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Abstract 
Digital neurons are implemented with the goal of sup-

porting research and development of architectures which 
implement the computational paradigm of the neocortex.   

Four spiking digital neurons are implemented at the 
register transfer level in a manner that permits side-by-side 
comparisons.  Two of the neurons contain two stages of ex-
ponential decay, one for synapse conductances and one for 
membrane potential. The other two neurons contain only 
one stage of exponential decay for membrane potential. 

The two stage neurons respond to an input spike with a 
change in membrane potential that has a non-infinite lead-
ing edge slope; the one stage neurons exhibit a change in 
membrane potential with an abrupt, infinite leading edge 
slope.  This leads  to a behavioral difference when a number 
of input spikes occur in very close time proximity. However, 
the one stage neurons are as much as a factor of ten more 
energy efficient than the two stage neurons, as measured by 
the number of dynamic add-equivalent operations.   

A new two stage neuron is proposed. This neuron reduc-
es the number of decay components and implements decays 
in both stages via piece-wise linear approximation.  Togeth-
er, these simplifications yield two stage neuron behavior 
with energy efficiency that is only about a factor of two 
worse than the simplest one stage neuron.  

1. Introduction 
Computer architects and designers have begun the challeng-
ing task of constructing large scale computing systems target-
ed at emulating the operation of the mammalian neocortex.   
Simply put, the neocortex is the sensing, thinking, perceiving 
part of the brain.  The discovery of its computational para-
digm, along with the subsequent development of efficient sys-
tems that can emulate it, will be a truly revolutionary 
achievement in automated computation [32].  

The motivation for architecture research on neuron-
based computing devices is two-fold. 1) Currently, there is a 
need to support large scale experimentation in order to help 
discover the brain’s computational paradigm [12].  2) Even-
tually, as the paradigm is revealed, there will be demand for 
practical implementations of an entirely new type of com-
puter – provided that the neuron level of abstraction is found 
to provide a good basis for efficient implementations. 

Architectural approaches for constructing a silicon brain 
range from massive interconnections of conventional pro-
cessors to ASICs and custom logic arrays. As with conven-

tional von Neumann computing, these approaches balance 
the tradeoffs among generality, speed, and efficiency.  In 
this work, the focus is toward the more hardware-oriented 
FPGA/ASIC/custom end of the architecture spectrum, where 
simplicity and efficiency are key.    

We consider register transfer level (RTL) designs of 
spiking neurons.  Two stage designs incorporate decay for 
both synaptic conductance and membrane potential (Section 
2 provides an overview of neuron operation).  Simpler one 
stage designs include only decay of membrane potential.  
Consequently the commonly used one stage designs are 
about an order of magnitude more energy efficient than the 
two stage designs. 

However, there is a behavioral difference between the 
two stage and one stage designs that manifests itself  in the 
relationship between input spikes appearing closely together 
in time and the resulting output spike latency.  Depending on 
the larger system in which the neuron model is placed and 
the assumptions made by the system developer, this behav-
ioral difference may or may not be significant. 

In this paper, four existing neuron models, two with one 
stage and two with two stages, are implemented with behav-
ior and efficiency as objectives.   Using a consistent imple-
mentation style allows straightforward side-by-side compari-
sons. Through simulations both behavior and  complexity 
are studied for the four implementations.  

A new two stage digital neuron is  then proposed.  It pro-
vides timing behavior similar to the other two stage neurons, 
but is much more efficient.  Although still less efficient than 
the simplest one stage implementation, it closes the gap to 
about a factor of two. Considering that other components of 
an interconnected cortical system will also consume signifi-
cant energy, this makes the proposed two stage neuron a 
strong candidate for future large scale cortical architectures 
where two stage timing behavior is deemed important.  
1.1 Related Work 
Large scale simulations will be an important part of discover-
ing the brain’s function [12][18][20][30].  Some of this work 
is focused on biological accuracy, which, for example, will 
lead to better understanding and treatment of human maladies 
such as autism and Alzheimer’s disease. In contrast, the goal 
of the work reported here is to better understand (and eventu-
ally replicate) the brain’s computational paradigm; this means 
that the neuron models will be more abstract, and simpler, 
than the highly complex biologically accurate models.  
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Some approaches to cortical emulation use computer 
systems employing conventional processors and implement 
neuron operation purely in software. These include massive-
ly parallel computer systems[1][30], GPUs [10][31], and 
large server clusters [18].  The spiNNaker system [36] uses 
ARM processors embedded in special purpose chips em-
ploying Address Event Representation AER [8] for com-
municating spikes.  An advantage of these software-based 
systems is that they enable broad flexibility in neuron mod-
eling.  Their neuron models can be more complex with little 
effect on overall efficiency because of the instruction-level 
overheads, both in numbers of bookkeeping instructions and 
lower level instruction processing.   

