

Efficient Digital Neurons for Large Scale Cortical Architectures

James E. Smith
University of Wisconsin-Madison

jes@ece.wisc.edu

Abstract
Digital neurons are implemented with the goal of sup-

porting research and development of architectures which
implement the computational paradigm of the neocortex.

Four spiking digital neurons are implemented at the
register transfer level in a manner that permits side-by-side
comparisons. Two of the neurons contain two stages of ex-
ponential decay, one for synapse conductances and one for
membrane potential. The other two neurons contain only
one stage of exponential decay for membrane potential.

The two stage neurons respond to an input spike with a
change in membrane potential that has a non-infinite lead-
ing edge slope; the one stage neurons exhibit a change in
membrane potential with an abrupt, infinite leading edge
slope. This leads to a behavioral difference when a number
of input spikes occur in very close time proximity. However,
the one stage neurons are as much as a factor of ten more
energy efficient than the two stage neurons, as measured by
the number of dynamic add-equivalent operations.

A new two stage neuron is proposed. This neuron reduc-
es the number of decay components and implements decays
in both stages via piece-wise linear approximation. Togeth-
er, these simplifications yield two stage neuron behavior
with energy efficiency that is only about a factor of two
worse than the simplest one stage neuron.

1. Introduction
Computer architects and designers have begun the challeng-
ing task of constructing large scale computing systems target-
ed at emulating the operation of the mammalian neocortex.
Simply put, the neocortex is the sensing, thinking, perceiving
part of the brain. The discovery of its computational para-
digm, along with the subsequent development of efficient sys-
tems that can emulate it, will be a truly revolutionary
achievement in automated computation [32].

The motivation for architecture research on neuron-
based computing devices is two-fold. 1) Currently, there is a
need to support large scale experimentation in order to help
discover the brain’s computational paradigm [12]. 2) Even-
tually, as the paradigm is revealed, there will be demand for
practical implementations of an entirely new type of com-
puter – provided that the neuron level of abstraction is found
to provide a good basis for efficient implementations.

Architectural approaches for constructing a silicon brain
range from massive interconnections of conventional pro-
cessors to ASICs and custom logic arrays. As with conven-

tional von Neumann computing, these approaches balance
the tradeoffs among generality, speed, and efficiency. In
this work, the focus is toward the more hardware-oriented
FPGA/ASIC/custom end of the architecture spectrum, where
simplicity and efficiency are key.

We consider register transfer level (RTL) designs of
spiking neurons. Two stage designs incorporate decay for
both synaptic conductance and membrane potential (Section
2 provides an overview of neuron operation). Simpler one
stage designs include only decay of membrane potential.
Consequently the commonly used one stage designs are
about an order of magnitude more energy efficient than the
two stage designs.

However, there is a behavioral difference between the
two stage and one stage designs that manifests itself in the
relationship between input spikes appearing closely together
in time and the resulting output spike latency. Depending on
the larger system in which the neuron model is placed and
the assumptions made by the system developer, this behav-
ioral difference may or may not be significant.

In this paper, four existing neuron models, two with one
stage and two with two stages, are implemented with behav-
ior and efficiency as objectives. Using a consistent imple-
mentation style allows straightforward side-by-side compari-
sons. Through simulations both behavior and complexity
are studied for the four implementations.

A new two stage digital neuron is then proposed. It pro-
vides timing behavior similar to the other two stage neurons,
but is much more efficient. Although still less efficient than
the simplest one stage implementation, it closes the gap to
about a factor of two. Considering that other components of
an interconnected cortical system will also consume signifi-
cant energy, this makes the proposed two stage neuron a
strong candidate for future large scale cortical architectures
where two stage timing behavior is deemed important.
1.1 Related Work
Large scale simulations will be an important part of discover-
ing the brain’s function [12][18][20][30]. Some of this work
is focused on biological accuracy, which, for example, will
lead to better understanding and treatment of human maladies
such as autism and Alzheimer’s disease. In contrast, the goal
of the work reported here is to better understand (and eventu-
ally replicate) the brain’s computational paradigm; this means
that the neuron models will be more abstract, and simpler,
than the highly complex biologically accurate models.

978-1-4799-4394-4/14/$31.00 © 2014

 229

Some approaches to cortical emulation use computer
systems employing conventional processors and implement
neuron operation purely in software. These include massive-
ly parallel computer systems[1][30], GPUs [10][31], and
large server clusters [18]. The spiNNaker system [36] uses
ARM processors embedded in special purpose chips em-
ploying Address Event Representation AER [8] for com-
municating spikes. An advantage of these software-based
systems is that they enable broad flexibility in neuron mod-
eling. Their neuron models can be more complex with little
effect on overall efficiency because of the instruction-level
overheads, both in numbers of bookkeeping instructions and
lower level instruction processing.

In contrast, the digital neurons studied here are focused
on hardware architectures specifically developed for neural
implementation. This will allow faster and much more en-
ergy efficient implementations. Of projects of this type, the
high profile DARPA SyNAPSE program funds two large
scale hardware-based efforts with the eventual goal of im-
plementing 10 billion digital neurons. The IBM effort
[2][7][39] employs one stage digital neurons. The HP effort
[24] is based on memristor technology. The applications for
the digital neurons studied in this paper are aligned with the
DARPA SyNAPSE objectives. Another approach targeted
at large scale array implementation with analog neurons is
the European FACETS project [38].

Also in the hardware domain are a number of FPGA-
based projects where energy efficiency is a goal. For exam-
ple, the work by Emery et al. [9] interconnects a large num-
ber of neurons via AER and uses single stage neurons simi-
lar to those studied here. The work by Upegi et al. [43] also
uses single stage neurons for simplicity. The design de-
scribed by Hellmich et al. [16] goes a step further and uses
non-leaky neurons, which leads to a very simple neuron
model, but which also separates it from the work reported
here (as well as all the other related work). One thing the
hardware-based implementations have in common is simple,
energy efficient neurons.

Biological neurons communicate via action potentials
(voltage spikes). Although spike rates were long thought to
encode all the important information and are the basis of
classical artificial neural network theory [26], it has become
increasingly clear that individual spikes, and the precise rel-
ative timing of spikes, is a critical part of the brain’s com-
putational process [28][34][42]. This is not to diminish the
importance of rate-based neuron research; it has led to many
useful “brain-inspired” applications. However, the eventual
goal is discovery and accurate emulation of a more biologi-
cally plausible computational paradigm, so in this paper, we
consider spiking neurons, as does the above-cited work.

There are good arguments in favor of analog neurons
[14] [38]. These arguments primarily center on energy effi-
ciency. However, as with conventional computation, digital
implementations have a number of significant advantages
over analog implementations. It is not the goal here to argue

the merits of digital versus analog neurons, however. Ra-
ther, the objective is to study efficient digital neuron designs
and to balance efficiency and functionality with the eventual
goal of practical biological scale digital architectures.

This work uses single compartment neuron models.
These models capture behavior primarily at the neuron
body, and form the basis for many computational studies;
[21] [44][45] are a few arbitrarily-chosen examples. For bio-
logical accuracy, however, more complex multi-
compartment models are required. For example, these mod-
els include dendrite behavior and interneuron delays. The
single compartment neurons studied here can form the basis
for computation. Adding interneuron delays is relatively
straightforward. Dendritic computation can also be append-
ed to a single compartment model, as done in the Hierar-
chical Temporal Memory model [15], for example.

