
DianNao: A Small-Footprint High-Throughput Accelerator
for Ubiquitous Machine-Learning

Tianshi Chen
SKLCA, ICT, China

Zidong Du
SKLCA, ICT, China

Ninghui Sun
SKLCA, ICT, China

Jia Wang
SKLCA, ICT, China

Chengyong Wu
SKLCA, ICT, China

Yunji Chen
SKLCA, ICT, China

Olivier Temam
Inria, France

Abstract
Machine-Learning tasks are becoming pervasive in a broad
range of domains, and in a broad range of systems (from
embedded systems to data centers). At the same time, a
small set of machine-learning algorithms (especially Convo-
lutional and Deep Neural Networks, i.e., CNNs and DNNs)
are proving to be state-of-the-art across many applications.
As architectures evolve towards heterogeneous multi-cores
composed of a mix of cores and accelerators, a machine-
learning accelerator can achieve the rare combination of ef-
ficiency (due to the small number of target algorithms) and
broad application scope.

Until now, most machine-learning accelerator designs
have focused on efficiently implementing the computa-
tional part of the algorithms. However, recent state-of-the-art
CNNs and DNNs are characterized by their large size. In this
study, we design an accelerator for large-scale CNNs and
DNNs, with a special emphasis on the impact of memory on
accelerator design, performance and energy.

We show that it is possible to design an accelerator with
a high throughput, capable of performing 452 GOP/s (key
NN operations such as synaptic weight multiplications and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’14, March 1–5, 2014, Salt Lake City, Utah, USA.
Copyright © 2014 ACM 978-1-4503-2305-5/14/03. . . $15.00.
http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2541940.2541967

neurons outputs additions) in a small footprint of 3.02 mm2

and 485 mW; compared to a 128-bit 2GHz SIMD proces-
sor, the accelerator is 117.87x faster, and it can reduce the
total energy by 21.08x. The accelerator characteristics are
obtained after layout at 65nm. Such a high throughput in
a small footprint can open up the usage of state-of-the-art
machine-learning algorithms in a broad set of systems and
for a broad set of applications.

1. Introduction
As architectures evolve towards heterogeneous multi-cores
composed of a mix of cores and accelerators, designing
accelerators which realize the best possible tradeoff between
flexibility and efficiency is becoming a prominent issue.

The first question is for which category of applications
one should primarily design accelerators ? Together with
the architecture trend towards accelerators, a second si-
multaneous and significant trend in high-performance and
embedded applications is developing: many of the emerg-
ing high-performance and embedded applications, from im-
age/video/audio recognition to automatic translation, busi-
ness analytics, and all forms of robotics rely on machine-
learning techniques. This trend even starts to percolate in
our community where it turns out that about half of the
benchmarks of PARSEC [2], a suite partly introduced to
highlight the emergence of new types of applications, can be
implemented using machine-learning algorithms [4]. This
trend in application comes together with a third and equally
remarkable trend in machine-learning where a small number
of techniques, based on neural networks (especially Convo-
lutional Neural Networks [27] and Deep Neural Networks

269

[16]), have been proved in the past few years to be state-of-
the-art across a broad range of applications [25]. As a result,
there is a unique opportunity to design accelerators which
can realize the best of both worlds: significant application
scope together with high performance and efficiency due to
the limited number of target algorithms.

Currently, these workloads are mostly executed on multi-
cores using SIMD [41], on GPUs [5], or on FPGAs [3].
However, the aforementioned trends have already been iden-
tified by a number of researchers who have proposed accel-
erators implementing Convolutional Neural Networks [3] or
Multi-Layer Perceptrons [38]; accelerators focusing on other
domains, such as image processing, also propose efficient
implementations of some of the primitives used by machine-
learning algorithms, such as convolutions [33]. Others have
proposed ASIC implementations of Convolutional Neural
Networks [13], or of other custom neural network algo-
rithms [21]. However, all these works have first, and suc-
cessfully, focused on efficiently implementing the computa-
tional primitives but they either voluntarily ignore memory
transfers for the sake of simplicity [33, 38], or they directly
plug their computational accelerator to memory via a more
or less sophisticated DMA [3, 13, 21].

While efficient implementation of computational primi-
tives is a first and important step with promising results, in-
efficient memory transfers can potentially void the through-
put, energy or cost advantages of accelerators, i.e., an Am-
dahl’s law effect, and thus, they should become a first-order
concern, just like in processors, rather than an element fac-
tored in accelerator design on a second step. Unlike in pro-
cessors though, one can factor in the specific nature of mem-
ory transfers in target algorithms, just like it is done for ac-
celerating computations. This is especially important in the
domain of machine-learning where there is a clear trend to-
wards scaling up the size of neural networks in order to
achieve better accuracy and more functionality [16, 26].

In this study, we investigate an accelerator design that can
accommodate the most popular state-of-the-art algorithms,
i.e., Convolutional Neural Networks (CNNs) and Deep Neu-
ral Networks (DNNs). We focus the design of the accelera-
tor on memory usage, and we investigate an accelerator ar-
chitecture and control both to minimize memory transfers
and to perform them as efficiently as possible. We present a
design at 65nm which can perform 496 16-bit fixed-point
operations in parallel every 1.02ns, i.e., 452 GOP/s, in a
3.02mm2, 485mW footprint (excluding main memory ac-
cesses). On 10 of the largest layers found in recent CNNs and
DNNs, this accelerator is 117.87x faster and 21.08x more
energy-efficient (including main memory accesses) on aver-
age than an 128-bit SIMD core clocked at 2GHz.

In summary, our main contributions are the following:

• A synthesized (place & route) accelerator design for
large-scale CNNs and DNNs, the state-of-the-art machine-
learning algorithms.

Figure 1. Neural network hierarchy containing convolutional,
pooling and classifier layers.

• The accelerator achieves high throughput in a small area,
power and energy footprint.

• The accelerator design focuses on memory behavior, and
measurements are not circumscribed to computational
tasks, they factor in the performance and energy impact
of memory transfers.

The paper is organized as follows. In Section 2, we first
provide a primer on recent machine-learning techniques and
introduce the main layers composing CNNs and DNNs. In
Section 3, we analyze and optimize the memory behavior
of these layers, in preparation for both the baseline and the
accelerator design. In section 4, we explain why an ASIC
implementation of large-scale CNNs or DNNs cannot be
the same as the straightforward ASIC implementation of
small NNs. We introduce our accelerator design in Section 5.
The methodology is presented in Section 6, the experimental
results in Section 7, related work in Section 8.

2. Primer on Recent Machine-Learning
Techniques

Even though the role of neural networks in the machine-
learning domain has been rocky, i.e., initially hyped in
the 1980s/1990s, then fading into oblivion with the advent
of Support Vector Machines [6]. Since 2006, a subset of
neural networks have emerged as achieving state-of-the-art
machine-learning accuracy across a broad set of applica-
tions, partly inspired by progress in neuroscience models of
computer vision, such as HMAX [37]. This subset of neural
networks includes both Deep Neural Networks (DNNs) [25]
and Convolutional Neural Networks (CNNs) [27]. DNNs
and CNNs are strongly related, they especially differ in the
presence and/or nature of convolutional layers, see later.

Processing vs. training. For now, we have implemented
the fast processing of inputs (feed-forward) rather than train-
ing (backward path) on our accelerator. This derives from
technical and market considerations. Technically, there is
a frequent and important misconception that on-line learn-
ing is necessary for many applications. On the contrary, for
many industrial applications off-line learning is sufficient,
where the neural network is first trained on a set of data,
and then shipped to the customer, e.g., trained on hand-

270

Ti

Tii

Tn Tnn

Input
neurons

Output
neurons Synapses

Figure 2. Classifier layer tiling.

Tx

Ty
Kx

Ky
Ti

Tn
Tnn

Input feature maps Output feature maps

Figure 3. Convolutional layer
tiling.

Tx

Ty

Kx

Ky

Ti
Tii

Input feature maps Output feature maps

Figure 4. Pooling layer tiling.

written digits, license plate numbers, a number of faces or
objects to recognize, etc; the network can be periodically
taken off-line and retrained. While, today, machine-learning
researchers and engineers would especially want an archi-
tecture that speeds up training, this represents a small mar-
ket, and for now, we focus on the much larger market of
end users, who need fast/efficient feed-forward networks. In-
terestingly, machine-learning researchers who have recently
dipped into hardware accelerators [13] have made the same
choice. Still, because the nature of computations and ac-
cess patterns used in training (especially back-propagation)
is fairly similar to that of the forward path, we plan to later
augment the accelerator with the necessary features to sup-
port training.

