Final Project "Tips & Tricks"

COS126 - Spring 2017

Project Context

» No universal acceptance of the atomic nature of matter

» Botanist Robert Brown notices erratic motion of pollen grains

in water. This motion is later called: Brownian motion.

Project Context

e * _ ®
. e
e ottl’%

et

» Einstein publishes a revolutionary paper:

» Brownian motion is caused by smaller moving particles

colliding with the larger pollen grains.

» Density of particles affects displacement in Brownian motion.

Project Context 1908

Jean Baptist Perrin experimentally validated Einstein’s
theory and equations.

Your Task: Redo Perrin’s experiments!

Not so difficult with computers and your @ COS126 skills!

Experiment Overview

Record a microscopic video of

o : : :
1) particles undergoing Brownian

motion

Experiment Overview

I| 3 Convert the video
| - 2) into a set of frames

video

Experiment Overview

I

video Frames (g
&)

Detect Beads in
every frame

Experiment Overview

I

video Frames

©
Compare positions

of beads in every

two consecutive @ |
frames | ame fme

|
!
i -

Experiment Overview

I

video Frames

(5)
Record all bead
displacements

across consecutive

®
I

.5576 ~ frame i

fames.

R & WO A
=
(0 0]
O
w

Experiment Overview

I

Frames

L
s NG

Avogadro’s = -

— o " frame i = frame i+l

|
n
B e
-
l

®

Number Displacements

Project Overview

Given as input

Avogadro’s f —_ frame 1 ‘ | fame i+1 O
Number Displacements frames.
Av : :
Omogadro’.lava + Blob.java Represents
n Pufés Avogadro’s Number a set of adjacent pixels.

+ readme.txt Shows
performance analysis.

Project Requirements

Implement the following:

(1) Blob. java
Represents a set of adjacent pixels.

(2) BeadFinder. java
Detects all the “Beads” in a given picture.

(3) BeadTracker. java
Outputs displacements of beads over consecutive frames.

(4) Avogadro. java
Computes Avogadro’s number from a given set of
displacements.

(5) Readme File
Shows performance analysis.

Project Requirements

Implement the following:

(1) Blob. java
Represents a set of adjacent pixels.

Blob: Any group of adjacent

ight pixels. A
Adjacency is based on « ,—>
\
not X7
¥\

»How many blobs are there?

Blob: Any group of adjacent

ight pixels. A
Adjacency is based on « ,—>
\
not X7
¥\

»How many blobs are there?

Blob: Any group of adjacent

ight pixels. A
Adjacency is based on « ,—>
\
not X7
¥\

>How many blobs are there?

Bead: A blob with a number
of pixels that is at least min.

How many beads are there?
(assume min=>5)

Blob: Any group of adjacent

ight pixels. A
Adjacency is based on « ,—>
\
not X7
¥\

>How many blobs are there?

Bead: A blob with a number
of pixels that is at least min.

How many beads are there?
(assume min=>5)

public class Blob { adds a F?OEM% to the blob

/

public void add(int x, int y)

returins # of

. . -
public int mass () poinks in the blob

public double distanceTo (Blob that)

} measures distance bebween Ehis
and Ehaobk blob

Distance is measured between
the centers of mass

— (avgX, avgy)

Test in main every

public class Blob { Fmbmﬂﬂ@mOd'
public Blob ()
public int mass|()
public void add(int x, int y)
public double distanceTo (Blob that)
public String toString()
public static void main(String[] args)

» Do not store every added point. We are only
interested in the center of mass of the points.

» Checklist has tips for implementing toString ()
and for handling corner cases.

Project Requirements

Implement the following:

(2) BeadFinder. java
Detects all the “Beads” in a given picture.

