
Distributed GraphLab: A Framework for Machine Learning
and Data Mining in the Cloud

Yucheng Low
Carnegie Mellon University

ylow@cs.cmu.edu

Joseph Gonzalez
Carnegie Mellon University

jegonzal@cs.cmu.edu

Aapo Kyrola
Carnegie Mellon University

akyrola@cs.cmu.edu

Danny Bickson
Carnegie Mellon University

bickson@cs.cmu.edu

Carlos Guestrin
Carnegie Mellon University

guestrin@cs.cmu.edu

Joseph M. Hellerstein
UC Berkeley

hellerstein@cs.berkeley.edu

ABSTRACT

While high-level data parallel frameworks, like MapReduce, sim-

plify the design and implementation of large-scale data processing

systems, they do not naturally or efficiently support many important

data mining and machine learning algorithms and can lead to ineffi-

cient learning systems. To help fill this critical void, we introduced

the GraphLab abstraction which naturally expresses asynchronous,

dynamic, graph-parallel computation while ensuring data consis-

tency and achieving a high degree of parallel performance in the

shared-memory setting. In this paper, we extend the GraphLab

framework to the substantially more challenging distributed setting

while preserving strong data consistency guarantees.

We develop graph based extensions to pipelined locking and data

versioning to reduce network congestion and mitigate the effect of

network latency. We also introduce fault tolerance to the GraphLab

abstraction using the classic Chandy-Lamport snapshot algorithm

and demonstrate how it can be easily implemented by exploiting

the GraphLab abstraction itself. Finally, we evaluate our distributed

implementation of the GraphLab abstraction on a large Amazon

EC2 deployment and show 1-2 orders of magnitude performance

gains over Hadoop-based implementations.

1. INTRODUCTION
With the exponential growth in the scale of Machine Learning and

Data Mining (MLDM) problems and increasing sophistication of

MLDM techniques, there is an increasing need for systems that can

execute MLDM algorithms efficiently in parallel on large clusters.

Simultaneously, the availability of Cloud computing services like

Amazon EC2 provide the promise of on-demand access to afford-

able large-scale computing and storage resources without substantial

upfront investments. Unfortunately, designing, implementing, and

debugging the distributed MLDM algorithms needed to fully utilize

the Cloud can be prohibitively challenging requiring MLDM experts

to address race conditions, deadlocks, distributed state, and commu-

nication protocols while simultaneously developing mathematically

complex models and algorithms.

Nonetheless, the demand for large-scale computational and stor-

age resources, has driven many [2, 14, 15, 27, 30, 35] to develop new

parallel and distributed MLDM systems targeted at individual mod-

els and applications. This time consuming and often redundant effort

slows the progress of the field as different research groups repeatedly

solve the same parallel/distributed computing problems. Therefore,

the MLDM community needs a high-level distributed abstraction

that specifically targets the asynchronous, dynamic, graph-parallel

computation found in many MLDM applications while hiding the

complexities of parallel/distributed system design. Unfortunately,

existing high-level parallel abstractions (e.g. MapReduce [8, 9],

Dryad [19] and Pregel [25]) fail to support these critical properties.

To help fill this void we introduced [24] GraphLab abstraction which

directly targets asynchronous, dynamic, graph-parallel computation

in the shared-memory setting.

In this paper we extend the multi-core GraphLab abstraction to the

distributed setting and provide a formal description of the distributed

execution model. We then explore several methods to implement

an efficient distributed execution model while preserving strict con-

sistency requirements. To achieve this goal we incorporate data

versioning to reduce network congestion and pipelined distributed

locking to mitigate the effects of network latency. To address the

challenges of data locality and ingress we introduce the atom graph

for rapidly placing graph structured data in the distributed setting.

We also add fault tolerance to the GraphLab framework by adapting

the classic Chandy-Lamport [6] snapshot algorithm and demonstrate

how it can be easily implemented within the GraphLab abstraction.

We conduct a comprehensive performance analysis of our

optimized C++ implementation on the Amazon Elastic Cloud

(EC2) computing service. We show that applications created

using GraphLab outperform equivalent Hadoop/MapReduce[9]

implementations by 20-60x and match the performance of carefully

constructed MPI implementations. Our main contributions are the

following:

• A summary of common properties of MLDM algorithms and the

limitations of existing large-scale frameworks. (Sec. 2)

• A modified version of the GraphLab abstraction and execution

model tailored to the distributed setting. (Sec. 3)

• Two substantially different approaches to implementing the new

distributed execution model(Sec. 4):

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 8
Copyright 2012 VLDB Endowment 2150-8097/12/04... $ 10.00.

716

◦ Chromatic Engine: uses graph coloring to achieve efficient

sequentially consistent execution for static schedules.

◦ Locking Engine: uses pipelined distributed locking and la-

tency hiding to support dynamically prioritized execution.

• Fault tolerance through two snapshotting schemes. (Sec. 4.3)

• Implementations of three state-of-the-art machine learning algo-

rithms on-top of distributed GraphLab. (Sec. 5)

• An extensive evaluation of Distributed GraphLab using a 512 pro-

cessor (64 node) EC2 cluster, including comparisons to Hadoop,

Pregel, and MPI implementations. (Sec. 5)

2. MLDM ALGORITHM PROPERTIES
In this section we describe several key properties of efficient

large-scale parallel MLDM systems addressed by the GraphLab

abstraction [24] and how other parallel frameworks fail to address

these properties. A summary of these properties and parallel frame-

works can be found in Table 1.

Graph Structured Computation: Many of the recent advances

in MLDM have focused on modeling the dependencies between data.

By modeling data dependencies, we are able to extract more signal

from noisy data. For example, modeling the dependencies between

similar shoppers allows us to make better product recommendations

than treating shoppers in isolation. Unfortunately, data parallel

abstractions like MapReduce [9] are not generally well suited for

the dependent computation typically required by more advanced

MLDM algorithms. Although it is often possible to map algorithms

with computational dependencies into the MapReduce abstraction,

the resulting transformations can be challenging and may introduce

substantial inefficiency.

As a consequence, there has been a recent trend toward graph-

parallel abstractions like Pregel [25] and GraphLab [24] which

naturally express computational dependencies. These abstractions

adopt a vertex-centric model in which computation is defined as

kernels that run on each vertex. For instance, Pregel is a bulk syn-

chronous message passing abstraction where vertices communicate

through messages. On the other hand, GraphLab is a sequential

shared memory abstraction where each vertex can read and write

to data on adjacent vertices and edges. The GraphLab runtime is

then responsible for ensuring a consistent parallel execution. Con-

sequently, GraphLab simplifies the design and implementation of

graph-parallel algorithms by freeing the user to focus on sequen-

tial computation rather than the parallel movement of data (i.e.,

messaging).

Asynchronous Iterative Computation: Many important

MLDM algorithms iteratively update a large set of parameters.

Because of the underlying graph structure, parameter updates (on

vertices or edges) depend (through the graph adjacency structure)

on the values of other parameters. In contrast to synchronous

systems, which update all parameters simultaneously (in parallel)

using parameter values from the previous time step as input,

asynchronous systems update parameters using the most recent

parameter values as input. As a consequence, asynchronous systems

provides many MLDM algorithms with significant algorithmic

benefits. For example, linear systems (common to many MLDM

algorithms) have been shown to converge faster when solved

asynchronously [4]. Additionally, there are numerous other

cases (e.g., belief propagation [13], expectation maximization

[28], and stochastic optimization [35, 34]) where asynchronous

procedures have been empirically shown to significantly outperform

synchronous procedures. In Fig. 1(a) we demonstrate how asyn-

chronous computation can substantially accelerate the convergence

of PageRank.

Synchronous computation incurs costly performance penalties

since the runtime of each phase is determined by the slowest ma-

chine. The poor performance of the slowest machine may be caused

by a multitude of factors including: load and network imbalances,

hardware variability, and multi-tenancy (a principal concern in the

Cloud). Even in typical cluster settings, each compute node may also

provide other services (e.g., distributed file systems). Imbalances

in the utilization of these other services will result in substantial

performance penalties if synchronous computation is used.

In addition, variability in the complexity and convergence of

the individual vertex kernels can produce additional variability in

execution time, even when the graph is uniformly partitioned. For

example, natural graphs encountered in real-world applications have

power-law degree distributions which can lead to highly skewed

running times even with a random partition [36]. Furthermore, the

actual work required for each vertex could depend on the data in a

problem specific manner (e.g., local rate of convergence).

While abstractions based on bulk data processing, such as MapRe-

duce [9] and Dryad [19] were not designed for iterative computation,

recent projects such as Spark [38] extend MapReduce and other

data parallel abstractions to the iterative setting. However, these

abstractions still do not support asynchronous computation. Bulk

Synchronous Parallel (BSP) abstractions such as Pregel [25], Pic-

colo [33], and BPGL [16] do not naturally express asynchronicity.

On the other hand, the shared memory GraphLab abstraction was de-

signed to efficiently and naturally express the asynchronous iterative

algorithms common to advanced MLDM.