General structure. Even though Deep and Convolutional
Neural Networks come in various forms, they share enough
properties that a generic formulation can be defined. In gen-
eral, these algorithms are made of a (possibly large) num-
ber of layers; these layers are executed in sequence so they
can be considered (and optimized) independently. Each layer
usually contains several sub-layers called feature maps; we
then use the terms input feature maps and output feature
maps. Overall, there are three main kinds of layers: most
of the hierarchy is composed of convolutional and pooling
(also called sub-sampling) layers, and there is a classifier at
the top of the network made of one or a few layers.

Convolutional layers. The role of convolutional layers is
to apply one or several local filters to data from the input
(previous) layer. Thus, the connectivity between the input
and output feature map is local instead of full. Consider the
case where the input is an image, the convolution is a 2D
transform between a Kx × Ky subset (window) of the in-
put layer and a kernel of the same dimensions, see Figure 1.
The kernel values are the synaptic weights between an in-
put layer and an output (convolutional) layer. Since an input
layer usually contains several input feature maps, and since
an output feature map point is usually obtained by apply-
ing a convolution to the same window of all input feature
maps, see Figure 1, the kernel is 3D, i.e., Kx × Ky × Ni,
where Ni is the number of input feature maps. Note that in
some cases, the connectivity is sparse, i.e., not all input fea-
ture maps are used for each output feature map. The typical
code of a convolutional layer is shown in Figure 7, see Origi-

nal code. A non-linear function is applied to the convolution
output, for instance f(x) = tanh(x). Convolutional layers
are also characterized by the overlap between two consecu-
tive windows (in one or two dimensions), see steps sx, sy for
loops x, y.

In some cases, the same kernel is applied to all Kx ×Ky

windows of the input layer, i.e., weights are implicitly shared
across the whole input feature map. This is characteristic of
CNNs, while kernels can be specific to each point of the
output feature map in DNNs [26], we then use the term
private kernels.

Pooling layers. The role of pooling layers is to aggregate
information among a set of neighbor input data. In the case
of images again, it serves to retain only the salient features of
an image within a given window and/or to do so at different
scales, see Figure 1. An important side effect of pooling
layers is to reduce the feature map dimensions. An example
code of a pooling layer is shown in Figure 8 (see Original
code). Note that each feature map is pooled separately, i.e.,
2D pooling, not 3D pooling. Pooling can be done in various
ways, some of the preferred techniques are the average and
max operations; pooling may or may not be followed by a
non-linear function.

Classifier layers. Convolution and pooling layers are in-
terleaved within deep hierarchies, and the top of the hi-
erarchies is usually a classifier. This classifier can be lin-
ear or a multi-layer (often 2-layer) perceptron, see Figure
1. An example perceptron layer is shown in Figure 5, see
Original code. Like convolutional layers, a non-linear func-
tion is applied to the neurons output, often a sigmoid, e.g.,
f(x) = 1

1+e−x ; unlike convolutional or pooling layers, clas-
sifiers usually aggregate (flatten) all feature maps, so there is
no notion of feature maps in classifier layers.

3. Processor-Based Implementation of
(Large) Neural Networks

The distinctive aspect of accelerating large-scale neural net-
works is the potentially high memory traffic. In this section,
we analyze in details the locality properties of the differ-
ent layers mentioned in Section 2, we tune processor-based
implementations of these layers in preparation for both our
baseline, and the design and utilization of the accelerator. We
apply the locality analysis/optimization to all layers, and we

271

illustrate the bandwidth impact of these transformations with
4 of our benchmark layers (CLASS1, CONV3, CONV5,
POOL3); their characteristics are later detailed in Section 6.

For the memory bandwidth measurements of this section,
we use a cache simulator plugged to a virtual computational
structure on which we make no assumption except that it
is capable of processing Tn neurons with Ti synapses each
every cycle. The cache hierarchy is inspired by Intel Core i7:
L1 is 32KB, 64-byte line, 8-way; the optional L2 is 2MB, 64-
byte, 8-way. Unlike the Core i7, we assume the caches have
enough banks/ports to serve Tn × 4 bytes for input neurons,
and Tn×Ti×4 bytes for synapses. For large Tn, Ti, the cost
of such caches can be prohibitive, but it is only used for our
limit study of locality and bandwidth; in our experiments,
we use Tn = Ti = 16.

3.1 Classifier Layers
for (int nnn = 0; nnn ¡ Nn; nnn += Tnn) { // tiling for output neurons;

for (int iii = 0; iii ¡ Ni; iii += Tii) { // tiling for input neurons;
for (int nn = nnn; nn ¡ nnn + Tnn; nn += Tn) {

for (int n = nn; n ¡ nn + Tn; n++)
sum[n] = 0;

for (int ii = iii; ii ¡ iii + Tii; ii += Ti)
// — Original code —

for (int n = nn; n < nn + Tn; n++)
for (int i = ii; i < ii + Ti; i++)

sum[n] += synapse[n][i] * neuron[i];
for (int n = nn; n < nn + Tn; n++)

neuron[n] = sigmoid(sum[n]);
} } }

Figure 5. Pseudo-code for a classifier (here, perceptron) layer
(original loop nest + locality optimization).

We consider the perceptron classifier layer, see Figures
2 and 5; the tiling loops ii and nn simply reflect that the
computational structure can process Tn neurons with Ti

synapses simultaneously. The total number of memory trans-
fers is (inputs loaded + synapses loaded + outputs written):
Ni×Nn +Ni×Nn +Nn. For the example layer CLASS1,
the corresponding memory bandwidth is high at 120 GB/s,
see CLASS1 - Original in Figure 6. We explain below how it
is possible to reduce this bandwidth, sometimes drastically.

Input/Output neurons. Consider Figure 2 and the code
of Figure 5 again. Input neurons are reused for each output
neuron, but since the number of input neurons can range
anywhere between a few tens to hundreds of thousands, they
will often not fit in an L1 cache. Therefore, we tile loop
ii (input neurons) with tile factor Tii. A typical tradeoff
of tiling is that improving one reference (here neuron[i]
for input neurons) increases the reuse distance of another
reference (sum[n] for partial sums of output neurons), so we
need to tile for the second reference as well, hence loop nnn
and the tile factor Tnn for output neurons partial sums. As
expected, tiling drastically reduces the memory bandwidth
requirements of input neurons, and those of output neurons
increase, albeit marginally. The layer memory behavior is
now dominated by synapses.

 0

 20

 40

 60

 80

 100

 120

O
riginal

Tiled
Tiled+L2

O
riginal

Tiled
Tiled+L2

O
riginal

Tiled
Tiled+L2

O
riginal

Tiled
Tiled+L2

M
e
m

o
ry

 b
a
n
d
w

id
th

 (
G

B
/s

)

Inputs
Outputs

Synapses

POOL3CONV5CONV3CLASS1

Figure 6. Memory bandwidth requirements for each layer type
(CONV3 has shared kernels, CONV5 has private kernels).

Synapses. In a perceptron layer, all synapses are usually
unique, and thus there is no reuse within the layer. On the
other hand, the synapses are reused across network invoca-
tions, i.e., for each new input data (also called “input row”)
presented to the neural network. So a sufficiently large L2
could store all network synapses and take advantage of that
locality. For DNNs with private kernels, this is not possi-
ble as the total number of synapses are in the tens or hun-
dreds of millions (the largest network to date has a billion
synapses [26]). However, for both CNNs and DNNs with
shared kernels, the total number of synapses range in the
millions, which is within the reach of an L2 cache. In Figure
6, see CLASS1 - Tiled+L2, we emulate the case where reuse
across network invocations is possible by considering only
the perceptron layer; as a result, the total bandwidth require-
ments are now drastically reduced.

3.2 Convolutional Layers
We consider two-dimensional convolutional layers, see Fig-
ures 3 and 7. The two distinctive features of convolutional
layers with respect to classifier layers are the presence of
input and output feature maps (loops i and n) and kernels
(loops kx, ky).

Inputs/Outputs. There are two types of reuse opportuni-
ties for inputs and outputs: the sliding window used to scan
the (two-dimensional (x, y)) input layer, and the reuse across
the Nn output feature maps, see Figure 3. The former corre-
sponds to Kx×Ky

sx×sy
reuses at most, and the latter to Nn reuses.

We tile for the former in Figure 7 (tiles Tx, Ty), but we of-
ten do not need to tile for the latter because the data to be
reused, i.e., one kernel of Kx ×Ky ×Ni, fits in the L1 data
cache since Kx, Ky are usually of the order of 10 and Ni

can vary between less than 10 to a few hundreds; naturally,
when this is not the case, we can tile input feature maps (ii)
and introduce an second-level tiling loop iii again.