Finally, the model due to Izhikevich [19] and the related
Adaptive Exponential Model [5] lie at an interesting point in
the efficiency versus complexity tradeoff curve. The
Izhikevich model is an empirical model that attempts to
characterize membrane potential in a more biologically ac-
curate way via quadratic terms. Considering its biological
accuracy, it is relatively simple and is used in some high per-
formance, software-based designs; in GPUs [10][31], for
example. However, for more hardware-based implementa-
tions, it is a step up in complexity beyond models studied
here. Furthermore, the model structure is based on a number
of parameters that, for good comparisons, must be carefully
fit to the models of the type used here, and this fitting is
known to be difficult [35]. Consequently, these models are
an interesting topic for future exploration of tradeoffs, but
they are not covered here.
1.2 Overview
As background, Section 2 briefly summarizes biological
neuron behavior. Section 3 describes four digital neuron
models to be studied: two one stage models and two two
stage models. Section 4 discusses spiking neuron behavior
and differentiates the behavior of one and two stage neuron
models. Section 5 describes evaluation methods, the spike
train benchmark to be used, and a metric for comparing
spike trains. Section 6 briefly compares the behavior of the
neuron models by observing their output spike trains when
benchmark input spike trains are applied. Section 7 evalu-
ates energy efficiency using an addition-equivalent operation
count metric. Section 8 proposes a new two stage neuron
with the behavior characteristics of the two stage neurons
but with significantly better efficiency.

2. Biological Neuron Behavior
2.1 Neuron Components
Figure 1 illustrates general behavior of biological neurons.
In the figure, a synapse connects a pre-synaptic neuron to a
post-synaptic neuron. In reality, a neuron will have thou-
sands of such synapses, connecting it to hundreds or thou-

230

sands of other neurons. However, at any given time only
about 10% of all synapses will affect neuron function [3].

As noted on the pre-synaptic neuron, the neuron body is
surrounded by a membrane and is fed by inputs, the den-
drites. It also has an output, the axon which is connected to
the dendrites of many other neurons via synapses.
2.2 Dynamic Operation
Figure 1 shows three “probes” that indicate voltage levels at
certain points. First, focus attention on the waveform shown
at the axon of the pre-synaptic neuron and the waveform at
the membrane of the post-synaptic neuron. Consider a se-
quence of events that starts with a spike, or action potential,
being emitted from the pre-synaptic neuron. The spike trav-
els along the axon and reaches the synapse connecting it
with the post-synaptic neuron. At the synapse, it effectively
opens a conductive gate via a relatively complex biological
process. The conductive gate allows ions to flow into the
post-synaptic neuron body, thereby raising the membrane
potential (see the Excitatory Post Synaptic Potential (EPSP),
waveform). Although not shown, a spike received at a syn-
apse may alternatively invoke an Inhibitatory Post Synaptic
Potential (IPSP), which reduces the neuron’s membrane po-
tential. “PSP” refers to either inhibitory or excitatory post
synaptic potentials.

A synapse has an associated “efficacy” or “weight”,
which controls its relative conductivity. A stronger synapse
has higher conductivity, resulting in a PSP with higher am-
plitude.

After the conductive synapse gate is opened, it immedi-
ately starts to close with exponential decay, so the flow of
ions into the post-synaptic neuron gradually diminishes. At
the same time, ions leak from the neuron body, thereby de-
creasing the membrane potential with exponential decay, but
with a longer time constant than the closing of conductive
synapse gates. This combination of exponential decays with
different time constants gives the EPSP its distinctive shape,
as shown in the figure.

Finally, consider the more detailed waveform shown at
the right side of Figure 1. As multiple spikes are received
at a neuron’s input synapses, each of them will invoke a PSP
on the post-synaptic neuron. If received relatively closely
together in time, the PSPs will accumulate, as shown in the
graph, raising the total membrane potential. If the potential
reaches a key level, the threshold voltage, then an avalanche
effect takes place, and the neuron emits an output spike.
Immediately following the output spike, there is a refractory
period, during which the neuron cannot fire again. If there
are insufficient input spikes to raise the membrane potential
to the threshold voltage, it will eventually decay back to the
rest potential and no spike will be emitted.

In the waveform at the right side of Figure 1, typical
voltage levels are shown. The refractory time is on the order
of a few msec. In the illustration, only about three input
spikes in close proximity are sufficient to raise the body po-

tential to the threshold. In reality, the number is about an
order of magnitude higher, but can vary over a wide range.

Synapse

Pre-synaptic
Neuron

Post-synaptic
Neuron

Dendrites

AxonBody

Spike
(Action Potential) EPSP

Dendrites

Axon

-70 mv

-55 mv

30 mv accumulation
of PSPs

Threshold
Voltage

Spike

time (msec)

Refractory
Time

Figure 1. Neuron operation. Two neurons are connected via a
synapse. Attached "probes" illustrate dynamic operation.

2.3 Synaptic Plasticity
Synaptic weight plasticity is a critical part of the neuronal
learning process – the weights can change dynamically, de-
pending on spiking behavior. In this paper, synaptic weights
are static, although distributed over a range of values. This
is justifiable in two scenarios. First, with offline training,
the computational device is trained and the weights are es-
tablished prior to operation; during normal operation they do
not change. Second, even with dynamic online training and
plastic synapses, weights are often modeled in a pseudo-
static manner, with updates occurring at a much coarser time
scale than neuron core operation [21] [38]. For example, in
[21], weight updates are performed once every 10,000 time
steps (assuming .1 msec time steps as done here).

3. Spiking Neuron Models
Much of the work in neuron modeling, beginning with the
earliest work, is targeted at understanding the behavior of
biological neurons. However, evolution under biological
constraints suggests that some (perhaps many) aspects of bi-
ological neuron operation are extraneous with respect to the
underlying computational paradigm. Hence, it is important
to recognize the divergence between biological and compu-
tational models that arise as simplifications are made in or-
der to improve computational speed and efficiency.

Regardless of whether the objective is biological or
computational accuracy, neuron models have a common an-
cestry. In the next subsection, the classical Hodgkin Huxley
model is first described to establish a mathematical frame-
work. Then a series of four spiking neuron models and their
efficient digital implementations are described.
3.1 Hodgkin Huxley Model
The Hodgkin Huxley (HH) Model [17] is the classic neuron
model, for which its developers won the 1963 Nobel Prize in
medicine. At the top level, the HH model is based on an RC
circuit (Figure 2) which characterizes the membrane poten-
tial. From left to right, the RC model consists of 1) a con-

231

ductance and reversal voltage (gt
I and VI) for inhibitory syn-

apses; the conductance is a function of time, as denoted by
the t subscript, 2) a conductance and reversal voltage (gt

E
and VE) for excitatory synapses (note the difference in polar-
ity for the two reversal voltages), 3) a membrane (leakage)
conductance and rest voltage (gM and Vrest), and 4) a mem-
brane capacitance CM and voltage Vt. In biologically realis-
tic models, coupled differential equations describing the var-
iable conductances are quite complex and are not given
here. In the following, significantly simplified versions of
the conductance equations are used.

gt
I gt

E gM

VI VE Vrest
CM Vt

+_ +_+_

Figure 2. RC circuit which is the basis for the HH Model.
A feature of the HH model is biological accuracy, e.g., it

characterizes the entire dynamic waveform for the mem-
brane potential. However, from a computational perspec-
tive, it appears that the spiking input-output behavior is what
is important. That is, all one really needs is functional in-
put/output spiking behavior that can support the neuron’s
computational capabilities. This leads to simpler models as
are widely used in computational neuroscience.
3.2 Leaky Integrate and Fire (LIF) Models
As originally defined [41], an LIF model incorporates a
membrane potential that decays exponentially with some
time constant. Over time, a number of different LIF-based
models have been developed. What typically distinguishes
LIF models is the modeling of synapse conductance in re-
sponse to input spikes. The simplest LIF neurons do not di-
rectly model synapse conductances; an input spike causes a
step change in the membrane potential. These simple LIF
neurons are discussed in Section 3.4.