Dynamic Computation: In many MLDM algorithms, iterative

computation converges asymmetrically. For example, in parame-

ter optimization, often a large number of parameters will quickly

converge in a few iterations, while the remaining parameters will

converge slowly over many iterations [11, 10]. In Fig. 1(b) we

plot the distribution of updates required to reach convergence for

PageRank. Surprisingly, the majority of the vertices required only

a single update while only about 3% of the vertices required more

than 10 updates. Additionally, prioritizing computation can further

accelerate convergence as demonstrated by Zhang et al. [39] for

a variety of graph algorithms including PageRank. If we update

all parameters equally often, we waste time recomputing parame-

ters that have effectively converged. Conversely, by focusing early

computation on more challenging parameters, we can potentially

accelerate convergence. In Fig. 1(c) we empirically demonstrate

how dynamic scheduling can accelerate convergence of loopy belief

propagation (a popular MLDM algorithm).

Several recent abstractions have incorporated forms of dynamic

computation. For example, Pregel [25] supports a limited form of

dynamic computation by allowing some vertices to skip computa-

tion on each super-step. Other abstractions like Pearce et al. [32]

and GraphLab allow the user to adaptively prioritize computation.

While both Pregel and GraphLab support dynamic computation,

only GraphLab permits prioritization as well as the ability to adap-

tively pull information from adjacent vertices (see Sec. 3.2 for more

details). In this paper we relax some of the original GraphLab

scheduling requirements described in [24] to enable efficient dis-

tributed FIFO and priority scheduling.

Serializability: By ensuring that all parallel executions have an

equivalent sequential execution, serializability eliminates many chal-

lenges associated with designing, implementing, and testing parallel

MLDM algorithms. In addition, many algorithms converge faster if

serializability is ensured, and some even require serializability for

correctness. For instance, Dynamic ALS (Sec. 5.1) is unstable when

allowed to race (Fig. 1(d)). Gibbs sampling, a very popular MLDM

algorithm, requires serializability for statistical correctness.

717

Computation
Model

Sparse
Depend.

Async.
Comp.

Iterative Prioritized
Ordering

Enforce
Consistency

Distributed

MPI Messaging Yes Yes Yes N/A No Yes

MapReduce[9] Par. data-flow No No extensions(a) No Yes Yes

Dryad[19] Par. data-flow Yes No extensions(b) No Yes Yes

Pregel[25]/BPGL[16] GraphBSP Yes No Yes No Yes Yes

Piccolo[33] Distr. map No No Yes No Partially(c) Yes

Pearce et.al.[32] Graph Visitor Yes Yes Yes Yes No No

GraphLab GraphLab Yes Yes Yes Yes Yes Yes

Table 1: Comparison chart of large-scale computation frameworks. (a) [38] describes and iterative extension of MapReduce. (b)

[18] proposes an iterative extension for Dryad. (c) Piccolo does not provide a mechanism to ensure consistency but instead exposes a

mechanism for the user to attempt to recover from simultaneous writes.

2000 4000 6000 8000 10000 12000

10
0

10
2

10
4

10
6

Time

E
rr

o
r

Sync. (Pregel)

Async. (GraphLab)

(a) Async vs Sync PageRank

0 10 20 30 40 50 60 70

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Updates at Convergence

N
u
m

b
e
r

o
f
V

e
rt

ic
e
s

51% of vertices

(b) Dynamic PageRank

0 5 10 15 20

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Sweeps

R
e
s
id

u
a
l

Sync. (Pregel)

Async.

Dynamic Async. (GraphLab)

(c) LoopyBP Conv.

0 2 4 6

x 10
6

10
−1

10
0

10
1

10
2

Updates

T
ra

in
in

g
 E

rr
o
r

Serializable

Not Serializable

(d) ALS Consistency

Figure 1: (a) Rate of convergence, measured in L1 error to the true PageRank vector versus time, of the PageRank algorithm on

a 25M vertex 355M edge web graph on 16 processors. (b) The distribution of update counts after running dynamic PageRank to

convergence. Notice that the majority of the vertices converged in only a single update. (c) Rate of convergence of Loopy Belief prop-

agation on web-spam detection. (d) Comparing serializable and non-serializable (racing) execution of the dynamic ALS algorithm

in Sec. 5.1 on the Netflix movie recommendation problem. Non-serializable execution exhibits unstable convergence behavior.

An abstraction that enforces serializable computation eliminates

much of the complexity introduced by concurrency, allowing the

MLDM expert to focus on the algorithm and model design. De-

bugging mathematical code in a concurrent program which has

data-corruption caused by data races is difficult and time consum-

ing. Surprisingly, many asynchronous abstractions like [32] do not

ensure serializability or, like Piccolo [33], provide only basic mech-

anisms to recover from data races. GraphLab supports a broad range

of consistency settings, allowing a program to choose the level of

consistency needed for correctness. In Sec. 4 we describe several

techniques we developed to enforce serializability in the distributed

setting.

3. DIST. GRAPHLAB ABSTRACTION
The GraphLab abstraction consists of three main parts, the data

graph, the update function, and the sync operation. The data graph

(Sec. 3.1) represents user modifiable program state, and stores both

the mutable user-defined data and encodes the sparse computational

dependencies. The update function (Sec. 3.2) represents the user

computation and operate on the data graph by transforming data in

small overlapping contexts called scopes. Finally, the sync operation

(Sec. 3.5) concurrently maintains global aggregates. To ground

the GraphLab abstraction in a concrete problem, we will use the

PageRank algorithm [31] as a running example.

EXAMPLE 1 (PAGERANK). The PageRank algorithm recur-

sively defines the rank of a webpage v:

R(v) =
α

n
+ (1− α)

∑

u links to v

wu,v × R(u) (1)

in terms of the weighted wu,v ranks R(u) of the pages u that link to

v as well as some probability α of randomly jumping to that page.

The PageRank algorithm iterates Eq. (1) until the PageRank changes

by less than some small value ǫ.

3.1 Data Graph
The GraphLab abstraction stores the program state as a directed

graph called the data graph. The data graph G = (V,E,D) is a

container that manages the user defined data D. Here we use the

term data broadly to refer to model parameters, algorithm state,

and even statistical data. Users can associate arbitrary data with

each vertex {Dv : v ∈ V } and edge {Du→v : {u, v} ∈ E} in the

graph. However, as the GraphLab abstraction is not dependent

on edge directions, we also use Du↔v to denote the data on both

edge directions u → v and v → u. Finally, while the graph data

is mutable, the structure is static and cannot be changed during

execution.

EXAMPLE 2 (PAGERANK: EX. 1). The data graph is directly

obtained from the web graph, where each vertex corresponds to a

web page and each edge represents a link. The vertex data Dv

stores R(v), the current estimate of the PageRank, and the edge

data Du→v stores wu,v , the directed weight of the link.

3.2 Update Functions
Computation is encoded in the GraphLab abstraction in the form

of update functions. An update function is a stateless procedure

that modifies the data within the scope of a vertex and schedules the

future execution of update functions on other vertices. The scope of

vertex v (denoted by Sv) is the data stored in v, as well as the data

stored in all adjacent vertices and adjacent edges (Fig. 2(a)).

A GraphLab update function takes as an input a vertex v and its

scope Sv and returns the new versions of the data in the scope as

well as a set vertices T :

Update : f(v,Sv) → (Sv, T)

After executing an update function the modified data in Sv is written

back to the data graph. The set of vertices u ∈ T are eventually

718

executed by applying the update function f(u,Su) following the

execution semantics described later in Sec. 3.3.

Rather than adopting a message passing or data flow model as

in [25, 19], GraphLab allows the user defined update functions

complete freedom to read and modify any of the data on adjacent

vertices and edges. This simplifies user code and eliminates the need

for the users to reason about the movement of data. By controlling

what vertices are returned in T and thus to be executed, GraphLab

update functions can efficiently express adaptive computation. For

example, an update function may choose to return (schedule) its

neighbors only when it has made a substantial change to its local

data.

There is an important difference between Pregel and GraphLab

in how dynamic computation is expressed. GraphLab decouples the

scheduling of future computation from the movement of data. As

a consequence, GraphLab update functions have access to data on

adjacent vertices even if the adjacent vertices did not schedule the

current update. Conversely, Pregel update functions are initiated

by messages and can only access the data in the message, limiting

what can be expressed. For instance, dynamic PageRank is difficult

to express in Pregel since the PageRank computation for a given

page requires the PageRank values of all adjacent pages even if

some of the adjacent pages have not recently changed. Therefore,

the decision to send data (PageRank values) to neighboring vertices

cannot be made by the sending vertex (as required by Pregel) but

instead must be made by the receiving vertex. GraphLab, naturally

expresses the pull model, since adjacent vertices are only responsible

for scheduling, and update functions can directly read adjacent

vertex values even if they have not changed.

EXAMPLE 3 (PAGERANK: EX. 1). The update function for

PageRank (defined in Alg. 1) computes a weighted sum of the current

ranks of neighboring vertices and assigns it as the rank of the current

vertex. The algorithm is adaptive: neighbors are scheduled for

update only if the value of current vertex changes by more than a

predefined threshold.