Synapses. For convolutional layers with shared ker-
nels (see Section 2), the same kernel parameters (synap-
tic weights) are reused across all xout, yout output feature
maps locations. As a result, the total bandwidth is already

272

for (int yy = 0; yy ¡ Nyin; yy += Ty) {
for (int xx = 0; xx ¡ Nxin; xx += Tx) {

for (int nnn = 0; nnn ¡ Nn; nnn += Tnn) {
// — Original code — (excluding nn, ii loops)

int yout = 0;
for (int y = yy; y < yy + Ty; y += sy) { // tiling for y;

int xout = 0;
for (int x = xx; x < xx + Tx; x += sx) { // tiling for x;

for (int nn = nnn; nn < nnn + Tnn; nn += Tn) {
for (int n = nn; n < nn + Tn; n++)

sum[n] = 0;
// sliding window;

for (int ky = 0; ky < Ky; ky++)
for (int kx = 0; kx < Kx; kx++)

for (int ii = 0; ii < Ni; ii += Ti)
for (int n = nn; n < nn + Tn; n++)

for (int i = ii; i < ii + Ti; i++)
// version with shared kernels
sum[n] += synapse[ky][kx][n][i]

* neuron[ky + y][kx + x][i];
// version with private kernels
sum[n] += synapse[yout][xout][ky][kx][n][i]}

* neuron[ky + y][kx + x][i];
for (int n = nn; n < nn + Tn; n++)

neuron[yout][xout][n] = non linear transform(sum[n]);
} xout++; } yout++;

} } } }

Figure 7. Pseudo-code for convolutional layer (original loop
nest + locality optimization), both shared and private kernels
versions.

low, as shown for layer CONV3 in Figure 6. However, since
the total shared kernels capacity is Kx×Ky×Ni×No, it can
exceed the L1 cache capacity, so we tile again output feature
maps (tile Tnn) to bring it down to Kx ×Ky × Ni × Tnn.
As a result, the overall memory bandwidth can be further
reduced, as shown in Figure 6.

For convolutional layers with private kernels, the synapses
are all unique and there is no reuse, as for classifier layers,
hence the similar synapses bandwidth of CONV5 in Fig-
ure 6. As for classifier layers, reuse is still possible across
network invocations if the L2 capacity is sufficient. Even
though step coefficients (sx, sy) and sparse input to out-
put feature maps (see Section 2) can drastically reduce the
number of private kernels synaptic weights, for very large
layers such as CONV5, they still range in the hundreds of
megabytes and thus will largely exceed L2 capacity, imply-
ing a high memory bandwidth, see Figure 6.

It is important to note that there is an on-going debate
within the machine-learning community about shared vs.
private kernels [26, 35], and the machine-learning impor-
tance of having private instead of shared kernels remains
unclear. Since they can result in significantly different ar-
chitecture performance, this may be a case where the ar-
chitecture/performance community could weigh in on the
machine-learning debate.

3.3 Pooling Layers
We now consider pooling layers, see Figures 4 and 8. Unlike
convolutional layers, the number of input and output feature

for (int yy = 0; yy ¡ Nyin; yy += Ty) {
for (int xx = 0; xx ¡ Nxin; xx += Tx) {

for (int iii = 0; iii ¡ Ni; iii += Tii)
// — Original code — (excluding ii loop)
int yout = 0;
for (int y = yy; y < yy + Ty; y += sy) {

int xout = 0;
for (int x = xx; x < xx + Tx; x += sx) {

for (int ii = iii; ii < iii + Tii; ii += Ti)
for (int i = ii; i < ii + Ti; i++)

value[i] = 0;
for (int ky = 0; ky < Ky; ky++)

for (int kx = 0; kx < Kx; kx++)
for (int i = ii; i < ii + Ti; i++)

// version with average pooling;
value[i] += neuron[ky + y][kx + x][i];
// version with max pooling;

value[i] = max(value[i], neuron[ky + y][kx + x][i]);
} } } }

// for average pooling;
neuron[xout][yout][i] = value[i] / (Kx * Ky);
xout++; } yout++;

} } }
Figure 8. Pseudo-code for pooling layer (original loop nest
+ locality optimization).

maps is the same, and more importantly, there is no kernel,
i.e., no synaptic weight to store, and an output feature map
element is determined only by Kx × Ky input feature map
elements, i.e., a 2D window (instead of a 3D window for
convolutional layers). As a result, the only source of reuse
comes from the sliding window (instead of the combined
effect of sliding window and output feature maps). Since
there are less reuse opportunities, the memory bandwidth
of input neurons are higher than for convolutional layers,
and tiling (Tx, Ty) brings less dramatic improvements, see
Figure 6.

4. Accelerator for Small Neural Networks
In this section, we first evaluate a “naive” and greedy ap-
proach for implementing a hardware neural network accel-
erator where all neurons and synapses are laid out in hard-
ware, memory is only used for input rows and storing results.
While these neural networks can potentially achieve the best
energy efficiency, we show that they are not scalable. Still,
we use such networks to investigate the maximum number of
neurons which can be reasonably implemented in hardware.

4.1 Hardware Neural Networks
The most natural way to map a neural network onto silicon
is simply to fully lay out the neurons and synapses, so that
the hardware implementation matches the conceptual rep-
resentation of neural networks, see Figure 9. The neurons
are each implemented as logic circuits, and the synapses are
implemented as latches or RAMs. This approach has been
recently used for perceptron or spike-based hardware neu-
ral networks [30, 38]. It is compatible with some embedded
applications where the number of neurons and synapses can
be small, and it can provide both high speed and low energy
because the distance traveled by data is very small: from one

273

input

neuron

synapse

weight	

*	

neuron
output

+	

synapses
*	

+	

table	

x

x

ai
bi

hidden
layer

output
layer

Figure 9. Full hardware implementation of neural networks.

8x8 16x16 32x32 32x4 64x8 128x16

0
1

2
3

4
5

Critical Path (ns)
Area (mm^2)
Energy (nJ)

Figure 10. Energy, critical path and area of full-hardware layers.

neuron to a neuron of the next layer, and from one synap-
tic latch to the associated neuron. For instance, an execution
time of 15ns and an energy reduction of 974x over a core
has been reported for a 90-10-10 (90 inputs, 10 hidden, 10
outputs) perceptron [38].

4.2 Maximum Number of Hardware Neurons ?
However, the area, energy and delay grow quadratically with
the number of neurons. We have synthesized the ASIC ver-
sions of neural network layers of various dimensions, and
we report their area, critical path and energy in Figure 10.
We have used Synopsys ICC for the place and route, and the
TSMC 65nm GP library, standard VT. A hardware neuron
performs the following operations: multiplication of inputs
and synapses, addition of all such multiplications, followed
by a sigmoid, see Figure 9. A Tn × Ti layer is a layer of Tn

neurons with Ti synapses each. A 16x16 layer requires less
than 0.71 mm2, but a 32x32 layer already costs 2.66 mm2.
Considering the neurons are in the thousands for large-scale
neural networks, a full hardware layout of just one layer
would range in the hundreds or thousands of mm2, and thus,
this approach is not realistic for large-scale neural networks.

For such neural networks, only a fraction of neurons and
synapses can be implemented in hardware. Paradoxically,
this was already the case for old neural network designs

Tn#

NBin%

SB%

NFU)1%

M
em

ory#Interface#

NFU)2% NFU)3%

Inst.#

DM
A#

DM
A# Inst.#

Tn#x#Tn#

NBout%

Control#Processor#(CP)#

Instruc:ons#

Inst.#

DM
A#

Tn#

Figure 11. Accelerator.

such as the Intel ETANN [18] at the beginning of the 1990s,
not because neural networks were already large at the time,
but because hardware resources (number of transistors) were
naturally much more scarce. The principle was to time-
share the physical neurons and use the on-chip RAM to
store synapses and intermediate neurons values of hidden
layers. However, at that time, many neural networks were
small enough that all synapses and intermediate neurons
values could fit in the neural network RAM. Since this is no
longer the case, one of the main challenges for large-scale
neural network accelerator design has become the interplay
between the computational and the memory hierarchy.

5. Accelerator for Large Neural Networks
In this section, we draw from the analysis of Sections 3 and
4 to design an accelerator for large-scale neural networks.

The main components of the accelerator are the fol-
lowing: an input buffer for input neurons (NBin), an out-
put buffer for output neurons (NBout), and a third buffer
for synaptic weights (SB), connected to a computational
block (performing both synapses and neurons computations)
which we call the Neural Functional Unit (NFU), and the
control logic (CP), see Figure 11. We first describe the NFU
below, and then we focus on and explain the rationale for the
storage elements of the accelerator.

5.1 Computations: Neural Functional Unit (NFU)

The spirit of the NFU is to reflect the decomposition of
a layer into computational blocks of Ti inputs/synapses and
Tn output neurons. This corresponds to loops i and n for
both classifier and convolutional layers, see Figures 5 and
Figure 7, and loop i for pooling layers, see Figure 8.

