blobs

For each pixel p

If p is white enough  
 AND p is not visited

Create a new Blob

Start DFS from p
Mark p as visited

Detecting All Blobs

T T T T T T T T T T T
T T T T T T T T T T T
T T T T T T T T T T T
T T T T T T T T F F F
F T T T T F F F F F F
F F T T F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F

light and not visited! 
Create a new blob and start  

a new DFS

Detected  
Blobs

For each pixel p

If p is white enough  
 AND p is not visited

Create a new Blob

Start DFS from p
Mark p as visited

Detecting All Blobs

T T T T T T T T T T T
T T T T T T T T T T T
T T T T T T T T T T T
T T T T T T T T T F F
F T T T T F F F F F F
F F T T F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F

A new blob with only one pixel!

Detected  
Blobs

For each pixel p

If p is white enough  
 AND p is not visited

Create a new Blob

Start DFS from p
Mark p as visited

Detecting All Blobs

T T T T T T T T T T T
T T T T T T T T T T T
T T T T T T T T T T T
T T T T T T T T T T T
T T T T T T T T T T T
T T T T T T T T T T T
T T T T T F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F
F F F F F F F F F F F

light and not visited! 
Create a new blob and start  

a new DFS

Detected  
Blobs

For each pixel p

If p is white enough  
 AND p is not visited

Create a new Blob

Start DFS from p
Mark p as visited

Detecting All Blobs

T T T T T T T T T T T
T T T T T T T T T T T
T T T T T T T T T T T
T T T T T T T T T T T
T T T T T T T T T T T
T T T T T T T T T T T
T T T T T T T T T T T
F F F F T T T T T T T
F F F F F T T T T T T
F F F F F F T T T T F

Detected  
Blobs

DFS adds all ‘light’ pixels  
adjacent to this pixel to a blob. 

All pixels visited by the DFS  
are marked as visited

For each pixel p

If p is white enough  
 AND p is not visited

Create a new Blob

Start DFS from p
Mark p as visited

Detecting All Blobs

T T T T T T T T T T T
T T T T T T T T T T T
T T T T T T T T T T T
T T T T T T T T T T T
T T T T T T T T T T T
T T T T T T T T T T T
T T T T T T T T T T T
T T T T T T T T T T T
T T T T T T T T T T T
T T T T T T T T T T T

Algorithm ends when all pixels 
have been marked as visited

Detected  
Blobs

For each pixel p

If p is white enough  
 AND p is not visited

Create a new Blob

Start DFS from p
Mark p as visited

Detecting All Blobs

Depth-First Search

DFS starting at p
Base cases?

Mark p as visited  
Add p to the blob

DFS
DFS
DFS
DFS

DFS starting at p
Base cases?

Mark p as visited  
Add p to the blob

DFS
DFS
DFS
DFS

Pixel out of bounds
Pixel is dark
Pixel is visited

Depth-First Search

Bead Finder Notes
Number of Blobs is not known ahead of time. What data
structure will you use to store them?

Array of Blobs?
What should the size of the array be?

Linked List of Blobs?
More implementation work!
Be careful not to traverse the whole list to add a blob!

Others?
You can assume access to Stack.java, Queue.java and ST.java.
BUT, make sure to make a choice that is efficient and
makes sense!

java.util?
Not allowed!

Images are 640 x 480
Don’t hardwire! Your code should work for any image size.

Private helper methods?
You will definitely need at least one! You can’t do recursion  
in a constructor!

Bead Finder Notes

Project Requirements
Implement the following:

(1) Blob.java 
Represents a set of adjacent pixels.

(2) BeadFinder.java 
Detects all the “Beads” in a given picture.

(3) BeadTracker.java
Outputs displacements of beads over consecutive frames.

(4) Avogadro.java 
Computes Avogadro’s number from a given set of
displacements.

(5) Readme File
Shows performance analysis.