Algorithm 1: PageRank update function

Input: Vertex data R(v) from Sv
Input: Edge data {wu,v : u ∈ N[v]} from Sv
Input: Neighbor vertex data {R(u) : u ∈ N[v]} from Sv
Rold(v)← R(v) // Save old PageRank

R(v)← α/n
foreach u ∈ N[v] do // Loop over neighbors

R(v)← R(v) + (1− α) ∗ wu,v ∗ R(u)

// If the PageRank changes sufficiently

if |R(v)− Rold(v)| > ǫ then
// Schedule neighbors to be updated

return {u : u ∈ N[v]}

Output: Modified scope Sv with new R(v)

3.3 The GraphLab Execution Model
The GraphLab execution model, presented in Alg. 2, follows a

simple single loop semantics. The input to the GraphLab abstraction

consists of the data graph G = (V,E,D), an update function, an

initial set of vertices T to be executed. While there are vertices re-

maining in T , the algorithm removes (Line 1) and executes (Line 2)

vertices, adding any new vertices back into T (Line 3). Duplicate

vertices are ignored. The resulting data graph and global values are

returned to the user on completion.

To enable a more efficient distributed execution, we relax the

execution ordering requirements of the shared-memory GraphLab

abstraction and allow the GraphLab run-time to determine the best

order to execute vertices. For example, RemoveNext(T) (Line 1)

Algorithm 2: GraphLab Execution Model

Input: Data Graph G = (V,E,D)
Input: Initial vertex set T = {v1, v2, ...}
while T is not Empty do

1 v ← RemoveNext(T)
2 (T ′,Sv)← f(v,Sv)
3 T ← T ∪ T ′

Output: Modified Data Graph G = (V,E,D′)

may choose to return vertices in an order that minimizes network

communication or latency (see Sec. 4.2.2). The only requirement

imposed by the GraphLab abstraction is that all vertices in T are

eventually executed. Because many MLDM applications benefit

from prioritization, the GraphLab abstraction allows users to assign

priorities to the vertices in T . The GraphLab run-time may use these

priorities in conjunction with system level objectives to optimize

the order in which the vertices are executed.

3.4 Ensuring Serializability
The GraphLab abstraction presents a rich sequential model which

is automatically translated into a parallel execution by allowing

multiple processors to execute the same loop on the same graph,

removing and executing different vertices simultaneously. To retain

the sequential execution semantics we must ensure that overlap-

ping computation is not run simultaneously. We introduce several

consistency models that allow the runtime to optimize the parallel

execution while maintaining serializability.

The GraphLab runtime ensures a serializable execution. A seri-

alizable execution implies that there exists a corresponding serial

schedule of update functions that when executed by Alg. 2 pro-

duces the same values in the data-graph. By ensuring serializability,

GraphLab simplifies reasoning about highly-asynchronous dynamic

computation in the distributed setting.

A simple method to achieve serializability is to ensure that the

scopes of concurrently executing update functions do not overlap. In

[24] we call this the full consistency model (see Fig. 2(b)). However,

full consistency limits the potential parallelism since concurrently

executing update functions must be at least two vertices apart (see

Fig. 2(c)). However, for many machine learning algorithms, the

update functions do not need full read/write access to all of the

data within the scope. For instance, the PageRank update in Eq. (1)

only requires read access to edges and neighboring vertices. To

provide greater parallelism while retaining serializability, GraphLab

defines the edge consistency model. The edge consistency model

ensures each update function has exclusive read-write access to its

vertex and adjacent edges but read only access to adjacent vertices

Fig. 2(b)). As a consequence, the edge consistency model increases

parallelism by allowing update functions with slightly overlapping

scopes to safely run in parallel (see Fig. 2(c)). Finally, the vertex

consistency model allows all update functions to be run in parallel,

providing maximum parallelism.

3.5 Sync Operation and Global Values
In many MLDM algorithms it is necessary to maintain global

statistics describing data stored in the data graph. For example, many

statistical inference algorithms require tracking global convergence

estimators. To address this need, the GraphLab abstraction defines

global values that may be read by update functions, but are written

using sync operations. Similar to aggregates in Pregel, the sync

operation is an associative commutative sum:

Z = Finalize

(

⊕

v∈V

Map(Sv)

)

(2)

719

3

4

D1 1 2

5

DϭўϮ

DϮўϯ Dϭўϯ

Dϭўϰ

Dϯўϰ Dϯўϱ

Dϰўϱ

Scope S1

Vertex Data

Edge Data

D2

D5 D4

D3

(a) Data Graph

V
e

rt
e

x

C
o

n
si

st
e

n
cy

M
o

d
e

l

E
d

g
e

C
o

n
si

st
e

n
cy

M
o

d
e

l

F
u

ll

C
o

n
si

st
e

n
cy

M
o

d
e

l

D1 D2 D3 D4 D5

DϭўϮ DϮўϯ Dϯўϰ Dϰўϱ

1 2 3 4 5

Write
Read

D1 D2 D3 D4 D5

DϭўϮ DϮўϯ Dϯўϰ Dϰўϱ

1 2 3 4 5

Write
Read

D1 D2 D3 D4 D5

DϭўϮ DϮўϯ Dϯўϰ Dϰўϱ

1 2 3 4 5

Write
Read

(b) Consistency Models

D1 D2 D3 D4 D5

DϭўϮ DϮўϯ Dϯўϰ Dϰўϱ

1 2 3 4 5

D1 D2 D3 D4 D5

DϭўϮ DϮўϯ Dϯўϰ Dϰўϱ

1 2 3 4 5

D1 D2 D3 D4 D5

DϭўϮ DϮўϯ Dϯўϰ Dϰўϱ

1 2 3 4 5

C
o

n
si

st
e

n
cy

P
a

ra
lle

lism

(c) Consistency and Parallelism

Figure 2: (a) The data graph and scope S1. Gray cylinders represent the user defined vertex and edge data while the irregular region

containing the vertices {1, 2, 3, 4} is the scope, S1 of vertex 1. An update function applied to vertex 1 is able to read and modify all

the data in S1 (vertex data D1, D2, D3, and D4 and edge data D1↔2, D1↔3, and D1↔4). (b) The read and write permissions for an

update function executed on vertex 3 under each of the consistency models. Under the full consistency model the update function

has complete read-write access to its entire scope. Under the edge consistency model, the update function has only read access to

adjacent vertices. Finally, vertex consistency model only provides write access to the central vertex data. (c) The trade-off between

consistency and parallelism. The dark rectangles denote the write-locked regions that cannot overlap. Update functions are executed

on the dark vertices in parallel. Under the stronger consistency models fewer functions can run simultaneously.

defined over all the scopes in the graph. Unlike Pregel, the sync

operation introduces a finalization phase, Finalize(·), to support

tasks, like normalization, which are common in MLDM algorithms.

Also in contrast to Pregel, where the aggregation runs after each

super-step, the sync operation in GraphLab runs continuously in the

background to maintain updated estimates of the global value.

Since every update function can access global values, ensuring

serializability of the Sync operation with respect to update functions

is costly and will generally require synchronizing and halting all

computation. Just as GraphLab has multiple consistency levels for

update functions, we similarly provide the option of consistent or

inconsistent Sync computations.

4. DISTRIBUTED GRAPHLAB DESIGN
In this section we extend the shared memory system design of

the GraphLab abstraction to the substantially more challenging

distributed setting and discuss the techniques required to achieve

this goal. An overview of the distributed design is illustrated in

Fig. 5(a). Because of the inherently random memory access patterns

common to dynamic asynchronous graph algorithms, we focus on

the distributed in-memory setting, requiring the entire graph and all

program state to reside in RAM. Our distributed implementation1

is written in C++ and extends the original open-sourced shared

memory GraphLab implementation.

4.1 The Distributed Data Graph
Efficiently implementing the data graph in the distributed set-

ting requires balancing computation, communication, and storage.

Therefore, we need to construct balanced partitioning of the data

graph that minimize number of edges that cross between machines.

Because the Cloud setting enables the size of the cluster to vary

with budget and performance demands, we must be able to quickly

load the data-graph on varying sized Cloud deployments. To resolve

these challenges, we developed a graph representation based on

two-phased partitioning which can be efficiently load balanced on

arbitrary cluster sizes.

The data graph is initially over-partitioned using domain specific

knowledge (e.g., planar embedding), or by using a distributed graph

partitioning heuristic (e.g., ParMetis [21], Random Hashing) into k

1The open-source C++ reference implementation of the Distributed
GraphLab framework is available at http://graphlab.org.

parts where k is much greater than the number of machines. Each

part, called an atom, is stored as a separate file on a distributed

storage system (e.g., HDFS, Amazon S3). Each atom file is a simple

binary compressed journal of graph generating commands such

as AddVertex(5000, vdata) and AddEdge(42 → 314, edata).
In addition, each atom stores information regarding ghosts: the

set of vertices and edges adjacent to the partition boundary. The

connectivity structure and file locations of the k atoms is stored in a

atom index file as a meta-graph with k vertices (corresponding to

the atoms) and edges encoding the connectivity of the atoms.

Distributed loading is accomplished by performing a fast balanced

partition of the meta-graph over the number of physical machines.

Each machine then constructs its local portion of the graph by

playing back the journal from each of its assigned atoms. The

playback procedure also instantiates the ghost of the local partition

in memory. The ghosts are used as caches for their true counterparts

across the network. Cache coherence is managed using a simple

versioning system, eliminating the transmission of unchanged or

constant data (e.g., edge weights).