Arithmetic operators. The computations of each layer
type can be decomposed in either 2 or 3 stages. For classifier
layers: multiplication of synapses × inputs, additions of all

274

Glass Ionos. Iris Robot Vehicle Wine GeoMean

lo
g(
M
SE

)

0

−2

−4

−6

−8

−10

floating−point
fixed−point

Figure 12. 32-bit floating-point vs. 16-bit fixed-point accuracy
for UCI data sets (metric: log(Mean Squared Error)).

Type Error Rate
32-bit floating-point 0.0311
16-bit fixed-point 0.0337

Table 1. 32-bit floating-point vs. 16-bit fixed-point accuracy for
MNIST (metric: error rate).

multiplications, sigmoid. For convolutional layers, the stages
are the same; the nature of the last stage (sigmoid or another
non-linear function) can vary. For pooling layers, there is no
multiplication (no synapse), and the pooling operations can
be average or max. Note that the adders have multiple inputs,
they are in fact adder trees, see Figure 11; the second stage
also contains shifters and max operators for pooling layers.

Staggered pipeline. We can pipeline all 2 or 3 operations,
but the pipeline must be staggered: the first or first two stages
(respectively for pooling, and for classifier and convolutional
layers) operate as normal pipeline stages, but the third stage
is only active after all additions have been performed (for
classifier and convolutional layers; for pooling layers, there
is no operation in the third stage). From now on, we refer to
stage n of the NFU pipeline as NFU-n.

NFU-3 function implementation. As previously pro-
posed in the literature [23, 38], the sigmoid of NFU-3 (for
classifier and convolutional layers) can be efficiently imple-
mented using piecewise linear interpolation (f(x) = ai ×
x + bi, x ∈ [xi;xi+1]) with negligible loss of accuracy (16
segments are sufficient) [24], see Figure 9. In terms of op-
erators, it corresponds to two 16x1 16-bit multiplexers (for
segment boundaries selection, i.e., xi, xi+1), one 16-bit mul-
tiplier (16-bit output) and one 16-bit adder to perform the in-
terpolation. The 16-segment coefficients (ai, bi) are stored in
a small RAM; this allows to implement any function, not just
a sigmoid (e.g., hyperbolic tangent, linear functions, etc) by
just changing the RAM segment coefficients ai, bi; the seg-
ment boundaries (xi, xi+1) are hardwired.

16-bit fixed-point arithmetic operators. We use 16-bit
fixed-point arithmetic operators instead of word-size (e.g.,
32-bit) floating-point operators. While it may seem surpris-

Type Area (µm2) Power (µW)
16-bit truncated fixed-point multiplier 1309.32 576.90

32-bit floating-point multiplier 7997.76 4229.60

Table 2. Characteristics of multipliers.

ing, there is ample evidence in the literature that even smaller
operators (e.g., 8 bits or even less) have almost no impact
on the accuracy of neural networks [8, 17, 24]. To illus-
trate and further confirm that notion, we trained and tested
multi-layer perceptrons on data sets from the UC Irvine
Machine-Learning repository, see Figure 12, and on the stan-
dard MNIST machine-learning benchmark (handwritten dig-
its) [27], see Table 1, using both 16-bit fixed-point and 32-
bit floating-point operators; we used 10-fold cross-validation
for testing. For the fixed-point operators, we use 6 bits for
the integer part, 10 bits for the fractional part (we use this
fixed-point configuration throughout the paper). The results
are shown in Figure 12 and confirm the very small accuracy
impact of that tradeoff. We conservatively use 16-bit fixed-
point for now, but we will explore smaller, or variable-size,
operators in the future. Note that the arithmetic operators are
truncated, i.e., their output is 16 bits; we use a standard n-bit
truncated multiplier with correction constant [22]. As shown
in Table 2, its area is 6.10x smaller and its power 7.33x lower
than a 32-bit floating-point multiplier at 65nm, see Section 6
for the CAD tools methodology.

5.2 Storage: NBin, NBout, SB and NFU-2 Registers
The different storage structures of the accelerator can be
construed as modified buffers of scratchpads. While a cache
is an excellent storage structure for a general-purpose pro-
cessor, it is a sub-optimal way to exploit reuse because of
the cache access overhead (tag check, associativity, line size,
speculative read, etc) and cache conflicts [39]. The efficient
alternative, scratchpad, is used in VLIW processors but it
is known to be very difficult to compile for. However a
scratchpad in a dedicated accelerator realizes the best of
both worlds: efficient storage, and both efficient and easy
exploitation of locality because only a few algorithms have
to be manually adapted. In this case, we can almost directly
translate the locality transformations introduced in Section
3 into mapping commands for the buffers, mostly modulat-
ing the tile factors. A code mapping example is provided in
Section 5.3.2

We explain below how the storage part of the accelerator
is organized, and which limitations of cache architectures it
overcomes.

5.2.1 Split buffers.
As explained before, we have split storage into three struc-
tures: an input buffer (NBin), an output buffer (NBout) and
a synapse buffer (SB).

275

Figure 13. Read energy vs. SRAM width.

Width. The first benefit of splitting structures is to tailor
the SRAMs to the appropriate read/write width. The width
of both NBin and NBout is Tn × 2 bytes, while the width
of SB is Tn × Tn × 2 bytes. A single read width size, e.g.,
as with a cache line size, would be a poor tradeoff. If it’s
adjusted to synapses, i.e., if the line size is Tn×Tn×2, then
there is a significant energy penalty for reading Tn× 2 bytes
out of a Tn × Tn × 2-wide data bank, see Figure 13 which
indicates the SRAM read energy as a function of bank width
for the TSMC process at 65nm. If the line size is adjusted to
neurons, i.e., if the line size is Tn × 2, there is a significant
time penalty for reading Tn × Tn × 2 bytes out. Splitting
storage into dedicated structures allows to achieve the best
time and energy for each read request.

Conflicts. The second benefit of splitting storage struc-
tures is to avoid conflicts, as would occur in a cache. It is es-
pecially important as we want to keep the size of the storage
structures small for cost and energy (leakage) reasons. The
alternative solution is to use a highly associative cache. Con-
sider the constraints: the cache line (or the number of ports)
needs to be large (Tn×Tn×2) in order to serve the synapses
at a high rate; since we would want to keep the cache size
small, the only alternative to tolerate such a long cache line
is high associativity. However, in an n-way cache, a fast read
is implemented by speculatively reading all n ways/banks in
parallel; as a result, the energy cost of an associative cache
increases quickly. Even a 64-byte read from an 8-way asso-
ciative 32KB cache costs 3.15x more energy than a 32-byte
read from a direct mapped cache, at 65nm; measurements
done using CACTI [40]. And even with a 64-byte line only,
the first-level 32KB data cache of Core i7 is already 8-way
associative, so we need an even larger associativity with a
very large line (for Tn = 16, the line size would be 512-
byte long). In other words, a highly associative cache would
be a costly energy solution in our case. Split storage and
precise knowledge of locality behavior allows to entirely re-
move data conflicts.

ky=0, kx=0, i=0
ky=0, kx=0, i=1
ky=0, kx=0, i=2
ky=0, kx=0, i=3
ky=1, kx=0, i=0
ky=1, kx=0, i=1
ky=1, kx=0, i=2

...

ky=0, kx=0, i=0
ky=1, kx=0, i=0
ky=0, kx=0, i=1
ky=1, kx=0, i=1
ky=0, kx=0, i=2
ky=1, kx=0, i=2
ky=0, kx=0, i=3

...

Load order NBin order

Figure 14. Local transpose (Ky = 2,Kx = 1, Ni = 4).

5.2.2 Exploiting the locality of inputs and synapses.
DMAs. For spatial locality exploitation, we implement three
DMAs, one for each buffer (two load DMAs, one store DMA
for outputs). DMA requests are issued to NBin in the form of
instructions, later described in Section 5.3.2. These requests
are buffered in a separate FIFO associated with each buffer,
see Figure 11, and they are issued as soon as the DMA has
sent all the memory requests for the previous instruction.
These DMA requests FIFOs enable to decouple the requests
issued to all buffers and the NFU from the current buffer
and NFU operations. As a result, DMA requests can be
preloaded far in advance for tolerating long latencies, as long
as there is enough buffer capacity; this preloading is akin to
prefetching, albeit without speculation. Due to the combined
role of NBin (and SB) as both scratchpads for reuse and
preload buffers, we use a dual-port SRAM; the TSMC 65nm
library rates the read energy overhead of dual port SRAMs
for a 64-entry NB at 24%.

Rotating NBin buffer for temporal reuse of input neu-
rons. The inputs of all layers are split into chunks which
fit in NBin, and they are reused by implementing NBin as
a circular buffer. In practice, the rotation is naturally imple-
mented by changing a register index, much like in a software
implementation, there is no physical (and costly) movement
of buffer entries.