An Image

Input: A Luminance
Threshold tau

BeadFinder.java

Original Image

After Applying a Luminance Threshold tau

threshold (monochrome luminance > 180)

An Image

A Luminance
Threshold tau

., /

Input:

BeadFinder.java

Constructor stores all blobs in the

Image

Returns through
Blob [] getBeads(int min)
all blobs that have at least min points

Detecting All Blobs

HEEEEE -
HEEEEEEEENE
Pixels visited[][]
For each pixel p

If p is white enough

For each pixel p:
X P AND p is not visited

If it is white enough
Create a blob from all
its adjacent light pixels

Create a new Blob

Start DFS from p
Mark p as visited

Detecting All Blobs

aEEEEEEEEEE
N EEEEEEEE Detected
R DEEEEEE Blobs
- EEE BB

Y EEEEEEE

For each pixel p

If p is white enough
AND p is not visited

Create a new Blob

Start DFS from p
Mark p as visited

Detecting All Blobs

HEEEEEEEEEE Detected
B EEEEEEEE

B LEEEEEE Blobs
B EEE BN

B EEREEEE

For each pixel p

If p is white enough
AND p is not visited

Create a new Blob First pixel is dark

Start DFS from p
Mark p as visited

Detecting All Blobs

HEENEEEEEEE 717 Detected
ENNEEEEEEEE
B "EEEEEn Blobs

EEEEEE ol
HEEEEEEEEEE
For each pixel p

If p is white enough

AND p is not visited
Skip dark pixels and mark

Create a new Blob them as visited

Start DFS from p
Mark p as visited

Detecting All Blobs

HEEEEEEEEEE 777 7T Detected
BT EEEEERER
B T HEREER Blobs

EEEEEE ol
HEEEEEEEEEE
For each pixel p

If p is white enough

AND p is not visited
Skip dark pixels and mark

Create a new Blob them as visited

Start DFS from p
Mark p as visited

Detecting All Blobs

HEEEEEEEEENE 1 7TTTTTTTT Detected
HEENEEEEEEEE
B "EEEEEn Blobs

EEEEEE ol
HEEEEEEEEEE
For each pixel p

If p is white enough

AND p is not visited
Skip dark pixels and mark

n Bl o
Create a new Blob them as visited

Start DFS from p
Mark p as visited

Detecting All Blobs

Detected
ErEEEEEEEn
B TEEEEEE

Blobs

TTTTTTTTTT
T TTTTTTTTT

- = -

EEEEEE ol
HEEEEEEEEEE
For each pixel p

If p is white enough

AND p is not visited This pixel is light and has not
been visited before. lteration

in the for loop is suspended
Start DFS from p and DFS starts
Mark p as visited

Create a new Blob

Detecting All Blobs

Detected
=.........

Blobs

- = -
- = |- -
- = = - - -
- = = - - -
- == -
- - -

— -

— -

— -

— -

- -

For each pixel p

If p is white enough

AND p is not visited DFS adds all ‘light’ pixels
adjacent to this pixel to a blob.

All pixels visited by the DFS
Start DFS from p are marked as visited
Mark p as visited

Create a new Blob

Detecting All Blobs

HEREEEEEEREEE 7 TTTTTTTT Detected
BEENEENNNNEE T T TTTTTTTT
B Bl it Blobs
Bl rTTTTT
HEEEEEE 1777
HEEEEN "EEEN T T
HEEEN l=
HEEEEN yl
HEEEEEENEEEN
For each pixel p
If p is white enough
AND p is not visited For loop proceeds and ignores
Create a new Blob this pixel because it is marked
as visited

Start DFS from p
Mark p as visited

Detecting All Blobs

HEREEEEEEREEE 7 TTTTTTTT Detected
EENEENENEEN T TTTTTTTTT
. NEEEEEN rrTTTTTTITT Blobs
TTTTTTTT
BEEEEEEE 77T
EEEEEETEEEN T T
HEEER HE
HEEEEE N
HEEEEEEEEEEN
For each pixel p
If p is white enough
AND p is not visited light and not visited!
Create a new Blob Create a new blob and start
a new DFS

Start DFS from p
Mark p as visited

Detecting All Blobs

BN T TTTTTTTTT
B PEEEEEE o TTTTTTITT Blobs
TTTTTTTTLT
HEEEEENE 17T
HEEEEEETEEEN T T
HEEEN |
HEEEEER e
HEEEEEEEEEE
For each pixel p
If p is white enough
AND p is not visited
Create a new Blob A new blob with only one pixel!