A commonly used (and more accurate) LIF model con-
tains synaptic conductances that decay with time. To dis-
tinguish this specific LIF model, it is referred to in this paper
as the DLIF model, an LIF model with decaying synaptic
conductances. The DLIF model is based on a differential
equation that describes membrane potential at time t, Vt.

(1) CM dVt/dt = -gM (Vt -Vrest) - gt
E(Vt - VE) - gt

I (Vt - VI)

If Vt > Vth (threshold voltage), the neuron fires a spike and
resets to the Vrest, where it remains for refractory time tref.

If an excitatory input spike is received through synapse i at
time t, then sti = 1; else sti = 0. Summing over all the input
synapses i, at time t, the excitatory conductance gt

E is:
gt

E ← gt-1
E + ∑sti wi gE

max

Where wi is the weight of synapse i (0 ≤ wi ≤ 1), and gE
max is

the maximum excitatory conductance. Similarly, for an in-
hibitory synapse:

gt
I ← gt-1

I + ∑sti wj gI
max

Meanwhile, the synaptic conductances decays satisfy the dif-
ferential equations:

τE dgt
E/dt = -gt

E and τI dgt
I/dt = -gt

I

where τE and τI are the respective time constants.
Beginning with the mathematical description just given,

one can derive an efficient digital implementation for com-
puting the neuron membrane potential, and, consequently,
the spiking behavior of the DLIF neuron.
3.2.1 Voltage Shifting and Scaling
The first optimization for digital implementation efficiency
shifts voltage levels so that Vrest = 0, this shifts the other
voltage levels accordingly:

VE ← VE - Vrest ; VI ← VI - Vrest

This optimization is commonly done. We continue on
with additional optimizations, however. We scale the V
values by dividing by threshold voltage Vth. This yields
membrane potentials represented as fixed point fractions, so
testing for crossing the firing threshold is reduced to detect-
ing when the membrane potential becomes 1 or greater.
Note: to simplify notation in the remainder of the paper the
same notation is used for both the pre- and post-shifted and
scaled versions of voltage levels.
3.2.2 Maintaining Membrane Potential
Setting Vrest = 0 in equation (1) and dividing through by CM

yields the following.

dVt/dt = - gM Vt / CM - gt
E(Vt - VE) / CM – gt

I (Vt - VI) / CM
For synchronous operation, we form a discrete time version
with time step ∆t:

(Vt -Vt-1)/∆t = -Vt-1(gM + gt
E + gt

I)/ CM + (VEgt
E + VI gt

I)/ CM

Defining membrane leakage time constant: τm = CM/gM and
applying a series of straightforward algebraic operations:
(2) Vt = Vt-1[(1- ∆t/τm) - (gt

E ∆t/CM + gt
I ∆t/CM)]

 + (VE gt
E ∆t/CM

 + VI gt
I ∆t/CM

)
Equation (2) will be mapped directly into a digital imple-
mentation. Next, we deal with digital synapses.
3.2.3 Synapse Conductances
The synapse conductances gt

E and gt
I are modeled as:

τE dgt
E/dt = -gt

E and τI dgt
I/dt = -gt

I
Converting to discrete form, plus simple algebra yields:

gt
E = gt-1

E (1 - ∆t /τE) ; gt
I = gt-1

I (1 - ∆t /τI)
Adding the weighted synaptic inputs each clock cycle:
(3) gt

E = gt-1
E(1-∆t /τE) +∑sti wi gM

E;
(4) gt

I = gt-1
I(1 - ∆t /τI) + ∑ sti wj gM

I

3.2.4 Putting It All Together
In equation (2), ∆t/CM

 is a constant. We use the distribu-
tive property to push this constant back into equations (3)
and (4) and define: Wi = wi (gM ∆t/CM

) . This meta-weight
eliminates a number of implied constant multiplications in
(2). It also means that the modified versions of (3) and (4)

232

produce dimensionless quantities that are voltage multipli-
ers, rather than conductances. To avoid confusion, the “g”
quantities are replaced with “d” quantities. Then, we have:

dt
E = dt-1

E (1- ∆t /τE) +∑ sti Wi
dt

I = dt-1
I (1- ∆t /τI) +∑ stj Wj

Vt = Vt-1 [(1 - ∆t/τM) - (dt
E + dt

I)] + (VE dt
E + VI dt

I)
The EPSP for a single input spike is illustrated in Figure 3a.
The RTL that implements these equations is in Figure 4a. In
Figure 4 the numbers in braces {n} identify sources of dy-
namic operation counts to be referenced later (Section 7).

The DLIF is a two stage model. The synapse stage (on
the left) has latches holding the dimensionless multiplier (d)
values, along with a multiplicative decay, followed by the
membrane stage (on the right) with a latch level that holds
the membrane potential and its multiplicative decay.

a) b) c)
Figure 3. Excitatory Post Synaptic Potentials in response to a
single input spike:

a) DLIF and DSRM0 neurons
b) SLIF neuron,
c) LLIF neuron.

3.3 Spike Response Models (SRM0)
SRM0 is the “zeroth order” version of the more general
Spike Response Model [13][25]. In the SRM0 model indi-
vidual spike responses (Figure 3a) are assumed to be inde-
pendent and are simply summed to yield the membrane po-
tential. Besides leading to a simplification of the DLIF digi-
tal neuron, the SRM0 assumption also simplifies analysis of
neuron computational capabilities.

If we use the RC circuit in Figure 2 to characterize the
response to individual spikes and make the SRM0 assump-
tion regarding independence of spike responses then, after
several steps of derivation omitted for brevity, we arrive at a
neuron which we call the DSRM0 neuron. It is similar to the
DLIF neuron except the term -(dt

E + dt
I) ∆t/CM

 in the DLIF
neuron is not present in the DSRM0 neuron. This removed
term reflects interactions among spike responses that affect
the membrane potential in a relatively small way. Removing
this term is not only a simplification by itself, but it also al-
lows the multiplications of constants VE and VI to be pushed
back into the synapse meta-weights to yield the following.

Wi = wi (VEgE
max ∆t/ CM

) and Wj = wj (VIgI
max ∆t/ CM)

This also changes the quantities being maintained in the
synapse stage to voltages. Scaling voltages so that Vth = 1,
as was done with the DLIF neuron, yields the implementa-
tion in Figure 4b.

*W1 ∑

Vt∑

Membrane
Stage

Π

Π

E
xc

ita
to

ry

Π
-
∑

dt
E

VE

VI

-

(1-∆t/τΕ)

*Wm

*W1

∑

dt
I(1-∆t/τΙ)

*Wn
(1-∆t/τΜ)

≥ 1

reset

In
hi

bi
to

ry

{1}

{1}

{2}

{3}

{3}

{4}

{5}

{6}

Π

 {2}Π

st1

stm

st1

stn

Synapse
Stage

. . .

. . .

spike out

a) DLIF Neuron

*W1 ∑

Vt∑

Membrane
Stage

E
xc

ita
to

ry

Π

Vt
E

*Wm

*W1

∑

Vt
I

*Wn

(1-∆t/τΜ)

≥ 1

reset

In
hi

bi
to

ry

{1}

{1}

{5}

{6}

(1-∆t/τΕ) {2}Π Synapse
Stage

(1-∆t/τΙ) {2}Π

st1

stm

st1

stn

. . .