Local transpose in NBin for pooling layers. There is
a tension between convolutional and pooling layers for the
data structure organization of (input) neurons. As mentioned
before, Kx,Ky are usually small (often less than 10), and Ni

is about an order of magnitude larger. So memory fetches are
more efficient (long stride-1 accesses) with the input feature
maps as the innermost index of the three-dimensional neu-
rons data structure. However, this is inconvenient for pool-
ing layers because one output is computed per input feature
map, i.e., using only Kx ×Ky data (while in convolutional
layers, all Kx ×Ky ×Ni data are required to compute one
output data). As a result, for pooling layers, the logical data
structure organization is to have kx, ky as the innermost di-
mensions so that all inputs required to compute one output
are consecutively stored in the NBin buffer. We resolve this
tension by introducing a mapping function in NBin which
has the effect of locally transposing loops ky, kx and loop i
so that data is loaded along loop i, but it is stored in NBin
and thus sent to NFU along loops ky, kx first; this is accom-

276

plished by interleaving the data in NBin as it is loaded, see
Figure 14.

For synapses and SB, as mentioned in Section 3, there is
either no reuse (classifier layers, convolutional layers with
private kernels and pooling layers), or reuse of shared ker-
nels in convolutional layers. For outputs and NBout, we need
to reuse the partial sums, i.e., see reference sum[n] in Fig-
ure 5. This reuse requires additional hardware modifications
explained in the next section.

5.2.3 Exploiting the locality of outputs.
In both classifier and convolutional layers, the partial output
sum of Tn output neurons is computed for a chunk of input
neurons contained in NBin. Then, the input neurons are used
for another chunk of Tn output neurons, etc. This creates two
issues.

Dedicated registers. First, while the chunk of input neu-
rons is loaded from NBin and used to compute the partial
sums, it would be inefficient to let the partial sum exit the
NFU pipeline and then re-load it into the pipeline for each
entry of the NBin buffer, since data transfers are a major
source of energy expense [14]. So we introduce dedicated
registers in NFU-2, which store the partial sums.

Circular buffer. Second, a more complicated issue is
what to do with the Tn partial sums when the input neurons
in NBin are reused for a new set of Tn output neurons.
Instead of sending these Tn partial sums back to memory
(and to later reload them when the next chunk of input
neurons is loaded into NBin), we temporarily rotate them out
to NBout. A priori, this is a conflicting role for NBout which
is also used to store the final output neurons to be written
back to memory (write buffer). In practice though, as long as
all input neurons have not been integrated in the partial sums,
NBout is idle. So we can use it as a temporary storage buffer
by rotating the Tn partial sums out to NBout, see Figure
11. Naturally, the loop iterating over output neurons must
be tiled so that no more output neurons are computing their
partial sums simultaneously than the capacity of NBout, but
that is implemented through a second-level tiling similar to
loop nnn in Figure 5 and Figure 7. As a result, NBout is not
only connected to NFU-3 and memory, but also to NFU-2:
one entry of NBout can be loaded into the dedicated registers
of NFU-2, and these registers can be stored in NBout.

5.3 Control and Code
5.3.1 CP.
In this section, we describe the control of the accelerator.
One approach to control would be to hardwire the three tar-
get layers. While this remains an option for the future, for
now, we have decided to use control instructions in order
to explore different implementations (e.g., partitioning and
scheduling) of layers, and to provide machine-learning re-
searchers with the flexibility to try out different layer imple-
mentations.

CP SB NBin NBout NFU

E
N

D

R
E

A
D

O
P

R
E

U
S

E
A

D
D

R
E

S
S

S
IZ

E

R
E

A
D

O
P

R
E

U
S

E
S

T
R

ID
E

S
T

R
ID

E
B

E
G

IN
S

T
R

ID
E

E
N

D
A

D
D

R
E

S
S

S
IZ

E

R
E

A
D

O
P

W
R

IT
E

O
P

A
D

D
R

E
S

S
S

IZ
E

N
F

U
- 1

O
P

N
F

U
-2

O
P

N
F

U
-2

IN

N
F

U
- 2

O
U

T

N
F

U
-3

O
P

O
U

T
P

U
T

B
E

G
IN

O
U

T
P

U
T

E
N

D

Table 3. Control instruction format.
CP SB NBin NBout NFU

N
O

P

L
O

A
D

0 0
32

76
8

L
O

A
D

1 0 0 0
41

94
30

4
20

48
N

O
P

W
R

I T
E

0 0
M

U
LT

A
D

D
R

E
S

E
T

N
B

O
U

T

S
IG

M
O

ID

1 0

N
O

P

L
O

A
D

0
32

7 6
8

32
76

8
R

E
A

D

1 0 0 0 0 0
N

O
P

W
R

IT
E

0 0
M

U
LT

A
D

D
R

E
S

E
T

N
B

O
U

T

S
IG

M
O

ID

0 0

. .

N
O

P

L
O

A
D

0
78

64
32

0
32

76
8

L
O

A
D

1 0 0 0
42

25
02

4
20

48
R

E
A

D
S

T
O

R
E

83
88

60
8

51
2

M
U

LT
A

D
D

N
B

O
U

T

N
F

U
3

S
IG

M
O

ID

1 0

. .

Table 4. Subset of classifier/perceptron code (Ni = 8192,
No = 256, Tn = 16, 64-entry buffers).

A layer execution is broken down into a set of instruc-
tions. Roughly, one instruction corresponds to the loops
ii, i, n for classifier and convolutional layers, see Figures
5 and 7, and to the loops ii, i in pooling layers (using the
interleaving mechanism described in Section 5.2.3), see Fig-
ure 8. The instructions are stored in an SRAM associated
with the Control Processor (CP), see Figure 11. The CP
drives the execution of the DMAs of the three buffers and
the NFU. The term “processor” only relates to the afore-
mentioned “instructions”, later described in Section 5.3.2,
but it has very few of the traditional features of a proces-
sor (mostly a PC and an adder for loop index and address
computations); from a hardware perspective, it is more like
a configurable FSM.

5.3.2 Layer Code.
Every instruction has five slots, corresponding to the CP
itself, the three buffers and the NFU, see Table 3.

Because of the CP instructions, there is a need for code
generation, but a compiler would be overkill in our case as
only three main types of codes must be generated. So we
have implemented three dedicated code generators for the
three layers. In Table 4, we give an example of the code
generated for a classifier/perceptron layer. Since Tn = 16
(16×16-bit data per buffer row) and NBin has 64 rows, its
capacity is 2KB, so it cannot contain all the input neurons
(Ni = 8192, so 16KB). As a result, the code is broken down
to operate on chunks of 2KB; note that the first instruction
of NBin is a LOAD (data fetched from memory), and that it
is marked as reused (flag immediately after load); the next
instruction is a read, because these input neurons are rotated
in the buffer for the next chunk of Tn neurons, and the read
is also marked as reused because there are 8 such rotations
(16KB
2KB); at the same time, notice that the output of NFU-2

for the first (and next) instruction is NBout, i.e., the partial
output neurons sums are rotated to NBout, as explained
in Section 5.2.3, which is why the NBout instruction is

277

WRITE; notice also that the input of NFU-2 is RESET (first
chunk of input neurons, registers reset). Finally, when the
last chunk of input neurons are sent (last instruction in table),
the (store) DMA of NBout is set for writing 512 bytes (256
outputs), and the NBout instruction is STORE; the NBout
write operation for the next instructions will be NOP (DMA
set at first chunk and automatically storing data back to
memory until DMA elapses).

Note that the architecture can implement either per-image
or batch processing [41], only the generated layer control
code would change.

6. Experimental Methodology
Measurements. We use three different tools for perfor-
mance/energy measurements.

Accelerator simulator. We implemented a custom cycle-
accurate, bit-accurate C++ simulator of the accelerator fab-
ric, which was initially used for architecture exploration, and
which later served as the specification for the Verilog imple-
mentation. This simulator is also used to measure time in
number of cycles. It is plugged to a main memory model
allowing a bandwidth of up to 250 GB/s.

CAD tools. For area, energy and critical path delay (cy-
cle time) measurements, we implemented a Verilog version
of the accelerator, which we first synthesized using the Syn-
opsys Design Compiler using the TSMC 65nm GP standard
VT library, and which we then placed and routed using the
Synopsys ICC compiler. We then simulated the design using
Synopsys VCS, and we estimated the power using Prime-
Time PX.

SIMD. For the SIMD baseline, we use the GEM5+McPAT
[28] combination. We use a 4-issue superscalar x86 core
with a 128-bit (8×16-bit) SIMD unit (SSE/SSE2), clocked at
2GHz. The core has a 192-entry ROB, and a 64-entry load/s-
tore queue. The L1 data (and instruction) cache is 32KB and
the L2 cache is 2MB; both caches are 8-way associative and
use a 64-byte line; these cache characteristics correspond to
those of the Intel Core i7. The L1 miss latency to the L2 is 10
cycles, and the L2 miss latency to memory is 250 cycles; the
memory bus width is 256 bits. We have aligned the energy
cost of main memory accesses of our accelerator and the
simulator by using those provided by McPAT (e.g., 17.6nJ
for a 256-bit read memory access).