BeadTracker.java

A Luminance  
Threshold tau

Input:

An Image A sequence of
images

A distance  
Threshold delta

7.1833
4.7932
2.1693
5.5287
5.4292
2.1893
5.7294
3.1141
4.5576
1.9898
 ……

A list of bead
displacements

Output:

BeadTracker.java

Image 1 Image 2

For every pair of consecutive images img1 and img2
Output how much every bead in img2 has moved  
from its position in img1

7.1833
4.7932
2.1693
5.5287
5.4292

Displacements

BeadTracker.java

Image 1 Image 2

For every pair of consecutive images img1 and img2
Output how much every bead in img2 has moved  
from its position in img1

7.1833
4.7932
2.1693
5.5287
5.4292
7.1833
4.7932
2.1693
7.1833
4.7932

Displacements

7.1833
4.7932
2.1693
5.5287
5.4292
7.1833
4.7932
2.1693
7.1833
4.7932
2.1693
5.5287
5.4292
5.5287
5.4292

BeadTracker.java

Image 1 Image 2

For every pair of consecutive images img1 and img2
Output how much every bead in img2 has moved  
from its position in img1

Displacements

img1 —input to—> BeadFinder —produces—> Blob [] beads1
img2 —input to—> BeadFinder —produces—> Blob [] beads2

BeadTracker.java
Image 1 Image 2

img1 —input to—> BeadFinder —produces—> Blob [] beads1
img2 —input to—> BeadFinder —produces—> Blob [] beads2

For each bead b in beads2
Find closest bead in beads1
output distance between b and closest

BeadTracker.java
Image 1 Image 2

img1 —input to—> BeadFinder —produces—> Blob [] beads1
img2 —input to—> BeadFinder —produces—> Blob [] beads2

For each bead b in beads2
Find closest bead in beads1
output distance between b and closest

For each pair of images img1 and img2

Image 1 Image 2

BeadTracker.java

img1 —input to—> BeadFinder —produces—> Blob [] beads1
img2 —input to—> BeadFinder —produces—> Blob [] beads2

For each bead b in beads2
Find closest bead in beads1
output distance between b and closest

For each pair of images img1 and img2

BeadTracker.java
Image 1 Image 2

img1 —input to—> BeadFinder —produces—> Blob [] beads1
img2 —input to—> BeadFinder —produces—> Blob [] beads2

For each bead b in beads2
Find closest bead in beads1
output distance between b and closest

For each pair of images img1 and img2

BeadTracker.java
Image 1 Image 2

img1 —input to—> BeadFinder —produces—> Blob [] beads1
img2 —input to—> BeadFinder —produces—> Blob [] beads2

For each bead b in beads2
Find closest bead in beads1
output distance between b and closest

For each pair of images img1 and img2

BeadTracker.java
Image 1 Image 2

Avoid finding beads

for the same image

more than one

Avoid storing all the

images!

Project Requirements
Implement the following:

(1) Blob.java 
Represents a set of adjacent pixels.

(2) BeadFinder.java 
Detects all the “Beads” in a given picture.

(3) BeadTracker.java
Outputs displacements of beads over consecutive frames.

(4) Avogadro.java 
Computes Avogadro’s number from a given set of
displacements.

(5) Readme File
Shows performance analysis.

Avogadro.java

Receives as input a sequence of displacements.

Where T, π, η and ρ are given and D can be computed using:

σ2 = 2DΔt

Where Δt is given and σ2 is your job to compute!

Avogadro’s Number is NA = R / k

D = kT / 6πηρ

Where R is given and K can be computed using:

Final Tips
• Be careful about units. Convert every read displacement from

pixels to meters before using it in any formula.

• Avogadro can be implemented and tested independently.

• Constants! No magic numbers + No cryptic names!

• Timing Tests! Read Checklist + Use StopWatch.java + Redirect
output to a file.

Image Sources
• Slide 2:

• https://upload.wikimedia.org/wikipedia/commons/thumb/3/32/
Robert_Brown_(botanist).jpg/220px-Robert_Brown_(botanist).jpg

• Slide 3:
• https://cdn.miniphysics.com/wp-content/uploads/2011/01/brownianmotion.gif
• https://upload.wikimedia.org/wikipedia/commons/d/d3/Albert_Einstein_Head.jpg

• Slide 4:
• https://en.wikipedia.org/wiki/Jean_Baptiste_Perrin#/media/

File:Jean_Perrin_1926.jpg

https://upload.wikimedia.org/wikipedia/commons/thumb/3/32/Robert_Brown_(botanist).jpg/220px-Robert_Brown_(botanist).jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/3/32/Robert_Brown_(botanist).jpg/220px-Robert_Brown_(botanist).jpg
https://cdn.miniphysics.com/wp-content/uploads/2011/01/brownianmotion.gif
https://upload.wikimedia.org/wikipedia/commons/d/d3/Albert_Einstein_Head.jpg
https://en.wikipedia.org/wiki/Jean_Baptiste_Perrin#/media/File:Jean_Perrin_1926.jpg
https://en.wikipedia.org/wiki/Jean_Baptiste_Perrin#/media/File:Jean_Perrin_1926.jpg