. . .

spike out

b) DSRM0 Neuron

*W1

Vt∑

Membrane
Stage

E
xc

ita
to

ry

Π

st1

*Wm

*W1
∑

*Wn

(1-∆t/τΜ)

≥ 1

reset

In
hi

bi
to

ry

{1} {5}

{6}

. . .
stm

. . .
st1

stn

spike out

c) SLIF Neuron

E
xc

ita
to

ry
In

hi
bi

to
ry

*W1

Vt∑

Membrane
Stagest1

*Wm

*W1
∑

*Wn

≥ 1

reset

{1} {5}

{6}

. . .
stm

. . .
st1

stn

spike out

-∑VL

d) LLIF Neuron

Figure 4. A complexity-ordered sequence of digital neurons.
Refractory logic is not shown.

3.4 LIF with Step Inputs (SLIF) Model
For the next in the sequence of digital neuron simplifica-
tions, we begin with the neuron model defined by Stein [41].
This model uses a simple step to model the effect an input
spike has on the membrane potential, yielding:

 Vt = Vt-1 (1 - ∆t/τm) +∑ stj vE
max

 wj + ∑ sti vI
max wi

Where vE
max and vI

max are a spike’s maximum contributions
to membrane potential (occurring when wi = 1 or wj = 1, re-

233

spectively). As a simplification, we define meta-weights Wi
= wi*vE

max, Wj = wj*vI
max, in a manner similar to that used

for the previous neurons. This is the SLIF neuron; its EPSP
for a single input spike is in Figure 3b and the RTL imple-
mentation is in Figure 4c.
3.5 Linear Leak Integrate and Fire (LLIF)
The fourth neuron model to be considered is a further sim-
plification which performs linear decay of the membrane po-
tential rather than exponential decay[33][39][43]. This
means that the decay can be performed by subtracting a con-
stant rather than multiplying by a constant. The equation for
membrane potential follows.

 Vt = max(Vt-1 – VL ,0) +∑ sti vE
max

 wj + ∑ stj vI
max wj

VL is a constant leak value which is repeatedly subtracted
from the membrane voltage. This neuron is referred to as a
Linear Leak Integrate and Fire (LLIF) neuron. Its EPSP for
a single input spike is in Figure 3c and the RTL implementa-
tion is in Figure 4d.

4. Neuron Behavior
In this section, the four neuron implementations are ana-
lyzed in terms of spike-based input-output behavior. Then,
in subsequent sections, their spike response behaviors and
relative computational efficiencies are compared.

The motivation for using spiking neurons is that precise
timing relationships are often critical for the brain’s compu-
tational paradigm. This is articulated in papers [4][29][42]
summarizing experimental data that strongly suggests that
timing of individual spikes (rather than rates alone) are es-
sential for some of the low latency computations that a
mammalian brain performs. Maass [28] provides strong
theoretical arguments for spike-based computation, as op-
posed to rate-based computation.

Maass also identified the leading edge slope of a PSP as
a potentially significant computational feature for individual
neurons [27]. Qualitatively, the key difference between the
one and two stage neurons is that the PSP leading edge of
the one stage neurons has an infinite slope and the PSP of
the two stage neurons has a non-infinite leading edge slope
(refer to Figure 4). This difference leads to different input-
output transfer characteristics. This is illustrated via an ex-
ample in Figure 5.

The leading edge slope affects input-output behavior
when a number of spikes occur closely in time so that their
leading edge slopes overlap. Informally, we will say that a
neuron’s input spike intensity is greater if there are more in-
put spikes appearing closer together in time. Figure 5a left
shows membrane potential for the DSRM0 neuron where a
number of spikes (ranging from one to six) occur simultane-
ously; this case, chosen for purposes of illustration, exhibits
maximum leading edge overlap. The response to fewer
spikes takes longer to reach the threshold Vth than the re-
sponse to more spikes. Figure 5a right shows the resulting
relationship between the input intensity (number of simulta-

neous spikes) and the output spike latency. Although it does
not satisfy the SRM0 assumption of PSP independence, the
response for the DLIF neuron is very similar.

In contrast, Figure 5b left shows the spike response and
latency vs. intensity relationships for the SLIF neuron. In
this case, the latency is the same regardless of the intensity,
as long as the intensity is sufficient to reach the threshold.
Although it does not fit satisfy the SRM0 assumption of PSP
independence, the response for the LLIF neuron is similar.

1

2

- 1 2 3 4 5

M
em

br
an

e
Po

te
nt

ia
l

Time

6
Intensity

5

4
3

2

1
Vth

0

1

2

3

4

5

1 2 3 4 5 6

La
te

nc
y

Intensity
a) Two Stage Neuron (DSRM0)

0.5

1

1.5

2

2.5

3

-1 0 1 2
3

M
em

br
an

e
Po

te
nt

ia
l

Time

6

Vth

5

4
3
2

Intensity

1
-1

0

1

2

3

1 2 3 4 5 6

La
te

nc
y

Intensity
b) One Stage Neuron (SLIF)

Figure 5. Behavior of neuron models as the number of simulta-
neous input spikes (intensity) is increased.

Some modelers prefer to construct systems that include
background “noise” which is added to a neuron model’s be-
havior [6][37]. Consequently, a set of simulations were per-
formed where Gaussian noise was added to the membrane
potentials at each time step. The sigma value for Gaussian
noise was chosen so that with no input spike stimulus, the
spontaneous output spike rate was about 5 Hz. Then, the
number of simultaneous input spikes was varied, and the la-
tency to the output spike was measured. Results were aver-
aged over 500 trials. The results as latency vs. intensity are
in Figure 6.

The x-axis shows spike intensity and the y-axis shows
the average latency. Because of the presence of noise, when
intensity is relatively low, some trials result in no output
spike; this is indicated by dotted lines in the curves for the
cases where fewer than 50% of the trials result in a spike.
With added noise, the profile of the SLIF neuron now has
the same general shape of the DSRM0 profile. However,
the DSRM0 behavior remains distinguishable from the be-
havior of the SLIF neuron. First, at the end of the curve
with high intensity, the response of the SLIF neuron is

234

somewhat flatter than the response of the DSRM0 neuron;
which is qualitatively similar to the noise-free case, but less
extreme. At lower intensity, the SLIF neuron shows an up-
ward curve, but a higher fraction of the responses show no
output spike. Hence, there remains a behavioral difference
between the one stage and two stage neurons in the presence
of added background noise, although the difference is
smaller than the noise-free case, and overall shapes of the
curves are now more similar.

Figure 6. Average latency vs. spike intensity (# simultaneous
spikes) for SLIF neuron (lower curve) and DSRM0 neuron
(upper curve). Dotted lines indicate cases where fewer than
50% of trials resulted in an output spike.

A final, somewhat related, point is that using a one stage
neuron with its step input can simplify event driven model-
ing. When a spike arrives at a one stage neuron’s input, it
can immediately be determined if and when the neuron will
generate an output spike. Hence, a spike event can be
placed immediately in event queue (s) without the need for
later adjustments to the queue(s). In this paper, however, we
do not consider event driven simulation, rather we assume
clock cycle simulation.

5. Evaluation Methods
The four digital neurons just described differ with respect to
spiking behavior and energy efficiency. In this section,
methods for evaluating both spiking behavior and efficiency
are described.
5.1 Simulator
Evaluations are simulation-based. Neuron simulation mod-
els were coded using GNU Octave (a Matlab clone). The
models take multiple spike trains as inputs and generate a
single output spike train. As a byproduct, simulation models
maintain important internal neuron values. For example, the
membrane potential is common to all the neuron models.
5.2 Spike Train Benchmark
The simulation models are configured to have 100 synapses
each, with a ratio of 80% excitatory and 20% inhibitory (a
typical ratio found in a real cortex region).