In contrast, the digital neurons studied here are focused 
on hardware architectures specifically developed for neural 
implementation.  This will allow faster and much more en-
ergy efficient implementations.  Of projects of this type, the 
high profile DARPA SyNAPSE program funds two large 
scale hardware-based efforts with the eventual goal of im-
plementing 10 billion digital neurons. The IBM effort 
[2][7][39] employs one stage digital neurons.  The HP effort 
[24] is based on memristor technology.  The applications for 
the digital neurons studied in this paper are aligned with the 
DARPA SyNAPSE objectives.  Another approach targeted 
at large scale array implementation with analog neurons is 
the European FACETS project [38].    

Also in the hardware domain are a number of FPGA-
based projects where energy efficiency is a goal. For exam-
ple, the work by Emery et al. [9]  interconnects a large num-
ber of neurons via AER and uses single stage neurons simi-
lar to those studied here.   The work by Upegi et al. [43] also 
uses single stage neurons for simplicity.  The design de-
scribed by Hellmich et al. [16] goes a step further and uses 
non-leaky neurons, which leads to a very simple neuron 
model, but which also separates it from the work reported 
here (as well as all the other related work).  One thing the 
hardware-based implementations have in common is simple, 
energy efficient neurons.   

Biological neurons communicate via action potentials 
(voltage spikes).  Although spike rates were long thought to 
encode all the important information and are the basis of 
classical artificial neural network theory [26], it has become 
increasingly clear that individual spikes, and the precise rel-
ative timing of spikes,  is a critical part of the brain’s com-
putational process [28][34][42]. This is not to diminish the 
importance of rate-based neuron research; it has led to many 
useful “brain-inspired” applications.  However, the eventual 
goal is discovery and accurate emulation of a more biologi-
cally plausible computational paradigm, so in this paper, we 
consider spiking neurons, as does the above-cited work. 

There are good arguments in favor of analog neurons 
[14] [38]. These arguments primarily center on energy effi-
ciency.   However, as with conventional computation, digital 
implementations have a number of significant advantages 
over analog implementations. It is not the goal here to argue 

the merits of digital versus analog neurons, however.  Ra-
ther, the objective is to study efficient digital neuron designs 
and to balance efficiency and functionality with the eventual 
goal of practical biological scale digital architectures. 

This work uses single compartment neuron models.  
These models capture behavior primarily at the neuron 
body, and form the basis for many computational studies; 
[21] [44][45] are a few arbitrarily-chosen examples. For bio-
logical accuracy, however, more complex multi-
compartment models are required.  For example, these mod-
els include dendrite behavior and interneuron delays. The 
single compartment neurons studied here can form the basis 
for computation. Adding interneuron delays is relatively 
straightforward.  Dendritic computation can also be append-
ed to a single compartment model, as done in the Hierar-
chical Temporal Memory model [15], for example. 

Finally, the model due to Izhikevich [19] and the related 
Adaptive Exponential Model [5] lie at an interesting point in 
the efficiency versus complexity tradeoff curve. The 
Izhikevich model is an empirical model that attempts to 
characterize membrane potential in a more biologically ac-
curate way via quadratic terms.  Considering its biological 
accuracy, it is relatively simple and is used in some high per-
formance, software-based designs; in GPUs [10][31], for 
example.  However, for more hardware-based implementa-
tions, it is a step up in complexity beyond models studied 
here.  Furthermore, the model structure is based on a number 
of parameters that, for good comparisons,  must be carefully 
fit to the models of the type used here, and this fitting is 
known to be difficult [35]. Consequently, these models are 
an interesting topic for future exploration of tradeoffs, but 
they are not covered here.  
1.2 Overview 
As background, Section 2 briefly summarizes biological 
neuron behavior.   Section 3 describes four digital neuron 
models to be studied: two one stage models and two two 
stage models.  Section 4 discusses spiking neuron behavior 
and differentiates the behavior of one and two stage neuron 
models. Section 5 describes evaluation methods, the spike 
train benchmark to be used, and a metric for comparing 
spike trains.  Section 6 briefly compares the behavior of the 
neuron models by observing their output spike trains when 
benchmark input spike trains are applied. Section 7 evalu-
ates energy efficiency using an addition-equivalent operation 
count metric.  Section 8 proposes a new two stage neuron 
with the behavior characteristics of the two stage neurons 
but with significantly better efficiency. 