We implemented a SIMD version of the different layer
codes, which we manually tuned for locality as explained
in Section 3 (for each layer, we perform a stochastic explo-
ration to find good tile factors); we compiled these programs
using the default -O optimization level but the inner loops
were written in assembly to make the best possible use of the
SIMD unit. In order to assess the performance of the SIMD
core, we also implemented a standard C++ version of the
different benchmark layers presented below, and on average
(geometric mean), we observed that the SIMD core provides

Layer Nx Ny Kx Ky Ni No Description
CONV1 500 375 9 9 32 48 Street scene parsing

(CNN) [13], (e.g.,
identifying “building”,
“vehicle”, etc)

POOL1 492 367 2 2 12 -
CLASS1 - - - - 960 20

CONV2* 200 200 18 18 8 8 Detection of faces in
YouTube videos (DNN)
[26], largest NN to date
(Google)

CONV3 32 32 4 4 108 200 Traffic sign
identification for car
navigation (CNN) [36]

POOL3 32 32 4 4 100 -
CLASS3 - - - - 200 100
CONV4 32 32 7 7 16 512 Google Street View

house numbers (CNN)
[35]

CONV5* 256 256 11 11 256 384 Multi-Object
recognition in natural
images (DNN) [16],
winner 2012 ImageNet
competition

POOL5 256 256 2 2 256 -

Table 5. Benchmark layers (CONV=convolutional,
POOL=pooling, CLASS=classifier; CONVx* indicates private
kernels).

a 3.92x improvement in execution time and 3.74x in energy
over the x86 core.

Benchmarks. For benchmarks, we have selected the
largest convolutional, pooling and/or classifier layers of sev-
eral recent and large neural network structures. The charac-
teristics of these 10 layers plus a description of the associ-
ated neural network and task are shown in Table 5.

7. Experimental Results
7.1 Accelerator Characteristics after Layout
The current version uses Tn = 16 (16 hardware neurons
with 16 synapses each), so that the design contains 256 16-
bit truncated multipliers in NFU-1 (for classifier and convo-
lutional layers), 16 adder trees of 15 adders each in NFU-2
(for the same layers, plus pooling layer if average is used),
as well as a 16-input shifter and max in NFU-2 (for pooling
layers), and 16 16-bit truncated multipliers plus 16 adders
in NFU-3 (for classifier and convolutional layers, and op-
tionally for pooling layers). For classifier and convolutional
layers, NFU-1 and NFU-2 are active every cycle, achieving
256 + 16× 15 = 496 fixed-point operations every cycle; at
0.98GHz, this amounts to 452 GOP/s (Giga fixed-point OP-
erations per second). At the end of a layer, NFU-3 would be
active as well while NFU-1 and NFU-2 process the remain-
ing data, reaching a peak activity of 496 + 2 × 16 = 528
operations per cycle (482 GOP/s) for a short period.

We have done the synthesis and layout of the accelerator
with Tn = 16 and 64-entry buffers at 65nm using Synop-
sys tools, see Figure 15. The main characteristics and pow-
er/area breakdown by component type and functional block
are shown in Table 6. We brought the critical path delay
down to 1.02ns by introducing 3 pipeline stages in NFU-1
(multipliers), 2 stages in NFU-2 (adder trees), and 3 stages in
NFU-3 (piecewise linear function approximation) for a total
of 8 pipeline stages. Currently, the critical path is in the issue

278

Figure 15. Layout (65nm).

Component Area Power Critical
or Block in µm2 (%) in mW (%) path in ns
ACCELERATOR 3,023,077 485 1.02
Combinational 608,842 (20.14%) 89 (18.41%)
Memory 1,158,000 (38.31%) 177 (36.59%)
Registers 375,882 (12.43%) 86 (17.84%)
Clock network 68,721 (2.27%) 132 (27.16%)
Filler cell 811,632 (26.85%)
SB 1,153,814 (38.17%) 105 (22.65%)
NBin 427,992 (14.16%) 91 (19.76%)
NBout 433,906 (14.35%) 92 (19.97%)
NFU 846,563 (28.00%) 132 (27.22%)
CP 141,809 (5.69%) 31 (6.39%)
AXIMUX 9,767 (0.32%) 8 (2.65%)
Other 9,226 (0.31%) 26 (5.36%)

Table 6. Characteristics of accelerator and breakdown by com-
ponent type (first 5 lines), and functional block (last 7 lines).

logic which is in charge of reading data out of NBin/NBout;
next versions will focus on how to reduce or pipeline this
critical path. The total RAM capacity (NBin + NBout + SB
+ CP instructions) is 44KB (8KB for the CP RAM). The area
and power are dominated by the buffers (NBin/NBout/SB) at
respectively 56% and 60%, with the NFU being a close sec-
ond at 28% and 27%. The percentage of the total cell power
is 59.47%, but the routing network (included in the different
components of the table breakdown) accounts for a signif-
icant share of the total power at 38.77%. At 65nm, due to
the high toggle rate of the accelerator, the leakage power is
almost negligible at 1.73%.

Finally, we have also evaluated a design with Tn = 8,
and thus 64 multipliers in NFU-1. The total area for that
design is 0.85 mm2, i.e., 3.59x smaller than for Tn = 16
due to the reduced buffer width and the fewer number of
arithmetic operators. We plan to investigate larger designs
with Tn = 32 or 64 in the near future.

7.2 Time and Throughput
In Figure 16, we report the speedup of the accelerator over
SIMD, see SIMD/Acc. Recall that we use a 128-bit SIMD
processor, so capable of performing up to 8 16-bit operations

Figure 16. Speedup of accelerator over SIMD, and of ideal ac-
celerator over accelerator.

every cycle (we naturally use 16-bit fixed-point operations
in the SIMD as well). As mentioned in Section 7.1, the
accelerator performs 496 16-bit operations every cycle for
both classifier and convolutional layers, i.e., 62x more (4968)
than the SIMD core. We empirically observe that on these
two types of layers, the accelerator is on average 117.87x
faster than the SIMD core, so about 2x above the ratio
of computational operators (62x). We measured that, for
classifier and convolutional layers, the SIMD core performs
2.01 16-bit operations per cycle on average, instead of the
upper bound of 8 operations per cycle. We traced this back
to two major reasons.

First, better latency tolerance due to an appropriate com-
bination of preloading and reuse in NBin and SB buffers;
note that we did not implement a prefetcher in the SIMD
core, which would partly bridge that gap. This explains the
high performance gap for layers CLASS1, CLASS3 and
CONV5 which have the largest feature maps sizes, thus
the most spatial locality, and which then benefit most from
preloading, giving them a performance boost, i.e., 629.92x
on average, about 3x more than other convolutional layers;
we expect that a prefetcher in the SIMD core would cancel
that performance boost. The spatial locality in NBin is ex-
ploited along the input feature map dimension by the DMA,
and with a small Ni, the DMA has to issue many short mem-
ory requests, which is less efficient. The rest of the convolu-
tional layers (CONV1 to CONV4) have an average speedup
of 195.15x; CONV2 has a lesser performance (130.64x) due
to private kernels and less spatial locality. Pooling layers
have less performance overall because only the adder tree in
NFU-2 is used (240 operators out of 496 operators), 25.73x
for POOL3 and 25.52x for POOL5.

In order to further analyze the relatively poor behav-
ior of POOL1 (only 2.17x over SIMD), we have tested a
configuration of the accelerator where all operands (inputs
and synapses) are ready for the NFU, i.e., ideal behavior

279

Figure 17. Energy reduction of accelerator over SIMD.

of NBin, SB and NBout; we call this version “Ideal”, see
Figure 16. We see that the accelerator is significantly slower
on POOL1 and CONV2 than the ideal configuration (re-
spectively 66.00x and 16.14x). This is due to the small
size of their input/output feature maps (e.g., Ni = 12 for
for POOL1), combined with the fewer operators used for
POOL1. So far, the accelerator has been geared towards
large layers, but we can address this weakness by imple-
menting a 2D or 3D DMA (DMA requests over i, kx, ky
loops); we leave this optimization for future work.

The second reason for the speedup over SIMD beyond
62x lays in control and scheduling overhead. In the accel-
erator, we have tried to minimize lost cycles. For instance,
when output neurons partial sums are rotated to NBout (be-
fore being sent back to NFU-2), the oldest buffer row (Tn

partial sums) is eagerly rotated out to the NBout/NFU-2 in-
put latch, and a multiplexer in NFU-2 ensures that either
this latch or the NFU-2 registers are used as input for the
NFU-2 stage computations; this allows a rotation without
any pipeline stall. Several such design optimizations help
achieve a slowdown of only 4.36x over the ideal accelerator,
see Figure 16, and in fact, 2.64x only if we exclude CONV2
and POOL1.