The benchmark consists of correlated, randomly distrib-
uted input spike trains as per Vogels et al. [44]. The meth-
od first generates a “white noise” signal: random numbers
between -.5 and .5. Then, this random sequence is filtered
and normalized to -1, 1. Next, the signal is rectified and re-
normalized to .1. Finally 5*∆t (.5 msec) is added to assure a
background firing rate of 5 HZ. This waveform is used for
generating all 100 input spike trains. For each spike train, at
each time step, a random number between 0 and 1 is gener-
ated. If the random number is less than the waveform value
then a spike is generated; else there is no spike. The raster
diagram for all 100 spike trains is shown in Figure 7a.

For benchmark runs, synapse weights were set according
to a lognormal distribution [40]. The mean for excitatory
synapses is .55, and for inhibitory synapses it is .24. These
weights, coupled with the 80/20 distribution of excitation
and inhibition, yield output spike trains containing about 70
spikes for the 20,000 time step (2 seconds) simulations.
Figure 7b shows the membrane potential for the DLIF neu-
ron; the threshold is normalized to one, and the places spikes
occur is evident.

Note that the above normalization value of .1 was chosen
to produce an overall spike rate of about 35 Hz, a value in
the normal active range. If a more realistic number of syn-
aptic inputs were modeled, say one thousand, then the nor-
malization value would be reduced to produce roughly the
same number of output spikes. Consequently, the overall
synaptic activity reported here (Section 7) would be essen-
tially unchanged for the larger number of synapses.

a)

b)

Figure 7. a) Raster diagram of benchmark input spike trains.
Trains 1-79 are excitatory, and trains 80-100 are inhibitory. b)
Resulting membrane potential for DLIF neuron.

5.3 Comparing Spike Trains
For comparing output spike trains, the coincidence measure
defined by Gerstner’s group is used [22][25].

 Γ = (Ncoinc − 〈Ncoinc 〉) * .5 (Ndata + Nmodel) * (1/N)
Where Ndata is the number of spikes in the reference spike
train (DLIF will be the reference), Nmodel is the number of
spikes in the spike train to be compared with the reference,

235

and Ncoinc
 is the number of coincidences between the spike

trains with precision δ. 〈Ncoinc 〉 = 2fδ Ndata is the number of
coincidences that would occur for spikes generated by a ho-
mogeneous Poisson process with the same rate as the model
spike train. The last factor, 1/N, normalizes Γ to a maxi-
mum of one (N = 1 - 2fδ). Γ = 1 only if both spike trains are
entirely coincident (within time δ). δ = 2 msec as in [22].
Because the refractory time, tref = 5 msec, “coincidence” is
unambiguous. If the number of coincidences is the same as if
the model were a homogeneous Poisson process with the
same number of spikes (i.e. random chance), then Γ= 0.
Note that Γ can be negative, i.e., the coincidence can be
worse than random chance would predict.
5.4 Model Calibration
An important consideration when comparing neuron models
is that structural differences in the models lead to different
sets of model parameters. Consequently, one would like to
establish model parameters so that input/output behavior
among models is as similar as possible, thereby enabling
more meaningful efficiency and functionality comparisons.

To establish parameters across the models, the most
complex neuron, DLIF, is used as a reference. Then, given
the reference and its parameters, the parameters of the other
neurons chosen by maximizing their Γ metric.

Parameters for the DLIF neuron are in Table 1. These
numbers are within the ranges of real neurons, keeping in
mind that in real neurons the parameter ranges are fairly
wide. The table shows the original parameter value, and the
value used in the simulation model after it has been shifted
and/or scaled to make the implementation more efficient
(see Section 3.2.1).

Table 1. Simulated DLIF Neuron Parameters
DLIF
Parameter

Value
original

Value
shifted/scaled

gE .14 nS .014 nS (scaled)
gI .35 nS .035 nS (scaled)
gM 10 nS 1 nS (scaled)
Vrest

 -60 mV 0 mV (shifted &scaled)
Vth

 -50 mV 1 mV (shifted & scaled)
VE 0 mV 6 mV (shifted & scaled)
VI -80 mV -2mV (shifted & scaled)
tref 5 msec 5 msec
τ M 20 msec 20 msec
τ E 5 msec 5 msec
τ I 10 msec 10 msec

The fitting process for the other neurons is straightforward.
Parameters for the other neurons are fit as follows.
1) DSRM0: the time constants are adjusted, but are kept in

the same ratio as in the DLIF neuron. All the other pa-
rameters are the same as in the DLIF neuron.

2) SLIF: The DLIF parameters are used to determine the
maximum EPSP and IPSP values that can be achieved.
Then, these values are multiplied by a fitted scaling pa-

rameter to determine the step change in membrane po-
tential. The membrane decay time constant is the se-
cond fitted parameter.

3) LLIF: The step increase in membrane potential is mod-
eled as in the SLIF neuron. The linear decrement value
VL is an additional fitted parameter.

Also, the one stage neurons have an inherently lower latency
than the two stage neurons because their membrane potential
changes instantaneously in response to an input spike. This
causes a systematic time shift in the neurons’ output spikes.
Consequently, to get the best fit, it is necessary to time shift
(delay) the output spike trains of the one stage neurons. Pa-
rameters for the neurons, including the time shifts, are given
in Table 2. Also given are the corresponding Γ values.

Table 2. Parameters Fit to DLIF Neuron
DSRM0 Fitted Parameters Γ = 1.0
τ M 17.675 msec
τ E 4.15 msec
τ I 8.3 msec
SLIF Fitted Parameters Γ = .87
vE

max .19 mV
vI

max -.3mV
τ M 12.5 msec
time shift +1.5msec
LLIF Fitted Parameters Γ = .80
vE

max .21 mV
vI

max -.33 mV
VL .06 mV
time shift +1.2 msec

6. Behavior Comparison
The Γ measure, as given in Table 2, provides one way of
comparing output spike similarity. The DSRM0 neuron
yields maximum similarity to the DLIF reference neuron, Γ
= 1.0. Scaling the time constants for both the synaptic and
membrane decays in the DSRM0 neuron can largely com-
pensate for the structural simplification with respect to the
DLIF neuron.

The one stage neurons have less similarity with the DLIF
reference neuron, but their Γ values of .80 and .87 are still
relatively close (as compared with results in [22], for exam-
ple), and, to be fair, this measure by itself is not especially
significant. Real neurons of the same type typically deviate
from each other more than the one stage neurons deviate
from the DLIF neuron.

To illustrate the effect of the PSP leading edge slope dis-
cussed in Section 4, the benchmark spike trains were ex-
cerpted and used in the following way. First, a region of
high spiking activity was identified – between time steps
16500 and 16650. Then, in that region the neurons were
simulated for a series of runs, where the number of excitato-
ry spike trains was incrementally increased from 40 to 80,
while all 20 inhibitory spike trains were active. Hence, each

236

run incrementally increased the overlapping spike responses,
but with some randomness in the actual spike patterns.

The results are in Figure 8 for three neurons: DLIF,
LLIF, and PSRM0 (see Section 8). To reduce clutter, the
other two neurons are not shown, but DSRM0 is similar to
DLIF, and SLIF is similar to LLIF, as would be expected.