Start DFS from p
Mark p as visited

Detecting All Blobs

HEREEEEEEREEE 7 TTTTTTTT Detected
EENEEEEEEEE T TTTTTTTTTT
. NEEEEER rrTTTTTTTOT Blobs
TTTTTTTTTTT
BEEEEEER rrrTTTTTTTT
HEEEEECEEEE 1t TTTTTTTOTT
HEEEEE Bl rrT1TT
EEEEEN N
HEEEEEEEEEER
For each pixel p
If p is white enough
AND p is not visited light and not visited!
Create a new Blob Create a new blob and start
a new DFS

Start DFS from p
Mark p as visited

Detecting All Blobs

BN T T TTTTTTTT
N DN T TTTTTTTTT Blobs
TTTTTTTTTTT
BEEEEEE rrrTrTTTTTT
BHENERRCEEEE v TTTTTTTT
HEEER Bl trrrtdrTrTrTT
TTTTTTT
HEEEEE N TTTTTT
HEEEEEEEEEN TTTT
For each pixel p
If p is white enough
AND p is not visited
P DFS adds all ‘light’ pixels
Create a new Blob adjacent to this pixel to a blob.
Start DFS from p All pixels visited by the DFS

Mark p as visited are marked as visited

Detecting All Blobs

Detected
BN EEEEEEEn
B rTEEEEEE

Blobs

- - - - - - -]
- - - - - - -]
- - - - - -]
- - - - - -]
- - - - - -]
- - - - - -]
o B B B e e B e B B
e T e e e B B e B B
e e e e e e e B B
o B B B e B B e B B
o 1 e e e e B e B B

HEENEE Nl
HEEEEEEEEEEN
For each pixel p
If p is white enough
AND p is not visited

Create a new Blob Algorithm ends when all pixels

Start DFS from p have been marked as visited
Mark p as visited

Depth-First Search

DFS starting at p
Base cases?

Mark p as visited
Add p to the blob

DFS —>
DFS <«
DFS %
DFS {

Depth-First Search

DFS starting at p

Mark p as visited
Add p to the blob

DFS —>
DFS <«
DFS %
DFS {

Pixe

Base cases?]

Pixel |

Pixe

=

\

f bounds |

Bead Finder Notes

Number of Blobs is not known ahead of time. What data
structure will you use to store them?

> Array of Blobs?
What should the size of the array be?

> Linked List of Blobs?
More implementation work!
Be careful not to traverse the whole list to add a blob!

> java.util?
Not allowed!

> Others?
You can assume access to Stack.java, Queue.java and ST.java.
BUT, make sure to make a choice that is efficient and
makes sense!

Bead Finder Notes

> Images are 640 x 480
Don’t hardwire! Your code should work for any image size.

> Private helper methods?
You will definitely need at least one! You can’t do recursion
in a constructor!

Project Requirements

Implement the following:

(3) BeadTracker. java
Outputs displacements of beads over consecutive frames.

A sequence of
Images

A Luminance A distance

Threshold tau / Threshold delta
v
BeadTracker.java

.1833
. 7932
.1693

.5287 .
1290 Alist of bead

.1893 displacements
7294
.1141
.5576
.9898

Input:

Output:

R & W OPNNDOTODN A

BeadTracker.java isp acements

. 7932
.1693
.5287
.4292

T

Image 1 Image 2

‘U1Lﬂl\)nh\1

For every pair of consecutive images img1 and img2
Output how much every bead in img2 has moved
from its position in img’

Displacements

.1833
. 7932
.1693
.5287
.4292
.1833
. 7932
.1693
.1833
. 7932

——

BeadTracker.java

Image 1 Image 2

‘b\ll\)b\l&(ﬂl\)b\l

For every pair of consecutive images img1 and img2
Output how much every bead in img2 has moved
from its position in img’