7.3 Energy
In Figure 17, we provide the energy ratio between the SIMD
core and the accelerator. While high at 21.08x, the aver-
age energy ratio is actually more than an order of magni-
tude smaller than previously reported energy ratios between
processors and accelerators; for instance Hameed et al. [14]
report an energy ratio of about 500x, and 974x has been re-
ported for a small Multi-Layer Perceptron [38]. The smaller
ratio is largely due to the energy spent in memory accesses,
which was voluntarily not factored in the two aforemen-
tioned studies. Like in these two accelerators and others, the
energy cost of computations has been considerably reduced
by a combination of more efficient computational opera-
tors (especially a massive number of small 16-bit fixed-point

Figure 18. Breakdown of accelerator energy.

Figure 19. Breakdown of SIMD energy.

truncated multipliers in our case), and small custom storage
located close to the operators (64-entry NBin, NBout, SB
and the NFU-2 registers). As a result, there is now an Am-
dahl’s law effect for energy, where any further improvement
can only be achieved by bringing down the energy cost of
main memory accesses. We tried to artificially set the en-
ergy cost of the main memory accesses in both the SIMD
and accelerator to 0, and we observed that the average en-
ergy reduction of the accelerator increases by more than one
order of magnitude, in line with previous results.

This is further illustrated by the breakdown of the energy
consumed by the accelerator in Figure 18 where the energy
of main memory accesses obviously dominates. A distant
second is the energy of NBin/NBout for the convolutional
layers with shared kernels (CONV1, CONV3, CONV4). In
this case, a set of shared kernels are kept in SB so the mem-
ory traffic due to synapses becomes very low, as explained
in Section 3 (shared kernels + tiling), but the input neurons
must still be reloaded for each new set of shared kernels,
hence the still noticeable energy expense. The energy of
the computational logic in pooling layers (POOL1, POOL3,
POOL5) is similarly a distant second expense, this time be-
cause there is no synapse to load. The slightly higher energy
reduction of pooling layers (22.17x on average), see Figure
17, is due to the fact the SB buffer is not used (no synapse),
and the accesses to NBin alone are relatively cheap due to its
small width, see Figure 13.

The SIMD energy breakdown is in sharp contrast, as
shown in Figure 19, with about two thirds of the energy spent
in computations, and only one third in memory accesses.

280

While finding a computationally more efficient approach to
SIMD made sense, future work for the accelerator should
focus on reducing the energy spent in memory accesses.

8. Related Work
Due to stringent energy constraints, such as Dark Silicon
[10, 32], there is a growing consensus that future high-
performance micro-architectures will take the form of het-
erogeneous multi-cores, i.e., combinations of cores and ac-
celerators. Accelerators can range from processors tuned for
certain tasks, to ASIC-like circuits such as H264 [14], or
more flexible accelerators capable of targeting a broad range
of, but not all, tasks [12, 44] such as QsCores [42], or accel-
erators for image processing [33].

The accelerator proposed in this article follows this spirit
of targeting a specific, but broad, domain, i.e., machine-
learning tasks here. Due to recent progress in machine-
learning, certain types of neural networks, especially Deep
Neural Networks [25] and Convolutional Neural Networks
[27] have become state-of-the-art machine-learning tech-
niques [26] across a broad range of applications such as web
search [19], image analysis [31] or speech recognition [7].

While many implementations of hardware neurons and
neural networks have been investigated in the past two
decades [18], the main purpose of hardware neural net-
works has been fast modeling of biological neural networks
[20, 34] for implementing neurons with thousands of con-
nections. While several of these neuromorphic architectures
have been applied to computational tasks [30, 43], the spe-
cific bio-inspired information representation (spiking neural
networks) they rely on may not be competitive with state-
of-the-art neural networks, though this remains an open de-
bate at the threshold between neuroscience and machine-
learning.

However, recently, due to simultaneous trends in appli-
cations, machine-learning and technology constraints, hard-
ware neural networks have been increasingly considered as
potential accelerators, either for very dedicated functional-
ities within a processor, such as branch prediction [1], or
for their fault-tolerance properties [15, 38]. The latter prop-
erty has also been leveraged to trade application accuracy for
energy efficiency through hardware neural processing units
[9, 11].

The focus of our accelerator is on large-scale machine-
learning tasks, with layers of thousands of neurons and mil-
lions of synapses, and for that reason, there is a special em-
phasis on interactions with memory. Our study not only con-
firms previous observations that dedicated storage is key for
achieving good performance and power [14], but it also high-
lights that, beyond exploiting locality at the level of registers
located close to computational operators [33, 38], consider-
ing memory as a prime-order concern can profoundly affect
accelerator design.

Many of the aforementioned studies stem from the ar-
chitecture community. A symmetric effort has started in the
machine-learning community where a few researchers have
been investigating hardware designs for speeding up neu-
ral network processing, especially for real-time applications.
Neuflow [13] is an accelerator for fast and low-power im-
plementation of the feed-forward paths of CNNs for vision
systems. It organizes computations and register-level stor-
age according to the sliding window property of convolu-
tional and pooling layers; but in that respect, it also ignores
much of the first-order locality coming from input and out-
put feature maps. Its interplay with memory remains limited
to a DMA, there is no significant on-chip storage, though the
DMA is capable of performing complex access patterns. A
more complex architecture, albeit with similar performance
as Neuflow, has been proposed by Kim et al. [21] and con-
sists of 128 SIMD processors of 16 PEs each; the architec-
ture is significantly larger and implements a specific neural
vision model (neither CNNs nor DNNs), but it can achieve
60 frame/sec (real-time) multi-object recognition for up to
10 different objects. Maashri et al. [29] have also investi-
gated the implementation of another neural network model,
the bio-inspired HMAX for vision processing, using a set
of custom accelerators arranged around a switch fabric; in
the article, the authors allude to locality optimizations across
different orientations, which are roughly the HMAX equiv-
alent of feature maps. Closer to our community again, but
solely focusing on CNNs, Chakradhar et al. [3] have also
investigated the implementation of CNNs on reconfigurable
circuits; though there is little emphasis on locality exploita-
tion, they pay special attention to properly mapping a CNN
in order to improve bandwidth utilization.

9. Conclusions
In this article we focus on accelerators for machine-learning
because of the broad set of applications and the few key
state-of-the-art algorithms offer the rare opportunity to com-
bine high efficiency and broad application scope. Since
state-of-the-art CNNs and DNNs mean very large networks,
we specifically focus on the implementation of large-scale
layers. By carefully exploiting the locality properties of such
layers, and by introducing storage structures custom de-
signed to take advantage of these properties, we show that
it is possible to design a machine-learning accelerator ca-
pable of high performance in a very small area footprint.
Our measurements are not circumscribed to the accelerator
fabric, they factor in the performance and energy overhead
of main memory transfers; still, we show that it is possible
to achieve a speedup of 117.87x and an energy reduction of
21.08x over a 128-bit 2GHz SIMD core with a normal cache
hierarchy. We have obtained a layout of the design at 65nm.

Besides a planned tape-out, future work includes improv-
ing the accelerator behavior for short layers, slightly alter-
ing the NFU to include some of the latest algorithmic im-

281

provements such as Local Response Normalization, further
reducing the impact of main memory transfers, investigat-
ing scalability (especially increasing Tn), and implementing
training in hardware.

Acknowledgments
This work is supported by a Google Faculty Research
Award, the Intel Collaborative Research Institute for Com-
putational Intelligence (ICRI-CI), the French ANR MHANN
and NEMESIS grants, the NSF of China (under Grants
61003064, 61100163, 61133004, 61222204, 61221062, 61303158),
the 863 Program of China (under Grant 2012AA012202),
the Strategic Priority Research Program of the CAS (un-
der Grant XDA06010403), the 10,000 and 1,000 talent pro-
grams.

References
[1] R. S. Amant, D. A. Jimenez, and D. Burger. Low-power, high-

performance analog neural branch prediction. In International
Symposium on Microarchitecture, Como, 2008.

[2] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
benchmark suite: Characterization and architectural implica-
tions. In International Conference on Parallel Architectures
and Compilation Techniques, New York, New York, USA,
2008. ACM Press.

[3] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi. A
dynamically configurable coprocessor for convolutional neu-
ral networks. In International symposium on Computer Archi-
tecture, page 247, Saint Malo, France, June 2010. ACM Press.

[4] T. Chen, Y. Chen, M. Duranton, Q. Guo, A. Hashmi, M. Li-
pasti, A. Nere, S. Qiu, M. Sebag, and O. Temam. BenchNN:
On the Broad Potential Application Scope of Hardware Neu-
ral Network Accelerators. In International Symposium on
Workload Characterization, 2012.