The behavior difference due to the PSP leading edge
slope is apparent, but is more subtle than in the explicitly
constructed example in Figure 5. Each set of data points
essentially plots the relative latency as a function of the
number of input spike trains. The two stage DLIF neuron
shows a greater ability to resolve differences in intensity
than LLIF, a one stage neuron. Quantitatively, the DLIF
neuron resolves the input intensities to output spikes at 31
different time steps, while the LLIF neuron has output spikes
at 20 different time steps. One small region where the differ-
ence is clear is enclosed in an ellipse. This region shows be-
havior very much like the behavior predicted in Figure 5.

LLIF
PSRM0
DLIF

DLIF & PSRM0

Figure 8. Latency (time to first spike) vs. spike intensity (num-
ber of active input excitatory spike trains).

7. Efficiency
A digital neuron with high energy efficiency is of critical
importance when constructing a large scale system. The
primary operations in the RTL implementations are addition
and multiplication, so we use a simple efficiency metric
which counts the number of addition-equivalent operations.
7.1 Reducing Multiplications to Additions
Multiplications are converted to addition-equivalents, and,
in the process, the implementations are made more efficient
via multiplier recoding. The multiplications in the DLIF and
DSRM0 neurons have constant operands (e.g., the decay
values). These constants are not very precise in the first
place (they are biologically based), and, with multiplier re-
coding, they can be approximated with a relatively small
number of bits, thereby reducing each multiplication to a
small number of additions (e.g., two or three).

For example, from Table 2, for the DSRM0 neuron, τM
=.017675, and ∆t = .1 msec, so the decay multiplier is 1-
∆t/τM = 0.994342291. This is approximately 0.994628906

= 1- .00000001011 in binary. Implementing the multiplica-
tion is three additions (and/or subtractions) of four operands,
all shifted versions of the scaled membrane potential.

If one performs truncation and recoding on a decay val-
ue, the reduction of implied multiplications to numbers of
additions is shown in Figure 9. Each symbol in the figure
corresponds to a decay value (on the x-axis), and the row the
symbol appears in (y-axis) is the number additions required
to achieve a multiplication by the given decay value.

Figure 9. Decay multiplications reduced to additions.

In row 1, the values correspond to the subtraction of a
single shifted version of the membrane potential from itself.
I.e. the top value in the first column is 1-2-11 (all fractions
were truncated to 11 bits). This set of decay values formed
with only one addition appears overly coarse. The set for
two additions will often be sufficient (row 2), but there are
still some significant gaps. With three additions (row 3), it
appears likely that all the practical decay values can be ap-
proximated with sufficient precision. For example, if we re-
duce the decay multiplications in the DSRM0 neuron to
three addition-equivalents each and compare output spike
trains for the benchmark with the full precision constants
given in Table 2, the similarity metric Γ= 1.0.
7.2 Results
After decay multiplications are replaced by three additions,
add-equivalent dynamic operation counts for the benchmark
are shown in Figure 10. The neuron in the rightmost column
will be discussed in Section 8. It is assumed that a zero op-
erand causes the corresponding addition to be gated off and
is not included in the count. Note that for the DLIF neuron,
one can also convert the multiplications by constant VE and
VI to three additions. Operation counts are annotated with
the braced numbers in the Figure 4 schematics.
{1} Synapse Adds – The two stage neurons perform more
operations in adding synapse weights due to the additional
operands into the synapse adders in their first stage.

{2} Synapse Decays – These are performed only by the two
stage neurons, and this is where more operations are per-
formed than in any other part of the implementations.

{3}, {4} Compute Potential Changes and Compute Decay
Value – The DLIF neuron performs these two operations
which model interaction among spike responses (see Section
3.3). The two multiplications by the reversal voltages con-

237

sume a large number of operations, yet, as observed earlier,
they have relatively little effect on spiking behavior.

{5} Sum Membrane Inputs – Both the DLIF and DSRM0
neurons must sum data from stage one before passing it to
stage two. This is not done in the one stage neurons.
{6} Membrane Decay – All except the LLIF neuron use a
multiplicative decay (three add-equivalents) while the LLIF
neuron performs a single subtraction of the linear leak value.
Furthermore, the LLIF membrane potential is zero more of-
ten, so the decay operation is gated off more often. Hence,
the LLIF neuron performs about a quarter the membrane de-
cay operations as the two stage neurons.

Figure 10. Dynamic operation counts for the benchmark spike
trains. Numbers in braces identify components in Figure 4 and
Figure 11 RTL.

To summarize briefly: the LLIF neuron requires fewer
than a tenth the operations of the DLIF neuron. The
DSRM0 neuron requires fewer operations than the DLIF,
but it still requires almost eight times as many operations as
the LLIF neuron. Meanwhile, the SLIF neuron requires
about twice the number of operations as the LLIF neuron.

With regard to the above analysis, there is an important
caveat: these efficiency numbers are just for the neuron and
synapses. The energy required to distribute output spikes
throughout a large network of neurons will be significant
compared with the core neuron energy.

8. An Efficient Two Stage Neuron
Depending on the overall design objectives and assump-
tions, a designer may want a two stage neuron for computa-
tional reasons (Section 4), yet, as just shown, there is a very
large gap between the one and two stage neurons when it
comes to efficiency. In this section, two ways of reducing
efficiency of a two stage neuron are proposed and evaluated.
When both features are used in combination, the result is a
new, highly efficient two stage neuron.

8.1 Combined Synaptic Decay
The DSRM0 neuron is the starting point. Because the largest
single contributor to the DSRM0’s total operation count is
synapse decays, it is the first target for simplification. Then
in the next subsection, both synapse and membrane decay
operations are simplified.

Excitatory and inhibitory conductances decay with dif-
ferent time constants. Roughly half the synaptic decay op-
erations can be eliminated if they both decay with the same
time constant. So, one can use τE for both and compensate
for the decrease in τI by adjusting (increasing) the inhibitory
synapse weights. Through simulations, it was determined
that the conductances can be combined with little change in
input/output behavior if the inhibitory weights are increased
by a factor of 1.90, which makes intuitive sense because the
inhibitory time constant is decreased by a factor of 2.0.
When this optimization is implemented in the DSRM0 neu-
ron, it cuts the operations for synapse decays and updating
membrane potential roughly in half (Figure 10 {2} and {5}).
8.2 Piecewise Linear Approximation of Decay
In Section 7.1, the decay multiplication was reduced to three
(or fewer) additions. In this section, we go further and re-
duce the decay operation to a single subtraction. Rather
than subtracting a single leak value throughout the range of
membrane potentials as with the LLIF neuron, we use a se-
ries of leak values that form a piecewise linear approxima-
tion to exponential decay.

If the decay time constant is τ, then the half-life is τln2.
In discrete terms, decaying the scaled membrane potential
from 2-n to 2 –n-1 will take τln2/∆t time intervals. Therefore,
within the range of 2-n to 2 –n-1 one can use constant decre-
ment amount 2–n-1 *∆t /τln2. For example, to decay the
membrane potential with τM = 20 msec, ∆t = .1 msec, the
membrane decay operand is DM = .00347. So, for membrane
potentials 2-n > Vt ≥ 2 –n-1, the decrement value is 2–n-1 *
.00347. At each time step, the implementation produces the
decay decrement value as a binary shift of the constant DM.
The implementation logic determines the position of the
leading one in the value being decayed (e.g., the membrane
potential Vt). If the weight of this bit position is 2–n-1 , then
the decrement value is DM shifted right by n-1 bit positions.

In a two stage neuron, one can apply this piecewise line-
ar approximation in both stages: the synapse decay logic and
the membrane decay logic.
8.3 Two Stage Neuron with Piece-wise Linear Decay
If the simplifications in the two preceding subsections are
combined, the result is a neuron with piecewise-linear decay
(denoted PSRM0); see Figure 11. This is a two stage neuron
that has the latency vs. intensity relationship as in Figure 5a.