The two-stage partitioning technique allows the same graph par-

tition computation to be reused for different numbers of machines

without requiring a full repartitioning step. A study on the quality of

the two stage partitioning scheme is beyond the scope of this paper,

though simple experiments using graphs obtained from [23] suggest

that the performance is comparable to direct partitioning.

4.2 Distributed GraphLab Engines
The Distributed GraphLab engine emulates the execution model

defined in Sec. 3.3 and is responsible for executing update functions

and sync operations, maintaining the set of scheduled vertices T ,

and ensuring serializability with respect to the appropriate consis-

tency model (see Sec. 3.4). As discussed in Sec. 3.3, the precise

order in which vertices are removed from T is up to the implementa-

tion and can affect performance and expressiveness. To evaluate this

trade-off we built the low-overhead Chromatic Engine, which exe-

cutes T partially asynchronously, and the more expressive Locking

Engine which is fully asynchronous and supports vertex priorities.

4.2.1 Chromatic Engine

A classic technique to achieve a serializable parallel execution

of a set of dependent tasks (represented as vertices in a graph) is

to construct a vertex coloring that assigns a color to each vertex

720

http://graphlab.org

such that no adjacent vertices share the same color [4]. Given a

vertex coloring of the data graph, we can satisfy the edge consistency

model by executing, synchronously, all vertices of the same color

in the vertex set T before proceeding to the next color. We use the

term color-step, in analogy to the super-step in the BSP model, to

describe the process of updating all the vertices within a single color

and communicating all changes. The sync operation can then be run

safely between color-steps.

We can satisfy the other consistency models simply by changing

how the vertices are colored. The full consistency model is satisfied

by constructing a second-order vertex coloring (i.e., no vertex shares

the same color as any of its distance two neighbors). The vertex con-

sistency model is satisfied by assigning all vertices the same color.

While optimal graph coloring is NP-hard in general, a reasonable

quality coloring can be constructed quickly using graph coloring

heuristics (e.g., greedy coloring). Furthermore, many MLDM prob-

lems produce graphs with trivial colorings. For example, many

optimization problems in MLDM are naturally expressed as bipar-

tite (two-colorable) graphs, while problems based upon template

models can be easily colored using the template [12].

While the chromatic engine operates in synchronous color-steps,

changes to ghost vertices and edges are communicated asyn-

chronously as they are made. Consequently, the chromatic engine

efficiently uses both network bandwidth and processor time within

each color-step. However, we must ensure that all modifications are

communicated before moving to the next color and therefore we

require a full communication barrier between color-steps.

4.2.2 Distributed Locking Engine

While the chromatic engine satisfies the distributed GraphLab ab-

straction defined in Sec. 3, it does not provide sufficient scheduling

flexibility for many interesting applications. In addition, it presup-

poses the availability of a graph coloring, which may not always

be readily available. To overcome these limitations, we introduce

the distributed locking engine which extends the mutual exclusion

technique used in the shared memory engine.

We achieve distributed mutual exclusion by associating a readers-

writer lock with each vertex. The different consistency models

can then be implemented using different locking protocols. Vertex

consistency is achieved by acquiring a write-lock on the central

vertex of each requested scope. Edge consistency is achieved by

acquiring a write lock on the central vertex, and read locks on

adjacent vertices. Finally, full consistency is achieved by acquiring

write locks on the central vertex and all adjacent vertices. Deadlocks

are avoided by acquiring locks sequentially following a canonical

order. We use the ordering induced by machine ID followed by

vertex ID (owner(v), v) since this allows all locks on a remote

machine to be requested in a single message.

Since the graph is partitioned, we restrict each machine to only

run updates on local vertices. The ghost vertices/edges ensure that

the update have direct memory access to all information in the scope.

Each worker thread on each machine evaluates the loop described in

Alg. 3 until the scheduler is empty. Termination is evaluated using

the distributed consensus algorithm described in [26].

A naive implementation Alg. 3 will perform poorly due to the

latency of remote lock acquisition and data synchronization. We

therefore rely on several techniques to both reduce latency and

hide its effects [17]. First, the ghosting system provides caching

capabilities eliminating the need to transmit or wait on data that has

not changed remotely. Second, all lock requests and synchronization

calls are pipelined allowing each machine to request locks and

data for many scopes simultaneously and then evaluate the update

function only when the scope is ready.

Algorithm 3: Naive Locking Engine Thread Loop

while not done do
Get next vertex v from scheduler
Acquire locks and synchronize data for scope Sv
Execute (T ′,Sv) = f(v,Sv) on scope Sv
// update scheduler on each machine

For each machine p, Send {s ∈ T ′ : owner(s) = p}
Release locks and push changes for scope Sv

Algorithm 4: Pipelined Locking Engine Thread Loop

while not done do
if Pipeline Has Ready Vertex v then

Execute (T ′,Sv) = f(v,SV)
// update scheduler on each machine

For each machine p, Send {s ∈ T ′ : owner(s) = p}
Release locks and push changes to Sv in background

else
Wait on the Pipeline

Pipelined Locking and Prefetching: Each machine maintains

a pipeline of vertices for which locks have been requested, but

have not been fulfilled. Vertices that complete lock acquisition and

data synchronization leave the pipeline and are executed by worker

threads. The local scheduler ensures that the pipeline is always filled

to capacity. An overview of the pipelined locking engine loop is

shown in Alg. 4.

To implement the pipelining system, regular readers-writer locks

cannot be used since they would halt the pipeline thread on con-

tention. We therefore implemented a non-blocking variation of the

readers-writer lock that operates through callbacks. Lock acquisi-

tion requests provide a pointer to a callback, that is called once the

request is fulfilled. These callbacks are chained into a distributed

continuation passing scheme that passes lock requests across ma-

chines in sequence. Since lock acquisition follows the total ordering

described earlier, deadlock free operation is guaranteed. To fur-

ther reduce latency, synchronization of locked data is performed

immediately as each machine completes its local locks.

EXAMPLE 4. To acquire a distributed edge consistent scope on

a vertex v owned by machine 2 with ghosts on machines 1 and 5,

the system first sends a message to machine 1 to acquire a local

edge consistent scope on machine 1 (write-lock on v, read-lock on

neighbors). Once the locks are acquired, the message is passed on

to machine 2 to again acquire a local edge consistent scope. Finally,

the message is sent to machine 5 before returning to the owning

machine to signal completion.

To evaluate the performance of the distributed pipelining system,

we constructed a three-dimensional mesh of 300 × 300 × 300 =
27, 000, 000 vertices. Each vertex is 26-connected (to immediately

adjacent vertices along the axis directions, as well as all diagonals),

producing over 375 million edges. The graph is partitioned using

Metis[21] into 512 atoms. We interpret the graph as a binary Markov

Random Field [13] and evaluate the runtime of 10 iterations of loopy

Belief Propagation [13] varying the length of the pipeline from

100 to 10,000, and the number of EC2 cluster compute instance

(cc1.4xlarge) from 4 machines (32 processors) to 16 machines

(128 processors). We observe in Fig. 3(a) that the distributed locking

system provides strong, nearly linear, scalability. In Fig. 3(b) we

evaluate the efficacy of the pipelining system by increasing the

pipeline length. We find that increasing the length from 100 to 1000

leads to a factor of three reduction in runtime.

721

4 Machines 8 Machines 16 Machines
0

50

100

150

200

250

300

Number of Machines

R
u

n
ti
m

e
 (

s
)

(a) Runtime

100 1000 10000
0

50

100

150

200

250

Maximum Pipeline Length

R
u
n
ti
m

e
 (

s
)

(b) Pipeline Length

Figure 3: (a) Plots the runtime of the Distributed Locking En-

gine on a synthetic loopy belief propagation problem varying

the number of machines with pipeline length = 10, 000. (b)

Plots the runtime of the Distributed Locking Engine on the

same synthetic problem on 16 machines (128 CPUs), varying

the pipeline length. Increasing pipeline length improves perfor-

mance with diminishing returns.

Algorithm 5: Snapshot Update on vertex v

if v was already snapshotted then
Quit

Save Dv // Save current vertex

foreach u ∈ N[v] do // Loop over neighbors

if u was not snapshotted then
Save data on edge Du↔v

Schedule u for a Snapshot Update

Mark v as snapshotted

4.3 Fault Tolerance
We introduce fault tolerance to the distributed GraphLab frame-

work using a distributed checkpoint mechanism. In the event of a

failure, the system is recovered from the last checkpoint. We evalu-

ate two strategies to construct distributed snapshots: a synchronous

method that suspends all computation while the snapshot is con-

structed, and an asynchronous method that incrementally constructs

a snapshot without suspending execution.

Synchronous snapshots are constructed by suspending execution

of update functions, flushing all communication channels, and then

saving all modified data since the last snapshot. Changes are written

to journal files in a distributed file-system and can be used to restart

the execution at any previous snapshot.

Unfortunately, synchronous snapshots expose the GraphLab en-

gine to the same inefficiencies of synchronous computation (Sec. 2)

that GraphLab is trying to address. Therefore we designed a fully

asynchronous alternative based on the Chandy-Lamport [6] snap-

shot. Using the GraphLab abstraction we designed and implemented

a variant of the Chandy-Lamport snapshot specifically tailored to

the GraphLab data-graph and execution model. The resulting algo-

rithm (Alg. 5) is expressed as an update function and guarantees a

consistent snapshot under the following conditions:

• Edge Consistency is used on all update functions,

• Schedule completes before the scope is unlocked,

• the Snapshot Update is prioritized over other update functions,

which are satisfied with minimal changes to the GraphLab engine.