BeadTracker.java isp acements

. 7932
.1693
.5287
.4292
.1833
. 7932
.1693
.1833
. 7932
.1693
.5287
.4292
.5287
.4292

T——

Image 1 Image 2

(U‘ltﬂmtﬂl\)b\ll\)bxlmtﬂl\)b\l

For every pair of consecutive images img1 and img2
Output how much every bead in img2 has moved
from its position in img’

BeadTracker.java

Image 1 Image 2

img1

BeadFinder Blob [] beads1
img2 BeadFinder Blob [] beads2

BeadTracker.java

Image 1 Image 2

img1 BeadFinder Blob [] beads1
img2 BeadFinder Blob [] beads2
For each bead b in beads2

Find closest bead in beads1
output distance between b and closest

BeadTracker.java

Image 1 Image 2

For each pair of images img1 and img2

img1 BeadFinder Blob [] beads1
img2 BeadFinder Blob [] beads2
For each bead b in beads2

Find closest bead in beads
output distance between b and closest

BeadTracker.java

Image 1 Image 2

For each pair of images img1 and img2

img1 BeadFinder Blob [] beads1
img2 BeadFinder Blob [] beads2
For each bead b in beads2

Find closest bead in beads
output distance between b and closest

BeadTracker.java

Image 1 Image 2

For each pair of images img1 and img2

img1 BeadFinder Blob [] beads1
img2 BeadFinder Blob [] beads2
For each bead b in beads2

Find closest bead in beads
output distance between b and closest

BeadTracker.java

Image 1

Image 2

S
For each pair of images img1 and img2 ~a &md'\“g beaagde
Y T
img1 BeadFinder ?O(e came !
img2 BeadFinder ore rhan one

For each bead b in beads2
Find closest bead in beads1
output distance between b and closest

Project Requirements

Implement the following:

(4) Avogadro.java
Computes Avogadro’s number from a given set of
displacements.

Avogadro.java

Receives as input a sequence of displacements.

Avogadro’s Numberis Na = R / k

Where R is given and K can be computed using:

D

L

kT / énnp

Where T, n, n and p are given and D can be computed using:

102 - ZDAt\

Where At is given and 0'2 IS your jOb to Compute!

Final Tips

* Be careful about units. Convert every read displacement from
pixels to meters before using it in any formula.

» Avogadro can be implemented and tested independently.

» Constants! No magic numbers + No cryptic names!

» Timing Tests! Read Checklist + Use StopWatch.java + Redirect
output to a file.

Image Sources

« Slide 2:
« https://upload.wikimedia.org/wikipedia/commons/thumb/3/32/
Robert Brown (botanist).jog/220px-Robert Brown (botanist).jpg

e Slide 3:

« https://cdn.miniphysics.com/wp-content/uploads/2011/01/brownianmotion.gif
« https://upload.wikimedia.org/wikipedia/commons/d/d3/Albert Einstein Head.jpg
« Slide 4:
« https://en.wikipedia.org/wiki/Jean Baptiste Perrin#/media/
File:Jean Perrin 1926.jpg

https://upload.wikimedia.org/wikipedia/commons/thumb/3/32/Robert_Brown_(botanist).jpg/220px-Robert_Brown_(botanist).jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/3/32/Robert_Brown_(botanist).jpg/220px-Robert_Brown_(botanist).jpg
https://cdn.miniphysics.com/wp-content/uploads/2011/01/brownianmotion.gif
https://upload.wikimedia.org/wikipedia/commons/d/d3/Albert_Einstein_Head.jpg
https://en.wikipedia.org/wiki/Jean_Baptiste_Perrin#/media/File:Jean_Perrin_1926.jpg
https://en.wikipedia.org/wiki/Jean_Baptiste_Perrin#/media/File:Jean_Perrin_1926.jpg