After parameter fitting the decay constants and compar-
ing the output spike trains with the DLIF neuron, its Γ met-
ric is .82 for the spike train benchmark; in the same ballpark
as the LLIF and SLIF neurons. Its functional behavior is

238

very similar to the DLIF neuron (Figure 8). Finally, Figure
10 shows that the PSRM0 neuron requires slightly more than
a factor of 2 more add-equivalent operations than the LLIF
neuron. So, we get functional characteristics of a two stage
neuron, with efficiency that is much closer to that of the
LLIF neuron than the other two stage neurons.

*W1

Vt

Membrane
Stage

E
xc

ita
to

ry

Vt
S

*Wm

*W1

*Wn

≥ 1

reset

In
hi

bi
to

ry

{1} {5}

>>DS

DM

∑{2}

>>
∑

∑ ∑

{6}

Synapse
Stage

st1

stm

st1

stn

spike out

. . .

. . .

Figure 11. PSRM0 neuron with combined synapses and piece-
wise linear decay.

Finally, note that logic for the shift operations is not
counted in operation estimates; it will require more detailed
design to get a better energy estimate. However, the shift
constants are at least quasi-static, because the shift value is
unchanged as decaying values pass through a given range.

9. Conclusions
The focus in this paper has been on digital neurons to sup-
port architectures for discovery and future implementation
of the brain’s computational paradigm. So, conclusions are
drawn from that perspective.

Two stage neurons provide a PSP with a sloping leading
edge, while the one stage neurons with their single step in-
puts to membrane potential do not. This leads to a behav-
ioral difference which may or may not be important depend-
ing on the system in which the neuron model is placed and
the assumptions made by the designer. On the other hand
one stage neurons are much more energy efficient and may
have advantages in event-driven system implementations.
Furthermore, if background noise is added and spiking be-
havior is averaged over a number of trials, the behavioral
differences are less than in the noise-free case.

Given that the brain’s computing paradigm is not yet
known, a computer architect/researcher must make an im-
portant decision: either the PSP leading edge slope is im-
portant for implementing the computational paradigm being
studied, or it is not. If it is, then one should use a two stage
neuron. If not, then a one stage neuron is the clear winner.

Of the two stage neurons, the DSRM0 neuron is about
30% more efficient than the DLIF. And, it can be argued
that the extra operations in the DLIF neuron are only an arti-
fact of biological implementation, and are unnecessary for
capturing the brain’s computational paradigm. Computa-
tional neuroscientists implicitly make this argument when
they use the SRM0 model.

By 1) combining the synaptic decays (and compensating
by adjusting weights) and 2) implementing piecewise linear
decay, the PSRM0 neuron provides a sloping leading edge

PSP and gives efficiencies several factors better than the
DSRM0 implementation. This makes it an excellent choice
for a large scale system where the behavior of two stage
neurons is desired.

If one were to choose a one stage neuron, then the LLIF
neuron is twice as efficient as the SLIF, and does not appear
to have any significant computational disadvantages. So, for
sheer efficiency, the LLIF neuron is the winner. Moreover,
from a functional perspective, multiple LLIF neurons can be
interconnected to give more complex spike timing relation-
ships, but efficiency becomes worse [7].

The selection of a two stage neuron also adds fuel to the
analog vs. digital debate. Using a two stage neuron will on-
ly widen the efficiency gap highlighted by Joubert et al.
[23]. However, as has already been pointed out, one should
consider the efficiency of the entire system, including the
passing of spikes through a large interconnection structure,
before making any final decisions regarding efficiency.

Finally, an assumption underpinning all research into
hardware neuron implementations is that individual neurons
will form the basic building blocks for future large scale sys-
tems. It may turn out that once the paradigm is better under-
stood, a higher level of abstraction, say the cortical column,
may be a better basis (see [11] for example), and individual
neurons do not have to be modeled. If this is the case, then
the functionality / efficiency tradeoffs shift significantly.

10. Acknowledgements
I thank Mikko Lipasti, Atif Hashmi, and Andy Nere for
providing the impetus for pursuing this line of research. I
am also very grateful to Doug Burger and Olivier Temam
for guidance during the revision process. I very much appre-
ciate the helpful comments from the anonymous reviewers,
and I acknowledge one of the reviewers for recommending
the inclusion of background noise in Section 4.

REFERENCES
[1] Ananthanarayanan, R., S. K. Esser, H. D. Simon, and D. S. Modha,

“The Cat is Out of the Bag: Cortical Simulations with 109 Neurons,
1013 Synapses”, IEEE Conference on High Performance Computing
Networking, Storage and Analysis, pp. 1-12, 2009.

[2] Arthur, J. V., P. A. Merolla, F. Akopyan, R. Alvarez, A. Cassidy, S.
Chandra, S. Esser, N. Imamy, W. Risk, D. Rubin, R. Manohary, and
D. Modha, “Building Block of a Programmable Neuromorphic Sub-
strate: A Digital Neurosynaptic Core”, 2012 International Joint Con-
ference on Neural Networks, pp. 1-8, 2012.

[3] Barbour, B., N. Brunel, V. Hakim, and J.-P. Nadal, “What Can We
Learn from Synaptic Weight Distributions”, TRENDS in Neurosci-
ences, 30, no. 12, pp. 622-629, 2007.

[4] Bohte, S. M., “The Evidence for Neural Information Processing with
Precise Spike-times: A Survey”, Natural Computing, 3, no. 2, pp.
195-206, 2004.

[5] Brette, R., and W. Gerstner, “Adaptive Exponential Integrate-and-
Fire Model as an Effective Description of Neuronal Activity,” Journal
of Neurophysiology, 94.5, pp. 3637-3642, 2005.

[6] Brunel, N., “Persistent Activity and the Single-Cell Frequency-
Current Curve in a Cortical Network Model”, Network: Computation
in Neural Systems, 11, no. 4 pp. 261-280, 2000.

239

[7] Cassidy, A. S., P. Merolla, J. V. Arthur, S. K. Esser, B. Jackson, R.
Alvarez-Icaza, P. Datta, J. Sawaday, T. M. Wong, V. Feldman, A.
Amir, D. B.-D. Rubinx, F. Akopyan, E. McQuinn, W. P. Risk, and
D. S. Modha, “Cognitive Computing Building Block: A Versatile and
Efficient Digital Neuron Model for Neurosynaptic Cores”, Interna-
tional Joint Conference on Neural Networks, 2013.

[8] Deiss, S. R., R. J. Douglas, and A. M. Whatley, “A Pulse-Coded
Communications Infrastructure for Neuromorphic Systems”, Pulsed
Neural Networks, pp. 157-178, 1999.

[9] Emery, R., A. Yakovlev, and G. Chester, “Connection-Centric Net-
work for Spiking Neural Networks”, 3rd ACM/IEEE International
Symposium on Networks-on-Chip, pp. 144-152, 2009.

[10] Fidjeland, A. K., E. B. Roesch, M. P. Shanahan, W. Luk, “Nemo: A
Platform For Neural Modelling of Spiking Neurons Using GPUs,”
Application-specific Systems, Architectures and Processors, 2009.

[11] George, D., and J. Hawkins, “Towards A Mathematical Theory Of
Cortical Micro-Circuits”, PLoS Computational Biology 5.10, 2009.

[12] Gerstner, W., H. Sprekeler, and G. Deco, “Theory and Simulation in
Neuroscience”, Science 338.6103, pp. 60-65, 2012.