The proof of correctness follows naturally from the original proof in

[6] with the machines and channels replaced by vertices and edges

and messages corresponding to scope modifications.

Both the synchronous and asynchronous snapshots are initiated

at fixed intervals. The choice of interval must balance the cost of

constructing the checkpoint with the computation lost since the last

0 50 100 150
0

0.5

1

1.5

2

2.5
x 10

8

time elapsed(s)

v
e
rt

ic
e
s
 u

p
d
a
te

d

baseline

async. snapshot

sync. snapshot

(a) Snapshot

0 50 100 150
0

0.5

1

1.5

2

2.5
x 10

8

time elapsed(s)

v
e

rt
ic

e
s
 u

p
d

a
te

d

baseline

async. snapshot

sync. snapshot

(b) Snapshot with Delay

Figure 4: (a) The number of vertices updated vs. time elapsed

for 10 iterations comparing asynchronous and synchronous

snapshots. Synchronous snapshots (completed in 109 seconds)

have the characteristic “flatline” while asynchronous snapshots

(completed in 104 seconds) allow computation to proceed. (b)

Same setup as in (a) but with a single machine fault lasting 15

seconds. As a result of the 15 second delay the asynchronous

snapshot incurs only a 3 second penalty while the synchronous

snapshot incurs a 16 second penalty.

checkpoint in the event of a failure. Young et al. [37] derived a

first-order approximation to the optimal checkpoint interval:

TInterval =
√

2TcheckpointTMTBF (3)

where Tcheckpoint is the time it takes to complete the checkpoint and

TMTBF is the mean time between failures for the cluster. For instance,

using a cluster of 64 machines, a per machine MTBF of 1 year, and

a checkpoint time of 2 min leads to optimal checkpoint intervals of

3 hrs. Therefore, for the deployments considered in our experiments,

even taking pessimistic assumptions for TMTBF, leads to checkpoint

intervals that far exceed the runtime of our experiments and in fact

also exceed the Hadoop experiment runtimes. This brings into

question the emphasis on strong fault tolerance in Hadoop. Better

performance can be obtained by balancing fault tolerance costs

against that of a job restart.

Evaluation: We evaluate the performance of the snapshotting

algorithms on the same synthetic mesh problem described in the

previous section, running on 16 machines (128 processors). We

configure the implementation to issue exactly one snapshot in the

middle of the second iteration. In Fig. 4(a) we plot the number of up-

dates completed against time elapsed. The effect of the synchronous

snapshot and the asynchronous snapshot can be clearly observed:

synchronous snapshots stops execution, while the asynchronous

snapshot only slows down execution.

The benefits of asynchronous snapshots become more apparent in

the multi-tenancy setting where variation in system performance

exacerbate the cost of synchronous operations. We simulate this on

Amazon EC2 by halting one of the processes for 15 seconds after

snapshot begins. In figures Fig. 4(b) we again plot the number of

updates completed against time elapsed and we observe that the

asynchronous snapshot is minimally affected by the simulated fail-

ure (adding only 3 seconds to the runtime), while the synchronous

snapshot experiences a full 15 second increase in runtime.

4.4 System Design
In Fig. 5(a), we provide a high-level overview of a GraphLab

system. The user begins by constructing the atom graph representa-

tion on a Distributed File System (DFS). If hashed partitioning is

used, the construction process is Map-Reduceable where a map is

performed over each vertex and edge, and each reducer accumulates

an atom file. The atom journal format allows future changes to the

graph to be appended without reprocessing all the data.

722

!"#$%&#'()*+,-./0(1%#2+(304.#546#./0(1%#2+(

7428"4'-8+9(

:45+(2;28+<(

=#>(!"#$%(

7#8#(

=#>(!"#$%(

7#8#(

?@#$=+9-,+A

!"#$%(B-459+"(
1#"240C(D(

1#"../040C(

E8/<(

F/55+,./0(

7428"4'-8+9(

:45+(2;28+<(

E8/<(309+*(

E8/<(

:45+(

E8/<(

:45+(

E8/<(

:45+(

E8/<(

:45+(

E8/<(

:45+(

E8/<(

:45+(

F5-28+"(7428"4'-8+9(

:45+(2;28+<(

E8/<(309+*(

E8/<(

:45+(

E8/<(

:45+(

E8/<(

:45+(

E8/<(

:45+(

E8/<(

:45+(

E8/<(

:45+(

GF1(=1F(F/<<2(

@/048/"40C(D(

E8/<(15#,+<+08(

!&()0C40+(

!&()0C40+(

!&()0C40+(309+*(

F/028"-,./0(

(a) System Overview

!"#$%"&'$()*+%,-.*

/#012*345*56778*9:;(%*<54=*

&/,#5(!"#$%(C8/"#B+(

=+</8+(

!"#$%(I#,%+(

7428"4'-8+9(

&/,L2(
C,%+9-5+"(

C,/$+(1"+M+8,%(E&/,L2(K(7#8#G(14$+540+(

N$9#8+(:0O(

)*+,O(J%"+#9(

N$9#8+(:0O(

)*+,O(J%"+#9(

N$9#8+(:0O(

)*+,O(J%"+#9(

(b) Locking Engine Design

Figure 5: (a) A high level overview of the GraphLab system. In the initialization phase the atom file representation of the data graph

is constructed. In the GraphLab Execution phase the atom files are assigned to individual execution engines and are then loaded

from the DFS. (b) A block diagram of the parts of the Distributed GraphLab process. Each block in the diagram makes use of the

blocks below it. For more details, see Sec. 4.4.

Fig. 5(b) provides a high level overview of the GraphLab locking

engine implementation. When GraphLab is launched on a cluster,

one instance of the GraphLab program is executed on each machine.

The GraphLab processes are symmetric and directly communicate

with each other using a custom asynchronous RPC protocol over

TCP/IP. The first process has the additional responsibility of being a

master/monitoring machine.

At launch the master process computes the placement of the atoms

based on the atom index, following which all processes perform

a parallel load of the atoms they were assigned. Each process is

responsible for a partition of the distributed graph that is managed

within a local graph storage, and provides distributed locks. A cache

is used to provide access to remote graph data.

Each process also contains a scheduler that manages the vertices

in T that have been assigned to the process. At runtime, each ma-

chine’s local scheduler feeds vertices into a prefetch pipeline that

collects the data and locks required to execute the vertex. Once all

data and locks have been acquired, the vertex is executed by a pool

of worker threads. Vertex scheduling is decentralized with each

machine managing the schedule for its local vertices and forward-

ing scheduling requests for remote vertices. Finally, a distributed

consensus algorithm [26] is used to determine when all schedulers

are empty. Due to the symmetric design of the distributed runtime,

there is no centralized bottleneck.

5. APPLICATIONS
We evaluated GraphLab on three state-of-the-art MLDM appli-

cations: collaborative filtering for Netflix movie recommendations,

Video Co-segmentation (CoSeg) and Named Entity Recognition

(NER). Each experiment was based on large real-world problems

and datasets (see Table 2). We used the Chromatic engine for the

Netflix and NER applications and the Locking Engine for the CoSeg

application. Equivalent Hadoop and MPI implementations were

also evaluated on the Netflix and NER applications.

Unfortunately, we could not directly compare against Pregel since

it is not publicly available and current open source implementations

do not scale to even the smaller problems we considered. While

Pregel exposes a vertex parallel abstraction, it must still provide

access to the adjacent edges within update functions. In the case of

the problems considered here, the computation demands that edges

be bi-directed, resulting in an increase in graph storage complexity

(for instance, the movie “Harry Potter” connects to a very large

number of users). Finally, many Pregel implementations of MLDM

algorithms will require each vertex to transmit its own value to all

adjacent vertices, unnecessarily expanding the amount of program

state from O(|V |) to O(|E|).
Experiments were performed on Amazon’s Elastic Computing

Cloud (EC2) using up to 64 High-Performance Cluster (HPC) in-

stances (cc1.4xlarge) each with dual Intel Xeon X5570 quad-

core Nehalem processors and 22 GB of memory and connected by

a 10 Gigabit Ethernet network. All timings include data loading

and are averaged over three or more runs. On each node, GraphLab

spawns eight engine threads (matching the number of cores). Nu-

merous other threads are spawned for background communication.

In Fig. 6(a) we present an aggregate summary of the parallel

speedup of GraphLab when run on 4 to 64 HPC machines on all

three applications. In all cases, speedup is measured relative to

the four node deployment since single node experiments were not

always feasible due to memory limitations. No snapshots were

constructed during the timing experiments since all experiments

completed prior to the first snapshot under the optimal snapshot

interval (3 hours) as computed in Sec. 4.3. To provide intuition

regarding the snapshot cost, in Fig. 8(d) we plot for each application,

the overhead of compiling a snapshot on a 64 machine cluster.

Our principal findings are:

• On equivalent tasks, GraphLab outperforms Hadoop by 20-60x

and performance is comparable to tailored MPI implementations.

• GraphLab’s performance scaling improves with higher computa-

tion to communication ratios.