[5] A. Coates, B. Huval, T. Wang, D. J. Wu, and A. Y. Ng. Deep
learning with cots hpc systems. In International Conference
on Machine Learning, 2013.

[6] C. Cortes and V. Vapnik. Support-Vector Networks. In
Machine Learning, pages 273–297, 1995.

[7] G. Dahl, T. Sainath, and G. Hinton. Improving Deep Neu-
ral Networks for LVCSR using Rectified Linear Units and
Dropout. In International Conference on Acoustics, Speech
and Signal Processing, 2013.

[8] S. Draghici. On the capabilities of neural networks using lim-
ited precision weights. Neural Netw., 15(3):395–414, 2002.

[9] Z. Du, A. Lingamneni, Y. Chen, K. V. Palem, O. Temam,
and C. Wu. Leveraging the Error Resilience of Machine-
Learning Applications for Designing Highly Energy Efficient
Accelerators. In Asia and South Pacific Design Automation
Conference, 2014.

[10] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam,
and D. Burger. Dark Silicon and the End of Multicore Scal-
ing. In Proceedings of the 38th International Symposium on
Computer Architecture (ISCA), June 2011.

[11] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Neu-
ral Acceleration for General-Purpose Approximate Programs.
In International Symposium on Microarchitecture, number 3,
pages 1–6, 2012.

[12] K. Fan, M. Kudlur, G. S. Dasika, and S. A. Mahlke. Bridg-
ing the computation gap between programmable processors
and hardwired accelerators. In HPCA, pages 313–322. IEEE
Computer Society, 2009.

[13] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello,
and Y. LeCun. NeuFlow: A runtime reconfigurable dataflow
processor for vision. In CVPR Workshop, pages 109–116.
Ieee, June 2011.

[14] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov,
B. C. Lee, S. Richardson, C. Kozyrakis, and M. Horowitz.
Understanding sources of inefficiency in general-purpose
chips. In International Symposium on Computer Architecture,
page 37, New York, New York, USA, 2010. ACM Press.

[15] A. Hashmi, A. Nere, J. J. Thomas, and M. Lipasti. A case for
neuromorphic ISAs. In International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, New York, NY, 2011. ACM.

[16] G. Hinton and N. Srivastava. Improving neural networks by
preventing co-adaptation of feature detectors. arXiv preprint
arXiv: . . . , pages 1–18, 2012.

[17] J. L. Holi and J.-N. Hwang. Finite Precision Error Analysis
of Neural Network Hardware Implementations. IEEE Trans-
actions on Computers, 42(3):281–290, 1993.

[18] M. Holler, S. Tam, H. Castro, and R. Benson. An electrically
trainable artificial neural network (ETANN) with 10240 float-
ing gate synapses. In Artificial neural networks, pages 50–55,
Piscataway, NJ, USA, 1990. IEEE Press.

[19] P. Huang, X. He, J. Gao, and L. Deng. Learning deep struc-
tured semantic models for web search using clickthrough data.
In International Conference on Information and Knowledge
Management, 2013.

[20] M. M. Khan, D. R. Lester, L. A. Plana, A. Rast, X. Jin,
E. Painkras, and S. B. Furber. SpiNNaker: Mapping neu-
ral networks onto a massively-parallel chip multiprocessor.
In IEEE International Joint Conference on Neural Networks
(IJCNN), pages 2849–2856. Ieee, 2008.

[21] J.-y. Kim, S. Member, M. Kim, S. Lee, J. Oh, K. Kim, and
H.-j. Yoo. A 201.4 GOPS 496 mW Real-Time Multi-Object
Recognition Processor With Bio-Inspired Neural Perception
Engine. IEEE Journal of Solid-State Circuits, 45(1):32–45,
Jan. 2010.

[22] E. J. King and E. E. Swartzlander Jr. Data-dependent trun-
cation scheme for parallel multipliers. In Signals, Systems
& Computers, 1997. Conference Record of the Thirty-First
Asilomar Conference on, volume 2, pages 1178–1182. IEEE,
1997.

[23] D. Larkin, A. Kinane, V. Muresan, and N. E. O’Connor. An
Efficient Hardware Architecture for a Neural Network Acti-
vation Function Generator. In J. Wang, Z. Yi, J. M. Zurada,
B.-L. Lu, and H. Yin, editors, ISNN (2), volume 3973 of Lec-
ture Notes in Computer Science, pages 1319–1327. Springer,
2006.

282

[24] D. Larkin, A. Kinane, and N. E. O’Connor. Towards Hardware
Acceleration of Neuroevolution for Multimedia Processing
Applications on Mobile Devices. In ICONIP (3), pages 1178–
1188, 2006.

[25] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Ben-
gio. An empirical evaluation of deep architectures on prob-
lems with many factors of variation. In International Confer-
ence on Machine Learning, pages 473–480, New York, New
York, USA, 2007. ACM Press.

[26] Q. V. Le, M. A. Ranzato, R. Monga, M. Devin, K. Chen, G. S.
Corrado, J. Dean, and A. Y. Ng. Building High-level Features
Using Large Scale Unsupervised Learning. In International
Conference on Machine Learning, June 2012.

[27] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceedings
of the IEEE, 86, 1998.

[28] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi. McPAT: an integrated power, area, and tim-
ing modeling framework for multicore and manycore archi-
tectures. In Proceedings of the 42nd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, MICRO 42, pages
469–480, New York, NY, USA, 2009. ACM.

[29] A. A. Maashri, M. Debole, M. Cotter, N. Chandramoorthy,
Y. Xiao, V. Narayanan, and C. Chakrabarti. Accelerating
neuromorphic vision algorithms for recognition. Proceedings
of the 49th Annual Design Automation Conference on - DAC
’12, page 579, 2012.

[30] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and
D. Modha. A digital neurosynaptic core using embedded
crossbar memory with 45pJ per spike in 45nm. In IEEE Cus-
tom Integrated Circuits Conference, pages 1–4. IEEE, Sept.
2011.

[31] V. Mnih and G. Hinton. Learning to Label Aerial Images
from Noisy Data. In Proceedings of the 29th International
Conference on Machine Learning (ICML-12), pages 567–574,
2012.

[32] M. Muller. Dark Silicon and the Internet. In EE Times
”Designing with ARM” virtual conference, 2010.

[33] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan,
C. Kozyrakis, and M. A. Horowitz. Convolution engine: bal-
ancing efficiency & flexibility in specialized computing. In
International Symposium on Computer Architecture, 2013.

[34] J. Schemmel, J. Fieres, and K. Meier. Wafer-scale integration
of analog neural networks. In International Joint Conference
on Neural Networks, pages 431–438. Ieee, June 2008.

[35] P. Sermanet, S. Chintala, and Y. LeCun. Convolutional Neural
Networks Applied to House Numbers Digit Classification. In
Pattern Recognition (ICPR), . . . , 2012.

[36] P. Sermanet and Y. LeCun. Traffic sign recognition with
multi-scale Convolutional Networks. In International Joint
Conference on Neural Networks, pages 2809–2813. Ieee, July
2011.

[37] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio.
Robust object recognition with cortex-like mechanisms. IEEE
transactions on pattern analysis and machine intelligence,
29(3):411–26, Mar. 2007.

[38] O. Temam. A Defect-Tolerant Accelerator for Emerging
High-Performance Applications. In International Symposium
on Computer Architecture, Portland, Oregon, 2012.

[39] O. Temam and N. Drach. Software assistance for data caches.
Future Generation Computer Systems, 11(6):519–536, 1995.

[40] S. Thoziyoor, N. Muralimanohar, and J. Ahn. CACTI 5.1. HP
Labs, Palo Alto, Tech, 2008.

[41] V. Vanhoucke, A. Senior, and M. Z. Mao. Improving the
speed of neural networks on CPUs. In Deep Learning and
Unsupervised Feature Learning Workshop, NIPS 2011, 2011.

[42] G. Venkatesh, J. Sampson, N. Goulding-hotta, S. K. Venkata,
M. B. Taylor, and S. Swanson. QsCORES : Trading Dark
Silicon for Scalable Energy Efficiency with Quasi-Specific
Cores Categories and Subject Descriptors. In International
Symposium on Microarchitecture, 2011.

[43] R. J. Vogelstein, U. Mallik, J. T. Vogelstein, and G. Cauwen-
berghs. Dynamically reconfigurable silicon array of spiking
neurons with conductance-based synapses. IEEE Transac-
tions on Neural Networks, 18(1):253–265, 2007.

[44] S. Yehia, S. Girbal, H. Berry, and O. Temam. Reconciling spe-
cialization and flexibility through compound circuits. In Inter-
national Symposium on High Performance Computer Archi-
tecture, pages 277–288, Raleigh, North Carolina, Feb. 2009.
Ieee.

283