[13] Gerstner, W., and W. M. Kistler, Spiking Neuron Models: Single
Neurons, Populations, Plasticity, Cambridge University Press, 2002.

[14] Giacomo I., B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R.
Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Häfliger,
Sylvie Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna,
F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon,
Y.Wang and K. Boahen, “Neuromorphic Silicon Neuron Circuits”,
Frontiers in Neuroscience 5, 2011.

[15] Hawkins, J., S. Ahmad, and D. Dubinsky, “Hierarchical Temporal
Memory Including HTM Cortical Learning Algorithms”, Technical
Report, Numenta, Inc, Palto Alto, 2010.

[16] Hellmich, H. H., M. Geike, P. Griep, P. Mahr, M. Rafanelli, and H.
Klar, “Emulation Engine for Spiking Neurons and Adaptive Synaptic
Weights”, IEEE International Joint Conference on Neural Networks,
pp. 3261-3266, 2005.

[17] Hodgkin, A., and A. Huxley, “A Quantitative Description of Mem-
brane Current and Its Application to Conduction and Excitation in
Nerve”, The Journal of Physiology, 117.4, pp. 500-544, 1952.

[18] Izhikevich, E. M., and G. M. Edelman, “Large-Scale Model Of
Mammalian Thalamocortical Systems”, Proceedings of The National
Academy Of Science, 105.9, pp. 3593-3598, 2008.

[19] Izhikevich, E. M , “Simple Model of Spiking Neurons”, IEEE Trans-
actions on Neural Networks, 14.6, pp. 1569-1572, 2003.

[20] Izhikevich, E. M., J. Gally, and G. Edelman, “Spike-Timing Dynam-
ics of Neuronal Groups”, Cerebral Cortex, 14.8, pp. 933-944, 2004.

[21] Izhikevich, E. M., “Polychronization: Computation with Spikes”,
Neural Computation, 18.2, pp. 245-282, 2006.

[22] Jolivet, R., R. Kobayashi, A. Rauch, R. Naud, S. Shinomoto, W.
Gerstner, “A Benchmark Test for a Quantitative Assessment of Sim-
ple Neuron Models”, Journal of Neuroscience Methods, 169, pp.
417-424, 2008.

[23] Joubert, A., B. Belhadj, O. Temam, and R. Héliot, “Hardware Spik-
ing Neurons Design: Analog or Digital?”, International Joint Con-
ference on Neural Networks, pp. 1-5, 2012.

[24] Kim, K.-H., S. Gaba, D. Wheeler, J. M. Cruz-Albrecht, T. Hussain,
N. Srinivasa, and W. Lu, “A Functional Hybrid Memristor Crossbar-
Array/CMOS System for Data Storage and Neuromorphic Applica-
tions”, NanoLletters 12.1, pp. 389-395, 2011.

[25] Kistler, W. M., W. Gerstner, and J. L. van Hemmen, “Reduction Of
The Hodgkin-Huxley Equations to a Single-Variable Threshold Mod-
el”, Neural Computation 9.5, pp. 1015-1045, 1997.

[26] Lippmann, R., “An Introduction to Computing with Neural Nets”,
ASSP Magazine, IEEE 4.2, pp. 4-22, 1987.

[27] Maass, W., “Networks of Spiking Neurons: The Third Generation of
Neural Network Models,” Neural Networks 10.9, pp.1659-1671,
1997.

[28] Maass, W. "Computing with Spikes." Special Issue on Foundations
of Information Processing of TELEMATIK 8.1 pp. 32-36, 2002.

[29] Mainen, Z. F., and T. J. Sejnowski, “Reliability of Spike Timing in
Neocortical Neurons”, Science 268, pp. 1503-1506, 1995.

[30] Markram, H., “The Blue Brain Project”, Nature Reviews Neurosci-
ence, 7, no. 2 pp. 153-160, 2006.

[31] Nageswaran, J., N. Dutt, J. L. Krichmar, A. Nicolau, A. Veidenbaum,
“Efficient Simulation of Large-Scale Spiking Neural Networks Using
CUDA Graphics Processors”, International Joint Conference on
Neural Networks, 2009.

[32] National Academy of Engineering, “Reverse-Engineer the Brain”,
http://www.engineeringchallenges.org/cms/8996/9109.aspx, 2012.

[33] Nere, A., A. Hashmi, M. H. Lipasti, and G. Tononi, “Bridging the
Semantic Gap: Emulating Biological Neuronal Behaviors with Sim-
ple Digital Neurons”, HPCA, pp. 472-483. 2013.

[34] Paugam-Moisy, H. and S. M. Bohte, “Computing with Spiking Neu-
ron Networks,” Handbook of Natural Computing, Springer, 2009.

[35] Pospischil, M., Z. Piwkowska, T. Bal, A. Destexhe , “Comparison of
Different Neuron Models to Conductance-Based Post-Stimulus Time
Histograms Obtained in Cortical Pyramidal Cells Using Dynamic-
Clamp in Vitro”, Biological cybernetics 105.2 , pp.167-180, 2011.

[36] Rast, A. D., M. Khan, X. Jin, L. A. Plana, and S. B. Furber, “A Uni-
versal Abstract-Time Platform for Real-Time Neural Networks”, The
Relevance of the Time Domain to Neural Network Models. Springer
US, 12, pp.135-157, 2012.

[37] Rauch, A., G. La Camera, H. R. Luscher, W. Senn, and S. Fusi, “Ne-
ocortical Pyramidal Cells Respond as Integrate-And-Fire Neurons to
in Vivo-Like Input Currents,” Journal of neurophysiology 90, no. 3
pp. 1598-1612, 2003.

[38] Schemmel, Johannes, D. Bruderle, A. Grubl, M. Hock, K. Meier, and
S. Millner, “A Wafer-Scale Neuromorphic Hardware System for
Large-Scale Neural Modeling”, International Symposium on Circuits
and Systems, pp. 1947-1950, 2010.

[39] Seo, J.-S., B. Brezzo, Y. Liu, B. D. Parker, S. K. Esser, R. K.
Montoye, B. Rajendran. J. A. Tierno, L. Chang, D. S. Modha, and D.
J. Friedman, “A 45nm CMOS Neuromorphic Chip with a Scalable
Architecture for Learning in Networks of Spiking Neurons”, Custom
Integrated Circuits Conference, pp. 1-4, 2011.

[40] Song, S., P. J. Sjöström, M. Reigl, S. Nelson, and D. B. Chklovskii,
“Highly Nonrandom Features of Synaptic Connectivity in Local Cor-
tical Circuits”, PLoS Biology, 3(3), 2005.

[41] Stein, R. B. “A Theoretical Analysis Of Neuronal Variability”, Bio-
physical Journal, 5.2, pp. 173-194, 1965.

[42] Thorpe, Simon J., and M. Imbert. “Biological Constraints on Connec-
tionist Modelling”, Connectionism in perspective pp. 63-92, 1989.

[43] Upegui, A., C. A. Peña-Reyes, and E. Sanchez, “An FPGA Platform
For On-Line Topology Exploration of Spiking Neural Networks”,
Microprocessors and Microsystems, 29.5, pp. 211-223, 2005.

[44] Vogels, T. P., H. Sprekeler, F. Zenke, C. Clopath, and W.Gerstner,
“Inhibitory Plasticity Balances Excitation and Inhibition in Sensory
Pathways and Memory Networks”, Science 334.6062, pp.1569-1573,
2011

[45] Vogels, T. P., and L. F. Abbott, “Signal Propagation and Logic Gat-
ing in Networks of Integrate-and-Fire Neurons,” The Journal of Neu-
roscience 25.46 pp. 10786-10795, 2005.

240