• The GraphLab abstraction more compactly expresses the Netflix,

NER and Coseg algorithms than MapReduce or MPI.

5.1 Netflix Movie Recommendation
The Netflix movie recommendation task uses collaborative filter-

ing to predict the movie ratings for each user, based on the ratings of

similar users. We implemented the alternating least squares (ALS)

algorithm [40], a common algorithm in collaborative filtering. The

input to ALS is a sparse users by movies matrix R, containing the

movie ratings of each user. The algorithm iteratively computes a

low-rank matrix factorization:

UуR

Movies

U
se

rs

U
se

rs

Sparse

d

Vx d

Movies

(4)

where U and V are rank d matrices. The ALS algorithm alternates

between computing the least-squares solution for U and V while

holding the other fixed. Both the quality of the approximation and

the computational complexity depend on the magnitude of d: higher

d produces higher accuracy while increasing computational cost.

Collaborative filtering and the ALS algorithm are important tools in

MLDM: an effective solution for ALS can be extended to a broad

class of other applications.

While ALS may not seem like a graph algorithm, it can be repre-

sented elegantly using the GraphLab abstraction. The sparse matrix

723

4 8 16 24 32 40 48 56 64
1
2

4

6

8

10

12

14

16

#Machines

S
p

e
e

d
u

p
 R

e
la

ti
v
e

 t
o

 4
 M

a
c
h

in
e

s

Ideal

CoSeg

Netflix

NER

(a) Overall Scalability

8 16 24 32 40 48 56 64
0

20

40

60

80

100

#Machines

M
B

P
S

 p
e
r

M
a
c
h
in

e

NER

Netflix

CoSeg

(b) Overall Network Utilization

4 8 16 24 32 40 48 56 64
1
2

4

6

8

10

12

14

16

#Machines

S
p
e
e
d
u
p
 R

e
la

ti
v
e
 t
o
 4

 M
a
c
h
in

e
s

Ideal

d=100 (30M Cycles)

d=50 (7.7M Cycles)
d=20 (2.1M Cycles)

d=5 (1.0M Cycles)

(c) Netflix Scaling with Intensity

4 8 16 24 32 40 48 56 64
10

1

10
2

10
3

10
4

#Machines

R
u
n
ti
m

e
(s

)

Hadoop MPI

GraphLab

(d) Netflix Comparisons

Figure 6: (a) Scalability of the three test applications with the largest input size. CoSeg scales excellently due to very sparse graph

and high computational intensity. Netflix with default input size scales moderately while NER is hindered by high network utilization.

See Sec. 5 for a detailed discussion. (b) Average bandwidth utilization per cluster node. Netflix and CoSeg have very low bandwidth

requirements while NER appears to saturate when #machines > 24. (c) Scalability of Netflix varying the computation cost of the

update function. (d) Runtime of Netflix with GraphLab, Hadoop and MPI implementations. Note the logarithmic scale. GraphLab

outperforms Hadoop by 40-60x and is comparable to an MPI implementation. See Sec. 5.1 and Sec. 5.3 for a detailed discussion.

R defines a bipartite graph connecting each user with the movies

they rated. The edge data contains the rating for a movie-user pair.

The vertex data for users and movies contains the corresponding row

in U and column in V respectively. The GraphLab update function

recomputes the d length vector for each vertex by reading the d

length vectors on adjacent vertices and then solving a least-squares

regression problem to predict the edge values. Since the graph

is bipartite and two colorable, and the edge consistency model is

sufficient for serializability, the chromatic engine is used.

The Netflix task provides us with an opportunity to quantify the

distributed chromatic engine overhead since we are able to directly

control the computation-communication ratio by manipulating d:

the dimensionality of the approximating matrices in Eq. (4). In

Fig. 6(c) we plot the speedup achieved for varying values of d and

the corresponding number of cycles required per update. Extrapo-

lating to obtain the theoretically optimal runtime, we estimated the

overhead of Distributed GraphLab at 64 machines (512 CPUs) to

be about 12x for d = 5 and about 4.9x for d = 100. Note that this

overhead includes graph loading and communication. This provides

us with a measurable objective for future optimizations.

Next, we compare against a Hadoop and an MPI implementation

in Fig. 6(d) (d = 20 for all cases), using between 4 to 64 machines.

The Hadoop implementation is part of the Mahout project and is

widely used. Since fault tolerance was not needed during our exper-

iments, we reduced the Hadoop Distributed Filesystem’s (HDFS)

replication factor to one. A significant amount of our effort was then

spent tuning the Hadoop job parameters to improve performance.

However, even so we find that GraphLab performs between 40-60

times faster than Hadoop.

While some of the Hadoop inefficiency may be attributed to Java,

job scheduling, and various design decisions, GraphLab also leads

to a more efficient representation of the underlying algorithm. We

can observe that the Map function of a Hadoop ALS implementation,

performs no computation and its only purpose is to emit copies of the

vertex data for every edge in the graph; unnecessarily multiplying

the amount of data that need to be tracked.

For example, a user vertex that connects to 100 movies must

emit the data on the user vertex 100 times, once for each movie.

This results in the generation of a large amount of unnecessary

network traffic and unnecessary HDFS writes. This weakness ex-

tends beyond the MapReduce abstraction, but also affects the graph

message-passing models (such as Pregel) due to the lack of a scatter

operation that would avoid sending same value multiple times to

each machine. Comparatively, the GraphLab update function is

simpler as users do not need to explicitly define the flow of informa-

tion. Synchronization of a modified vertex only requires as much

communication as there are ghosts of the vertex. In particular, only

machines that require the vertex data for computation will receive it,

and each machine receives each modified vertex data at most once,

even if the vertex has many neighbors.

Our MPI implementation of ALS is highly optimized, and uses

synchronous MPI collective operations for communication. The

computation is broken into super-steps that alternate between re-

computing the latent user and movies low rank matrices. Between

super-steps the new user and movie values are scattered (using

MPI Alltoall) to the machines that need them in the next super-step.

As a consequence our MPI implementation of ALS is roughly equiv-

alent to an optimized Pregel version of ALS with added support for

parallel broadcasts. Surprisingly, GraphLab was able to outperform

the MPI implementation. We attribute the performance to the use of

background asynchronous communication in GraphLab.

Finally, we can evaluate the effect of enabling dynamic computa-

tion. In Fig. 9(a), we plot the test error obtained over time using a

dynamic update schedule as compared to a static BSP-style update

schedule. This dynamic schedule is easily represented in GraphLab

while it is difficult to express using Pregel messaging semantics. We

observe that a dynamic schedule converges much faster, reaching a

low test error in about half amount of work.

5.2 Video Co­segmentation (CoSeg)
Video co-segmentation automatically identifies and clusters

spatio-temporal segments of video (Fig. 7(a)) that share similar

texture and color characteristics. The resulting segmentation

(Fig. 7(a)) can be used in scene understanding and other computer

vision and robotics applications. Previous co-segmentation methods

[3] have focused on processing frames in isolation. Instead, we

developed a joint co-segmentation algorithm that processes all

frames simultaneously and is able to model temporal stability.

We preprocessed 1,740 frames of high-resolution video by coars-

ening each frame to a regular grid of 120× 50 rectangular super-

pixels. Each super-pixel stores the color and texture statistics for

all the raw pixels in its domain. The CoSeg algorithm predicts the

best label (e.g., sky, building, grass, pavement, trees) for each super

pixel using Gaussian Mixture Model (GMM) in conjunction with

Loopy Belief Propagation (LBP) [14]. The GMM estimates the

best label given the color and texture statistics in the super-pixel.

The algorithm operates by connecting neighboring pixels in time and

space into a large three-dimensional grid and uses LBP to smooth

the local estimates. We combined the two algorithms to form an

Expectation-Maximization algorithm, alternating between LBP to

compute the label for each super-pixel given the GMM and then

updating the GMM given the labels from LBP.

724

The GraphLab update function executes the LBP local iterative

update. We implement the state-of-the-art adaptive update sched-

ule described by [11], where updates that are expected to change

vertex values significantly are prioritized. We therefore make use

of the locking engine with an approximate priority scheduler. The

parameters for the GMM are maintained using the sync operation.

To the best of our knowledge, there are no other abstractions that

provide the dynamic asynchronous scheduling as well as the sync

(reduction) capabilities required by this application.

In Fig. 6(a) we demonstrate that the locking engine can achieve

scalability and performance on the large 10.5 million vertex graph

used by this application, resulting in a 10x speedup with 16x more

machines. We also observe from Fig. 8(a) that the locking engine

provides nearly optimal weak scaling: the runtime does not increase

significantly as the size of the graph increases proportionately with

the number of machines. We can attribute this to the properties of

the graph partition where the number of edges crossing machines

increases linearly with the number of machines, resulting in low

communication volume.

While Sec. 4.2.2 contains a limited evaluation of the pipelining

system on a synthetic graph, here we further investigate the behavior

of the distributed lock implementation when run on a complete

problem that makes use of all key aspects of GraphLab: both sync

and dynamic prioritized scheduling. The evaluation is performed

on a small 32-frame (192K vertices) problem using a 4 node cluster

and two different partitioning. An optimal partition was constructed

by evenly distributing 8 frame blocks to each machine. A worst

case partition was constructed by striping frames across machines

and consequently stressing the distributed lock implementation by

forcing each scope acquisition is to grab at least one remote lock. We

also vary the maximum length of the pipeline. Results are plotted in

Fig. 8(b). We demonstrate that increasing the length of the pipeline

increases performance significantly and is able to compensate for

poor partitioning, rapidly bringing down the runtime of the problem.

Just as in Sec. 4.2.2, we observe diminishing returns with increasing

pipeline length. While pipelining violates the priority order, rapid

convergence is still achieved.

We conclude that for the video co-segmentation task, Distributed

GraphLab provides excellent performance while being the only dis-

tributed graph abstraction that allows the use of dynamic prioritized

scheduling. In addition, the pipelining system is an effective way to

hide latency, and to some extent, a poor partitioning.

5.3 Named Entity Recognition (NER)
Named Entity Recognition (NER) is the task of determining the

type (e.g., Person, Place, or Thing) of a noun-phrase (e.g., Obama,

Chicago, or Car) from its context (e.g., “President ”, “lives near

.”, or “bought a .”). NER is used in many natural language

processing applications as well as information retrieval. In this

application we obtained a large crawl of the web from the NELL

project [5], and we counted the number of occurrences of each

noun-phrase in each context. Starting with a small seed set of pre-

labeled noun-phrases, the CoEM algorithm labels the remaining

noun-phrases and contexts (see Table 7(b)) by alternating between

estimating the best assignment to each noun-phrase given the types

of its contexts and estimating the type of each context given the

types of its noun-phrases.

The data graph for the NER problem is bipartite with one set

of vertices corresponding to noun-phrases and other corresponding

to each contexts. There is an edge between a noun-phrase and a

context if the noun-phrase occurs in the context. The vertices store

the estimated distribution over types and the edges store the number

of times the noun-phrase appears in a context. Since the graph is

(a) Coseg Video Frame

Food Religion

onion Catholic
garlic Fremasonry

noodles Marxism
blueberries Catholic Chr.

(b) NER Types

Figure 7: (a) Coseg: a frame from the original video sequence

and the result of running the co-segmentation algorithm. (b)

NER: Top words for several types.

two colorable and relatively dense the chromatic engine was used

with random partitioning. The lightweight floating point arithmetic

in the NER computation in conjunction with the relatively dense

graph structure and random partitioning is essentially the worst-case

for the current Distributed GraphLab design, and thus allow us to

evaluate the overhead of the Distributed GraphLab runtime.

From Fig. 6(a) we see that NER achieved only a modest 3x im-

provement using 16x more machines. We attribute the poor scaling

performance of NER to the large vertex data size (816 bytes), dense

connectivity, and poor partitioning (random cut) that resulted in

substantial communication overhead per iteration. Fig. 6(b) shows

for each application, the average number of bytes per second trans-

mitted by each machine with varying size deployments. Beyond 16

machines, NER saturates with each machine sending at a rate of

over 100MB per second.

We evaluated our Distributed GraphLab implementation against

a Hadoop and an MPI implementation in Fig. 8(c). In addition to

the optimizations listed in Sec. 5.1, our Hadoop implementation

required the use of binary marshaling methods to obtain reasonable

performance (decreasing runtime by 5x from baseline).

We demonstrate that GraphLab implementation of NER was able

to obtains a 20-30x speedup over Hadoop. The reason for the

performance gap is the same as that for the Netflix evaluation. Since

each vertex emits a copy of itself for each edge: in the extremely

large CoEM graph, this corresponds to over 100 GB of HDFS writes

occurring between the Map and Reduce stage.

On the other hand, our MPI implementation was able to outper-

form Distributed GraphLab by a healthy margin. The CoEM task

requires extremely little computation in comparison to the amount

of data it touches. We were able to evaluate that the NER update

function requires 5.7x fewer cycles per byte of data accessed as

compared to the Netflix problem at d = 5 (the hardest Netflix case

evaluated). The extremely poor computation to communication ratio

stresses our communication implementation, that is outperformed

by MPI’s efficient communication layer. Furthermore, Fig. 6(b) pro-

vides further evidence that we fail to fully saturate the network (that

offers 10Gbps). Further optimizations to eliminate inefficiencies in

GraphLab’s communication layer should bring us up to parity with

the MPI implementation.

We conclude that while Distributed GraphLab is suitable for the

NER task providing an effective abstraction, further optimizations

are needed to improve scalability and to bring performance closer

to that of a dedicated MPI implementation.

5.4 EC2 Cost evaluation
To illustrate the monetary cost of using the alternative abstrac-

tions, we plot the price-runtime curve for the Netflix application

in Fig. 9(b) in log-log scale. All costs are computed using fine-

grained billing rather than the hourly billing used by Amazon EC2.

The price-runtime curve demonstrates diminishing returns: the cost

of attaining reduced runtimes increases faster than linearly. As a

comparison, we provide the price-runtime curve for Hadoop on the

same application. For the Netflix application, GraphLab is about

two orders of magnitude more cost-effective than Hadoop.

725

Exp. #Verts #Edges Vertex Data Edge Data Update Complexity Shape Partition Engine

Netflix 0.5M 99M 8d+ 13 16 O
(

d3 + deg.
)

bipartite random Chromatic

CoSeg 10.5M 31M 392 80 O (deg.) 3D grid frames Locking

NER 2M 200M 816 4 O (deg.) bipartite random Chromatic

Table 2: Experiment input sizes. The vertex and edge data are measured in bytes and the d in Netflix is the size of the latent dimension.

16 (2.6M) 32 (5.1M) 48 (7.6M) 64 (10.1M)
0

10

20

30

40

50

#Nodes (Data Graph Size: #vertices)

R
u
n
ti
m

e
(s

)

Ideal CoSeg Runtime

(a) CoSeg Weak Scaling

0

50

100

150

200

250

300

350

400

450

500

0 100 1000
R

u
n

ti
m

e
 (

S
e

co
n

d
s)

Pipeline Length

Optimal

Partition

Worst Case

Partition

(b) Pipelined Locking

4 8 16 24 32 40 48 56 64
10

1

10
2

10
3

10
4

#Nodes

R
u

n
ti
m

e
(s

)

Hadoop

GraphLab

MPI

(c) NER Comparisons

Netflix (d=20) CoSeg NER
0

10

20

30

40

50

%
 S

n
a
p
s
h
o
t
O

v
e
rh

e
a
d

(d) Snapshot Overhead

Figure 8: (a) Runtime of the CoSeg experiment as data set size is scaled proportionately with the number of machines. Ideally,

runtime is constant. GraphLab experiences an 11% increase in runtime scaling from 16 to 64 machines. (b) The performance effects

of varying the length of the pipeline. Increasing the pipeline length has a small effect on performance when partitioning is good.

When partitioning is poor, increasing the pipeline length improves performance to be comparable to that of optimal partitioning.

Runtime for worst-case partitioning at pipeline length 0 is omitted due to excessive runtimes. (c) Runtime of the NER experiment

with Distributed GraphLab, Hadoop and MPI implementations. Note the logarithmic scale. GraphLab outperforms Hadoop by

about 80x when the number of machines is small, and about 30x when the number of machines is large. The performance of

Distributed GraphLab is comparable to the MPI implementation. (d) For each application, the overhead of performing a complete

snapshot of the graph every |V | updates (where |V | is the number of vertices in the graph), when running on a 64 machine cluster.

0 2 4 6 8

x 10
6

0.92

0.925

0.93

0.935

0.94

0.945

Updates

T
e
s
t
E

rr
o
r

BSP (Pregel)

Dynamic (GraphLab)

(a) Dynamic Netflix

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

Runtime(s)

C
o
s
t(

$
)

GraphLab

Hadoop

(b) EC2 Price/Performance

Figure 9: (a) Convergence rate when dynamic computation is

used. Dynamic computation can converge to equivalent test er-

ror in about half the number of updates. (b) Price Performance

ratio of GraphLab and Hadoop on Amazon EC2 HPC machine

on a log-log scale. Costs assume fine-grained billing.

6. RELATED WORK
Section 2 provides a detailed comparison of several contemporary

high-level parallel and distributed frameworks. In this section we

review related work in classic parallel abstractions, graph databases,

and domain specific languages.

There has been substantial work [1] in graph structured databases

dating back to the 1980’s along with many recent open-source and

commercial products (e.g., Neo4J [29]). Graph databases typically

focus on efficient storage and retrieval of graph structured data with

support for basic graph computation. In contrast, GraphLab focuses

on iterative graph structured computation.

There are several notable projects focused on using MapReduce

for graph computation. Pegasus [20] is a collection of algorithms for

mining large graphs using Hadoop. Surfer [7] extends MapReduce

with a propagation primitive, but does not support asynchronous or

dynamic scheduling. Alternatively, large graphs may be “filtered”

(possibly using MapReduce) to a size which can be processed on a

single machine [22]. While [22] was able to derive reductions for

some graph problems (e.g., minimum spanning tree), the techniques

are not easily generalizable and may not be applicable to many

MLDM algorithms.

7. CONCLUSION AND FUTURE WORK
Recent progress in MLDM research has emphasized the impor-

tance of sparse computational dependencies, asynchronous compu-

tation, dynamic scheduling and serializability in large scale MLDM

problems. We described how recent distributed abstractions fail

to support all three critical properties. To address these properties

we introduced Distributed GraphLab, a graph-parallel distributed

framework that targets these important properties of MLDM applica-

tions. Distributed GraphLab extends the shared memory GraphLab

abstraction to the distributed setting by refining the execution model,

relaxing the scheduling requirements, and introducing a new dis-

tributed data-graph, execution engines, and fault-tolerance systems.

We designed a distributed data graph format built around a

two-stage partitioning scheme which allows for efficient load bal-

ancing and distributed ingress on variable-sized cluster deployments.

We designed two GraphLab engines: a chromatic engine that is

partially synchronous and assumes the existence of a graph coloring,

and a locking engine that is fully asynchronous, supports general

graph structures, and relies upon a novel graph-based pipelined

locking system to hide network latency. Finally, we introduced two

fault tolerance mechanisms: a synchronous snapshot algorithm and

a fully asynchronous snapshot algorithm based on Chandy-Lamport

snapshots that can be expressed using regular GraphLab primitives.

We implemented distributed GraphLab in C++ and evaluated it on

three state-of-the-art MLDM algorithms using real data. The evalu-

ation was performed on Amazon EC2 using up to 512 processors in

64 HPC machines. We demonstrated that Distributed GraphLab sig-

nificantly outperforms Hadoop by 20-60x, and is competitive with

tailored MPI implementations. We compared against BSP (Pregel)

implementation of PageRank, LoopyBP, and ALS and demonstrated

how support for dynamic asynchronous computation can lead to

substantially improved convergence.

Future work includes extending the abstraction and runtime to

support dynamically evolving graphs and external storage in graph

databases. These features will enable Distributed GraphLab to con-

tinually store and processes the time evolving data commonly found

in many real-world applications (e.g., social-networking and recom-

726

mender systems). Finally, we believe that dynamic asynchronous

graph-parallel computation will be a key component in large-scale

machine learning and data-mining systems, and thus further research

into the theory and application of these techniques will help define

the emerging field of big learning.

Acknowledgments
This work is supported by the ONR Young Investigator Program

grant N00014-08-1-0752, the ARO under MURI W911NF0810242,

the ONR PECASE-N00014-10-1-0672, the National Science Foun-

dation grant IIS-0803333 as well as the Intel Science and Technol-

ogy Center for Cloud Computing. Joseph Gonzalez is supported by

a Graduate Research Fellowship from the National Science Founda-

tion and a fellowship from AT&T Labs.

8. REFERENCES
[1] R. Angles and C. Gutierrez. Survey of graph database models.

ACM Comput. Surv., 40(1):1:1–1:39, 2008.

[2] A. Asuncion, P. Smyth, and M. Welling. Asynchronous

distributed learning of topic models. In NIPS, pages 81–88.

2008.

[3] D. Batra, A. Kowdle, D. Parikh, L. Jiebo, and C. Tsuhan.

iCoseg: Interactive co-segmentation with intelligent scribble

guidance. In CVPR, pages 3169 –3176, 2010.

[4] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and distributed

computation: numerical methods. Prentice-Hall, Inc., 1989.

[5] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. H. Jr.,

and T. M. Mitchell. Toward an architecture for never-ending

language learning. In AAAI, 2010.

[6] K. M. Chandy and L. Lamport. Distributed snapshots:

determining global states of distributed systems. ACM Trans.

Comput. Syst., 3(1):63–75, 1985.

[7] R. Chen, X. Weng, B. He, and M. Yang. Large graph

processing in the cloud. In SIGMOD, pages 1123–1126, 2010.

[8] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng,

and K. Olukotun. Map-reduce for machine learning on

multicore. In NIPS, pages 281–288. 2006.

[9] J. Dean and S. Ghemawat. Mapreduce: simplified data

processing on large clusters. In OSDI, 2004.

[10] B. Efron, T. Hastie, I. M. Johnstone, and R. Tibshirani. Least

angle regression. Annals of Statistics, 32(2):407–499, 2004.

[11] G. Elidan, I. McGraw, and D. Koller. Residual Belief

Propagation: Informed scheduling for asynchronous message

passing. In UAI, pages 165–173, 2006.

[12] J. Gonzalez, Y. Low, A. Gretton, and C. Guestrin. Parallel

gibbs sampling: From colored fields to thin junction trees. In

AISTATS, volume 15, pages 324–332, 2011.

[13] J. Gonzalez, Y. Low, and C. Guestrin. Residual splash for

optimally parallelizing belief propagation. In AISTATS,

volume 5, pages 177–184, 2009.

[14] J. Gonzalez, Y. Low, C. Guestrin, and D. O’Hallaron.

Distributed parallel inference on large factor graphs. In UAI,

2009.

[15] H. Graf, E. Cosatto, L. Bottou, I. Dourdanovic, and V. Vapnik.

Parallel support vector machines: The cascade SVM. In NIPS,

pages 521–528, 2004.

[16] D. Gregor and A. Lumsdaine. The parallel BGL: A generic

library for distributed graph computations. POOSC, 2005.

[17] A. Gupta, J. Hennessy, K. Gharachorloo, T. Mowry, and W.-D.

Weber. Comparative evaluation of latency reducing and

tolerating techniques. SIGARCH Comput. Archit. News,

19(3):254–263, 1991.

[18] B. Hindman, A. Konwinski, M. Zaharia, and I. Stoica. A

common substrate for cluster computing. In HotCloud, 2009.

[19] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:

distributed data-parallel programs from sequential building

blocks. In EuroSys, pages 59–72, 2007.

[20] U. Kang, C. E. Tsourakakis, and C. Faloutsos. Pegasus: A

peta-scale graph mining system implementation and

observations. In ICDM, pages 229 –238, 2009.

[21] G. Karypis and V. Kumar. Multilevel k-way partitioning

scheme for irregular graphs. J. Parallel Distrib. Comput.,

48(1):96–129, 1998.

[22] S. Lattanzi, B. Moseley, S. Suri, and S. Vassilvitskii. Filtering:

a method for solving graph problems in mapreduce. In SPAA,

pages 85–94, 2011.

[23] J. Leskovec. Stanford large network dataset collection.

http://snap.stanford.edu/data/index.html, 2011.

[24] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and

J. M. Hellerstein. Graphlab: A new parallel framework for

machine learning. In UAI, pages 340–349, 2010.

[25] G. Malewicz, M. H. Austern, A. J. Bik, J. Dehnert, I. Horn,

N. Leiser, and G. Czajkowski. Pregel: a system for large-scale

graph processing. In SIGMOD, pages 135–146, 2010.

[26] J. Misra. Detecting termination of distributed computations

using markers. In PODC, pages 290–294, 1983.

[27] R. Nallapati, W. Cohen, and J. Lafferty. Parallelized

variational EM for latent Dirichlet allocation: An

experimental evaluation of speed and scalability. In ICDM

Workshops, pages 349–354, 2007.

[28] R. Neal and G. Hinton. A view of the EM algorithm that

justifies incremental, sparse, and other variants. In Learning in

graphical models, pages 355–368. 1998.

[29] Neo4j. http://neo4j.org, 2011.

[30] D. Newman, A. Asuncion, P. Smyth, and M. Welling.

Distributed inference for latent dirichlet allocation. In NIPS,

pages 1081–1088, 2007.

[31] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank

citation ranking: Bringing order to the web. Technical Report

1999-66, Stanford InfoLab, 1999.

[32] R. Pearce, M. Gokhale, and N. Amato. Multithreaded

Asynchronous Graph Traversal for In-Memory and

Semi-External Memory. In SC, pages 1–11, 2010.

[33] R. Power and J. Li. Piccolo: building fast, distributed

programs with partitioned tables. In OSDI, 2010.

[34] A. G. Siapas. Criticality and parallelism in combinatorial

optimization. PhD thesis, Massachusetts Institute of

Technology, 1996.

[35] A. J. Smola and S. Narayanamurthy. An Architecture for

Parallel Topic Models. PVLDB, 3(1):703–710, 2010.

[36] S. Suri and S. Vassilvitskii. Counting triangles and the curse

of the last reducer. In WWW, pages 607–614, 2011.

[37] J. W. Young. A first order approximation to the optimum

checkpoint interval. Commun. ACM, 17:530–531, 1974.

[38] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, and

I. Stoica. Spark: cluster computing with working sets. In

HotCloud, 2010.

[39] Y. Zhang, Q. Gao, L. Gao, and C. Wang. Priter: a distributed

framework for prioritized iterative computations. In SOCC,

pages 13:1–13:14, 2011.

[40] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale

parallel collaborative filtering for the netflix prize. In AAIM,

pages 337–348, 2008.

727

http://neo4j.org

	Introduction
	MLDM Algorithm Properties
	Dist. GraphLab Abstraction
	Data Graph
	Update Functions
	The GraphLab Execution Model
	Ensuring Serializability
	Sync Operation and Global Values

	Distributed GraphLab Design
	The Distributed Data Graph
	Distributed GraphLab Engines
	Chromatic Engine
	Distributed Locking Engine

	Fault Tolerance
	System Design

	Applications
	Netflix Movie Recommendation
	Video Co-segmentation (CoSeg)
	Named Entity Recognition (NER)
	EC2 Cost evaluation

	Related Work
	Conclusion and Future Work
	References