2. Biological Neuron Behavior 
2.1 Neuron Components 
Figure 1 illustrates general behavior of biological neurons.   
In the figure, a synapse connects a pre-synaptic neuron to a 
post-synaptic neuron.   In reality, a neuron will have thou-
sands of such synapses, connecting it to hundreds or thou-
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sands of other neurons.  However, at any given time only 
about 10% of all synapses will affect neuron function [3]. 

As noted on the pre-synaptic neuron, the neuron body is 
surrounded by a membrane and is fed by inputs, the den-
drites.  It also has an output, the axon which is connected to 
the dendrites of many other neurons via synapses.     
2.2 Dynamic Operation 
Figure 1 shows three “probes” that indicate voltage levels at 
certain points.  First, focus attention on the waveform shown 
at the axon of the pre-synaptic neuron and the waveform at 
the membrane of the post-synaptic neuron.  Consider a se-
quence of events that starts with a spike, or action potential, 
being emitted from the pre-synaptic neuron.  The spike trav-
els along the axon and reaches the synapse connecting it 
with the post-synaptic neuron.   At the synapse, it effectively 
opens a conductive gate via a relatively complex biological 
process.   The conductive gate allows ions to flow into the 
post-synaptic neuron body, thereby raising the membrane 
potential (see the Excitatory Post Synaptic Potential (EPSP), 
waveform).  Although not shown, a spike received at a syn-
apse may alternatively invoke an Inhibitatory Post Synaptic 
Potential (IPSP), which reduces the neuron’s membrane po-
tential.  “PSP” refers to either inhibitory or excitatory post 
synaptic potentials. 

A synapse has an associated “efficacy” or “weight”, 
which controls its relative conductivity.  A stronger synapse 
has higher conductivity, resulting in a PSP with higher am-
plitude.  

After the conductive synapse gate is opened, it immedi-
ately starts to close with exponential decay, so the flow of 
ions into the post-synaptic neuron gradually diminishes.  At 
the same time, ions leak from the neuron body, thereby de-
creasing the membrane potential with exponential decay, but 
with a longer time constant than the closing of conductive 
synapse gates.  This combination of exponential decays with 
different time constants gives the EPSP its distinctive shape, 
as shown in the figure. 

Finally, consider the more detailed waveform shown at 
the right side of Figure 1.   As multiple spikes are received 
at a neuron’s input synapses, each of them will invoke a PSP 
on the post-synaptic neuron.  If received relatively closely 
together in time, the PSPs will accumulate, as shown in the 
graph, raising the total membrane potential.  If the potential 
reaches a key level, the threshold voltage, then an avalanche 
effect takes place, and the neuron emits an output spike.  
Immediately following the output spike, there is a refractory 
period, during which the neuron cannot fire again.   If there 
are insufficient input spikes to raise the membrane potential 
to the threshold voltage, it will eventually decay back to the 
rest potential and no spike will be emitted. 

In the waveform at the right side of Figure 1, typical 
voltage levels are shown. The refractory time is on the order 
of a few msec.  In the illustration, only about three input 
spikes in close proximity are sufficient to raise the body po-

tential to the threshold.  In reality, the number is about an 
order of magnitude higher, but can vary over a wide range. 

Synapse

Pre-synaptic 
Neuron

Post-synaptic 
Neuron

Dendrites

AxonBody

Spike 
(Action Potential) EPSP

Dendrites

Axon

-70 mv

-55 mv

30 mv accumulation 
of PSPs

Threshold 
Voltage

Spike

time (msec)

Refractory 
Time

 
Figure 1. Neuron operation.  Two neurons are connected via a 
synapse.  Attached "probes" illustrate dynamic operation.  

2.3 Synaptic Plasticity 
Synaptic weight plasticity is a critical part of the neuronal 
learning process – the weights can change dynamically, de-
pending on spiking behavior.  In this paper, synaptic weights 
are static, although distributed over a range of values.  This 
is justifiable in two scenarios.  First, with offline training, 
the computational device is trained and the weights are es-
tablished prior to operation; during normal operation they do 
not change.  Second, even with dynamic online training and 
plastic synapses, weights are often modeled in a pseudo-
static manner, with updates occurring at a much coarser time 
scale than neuron core operation [21] [38].  For example, in 
[21], weight updates are performed once every 10,000 time 
steps (assuming .1 msec time steps as done here).  

3. Spiking Neuron Models 
Much of the work in neuron modeling, beginning with the 
earliest work, is targeted at understanding the behavior of 
biological neurons.  However, evolution under biological 
constraints suggests that some (perhaps many) aspects of bi-
ological neuron operation are extraneous with respect to the 
underlying computational paradigm.   Hence, it is important 
to recognize the divergence between biological and compu-
tational models that arise as simplifications are made in or-
der to improve computational speed and efficiency.  

Regardless of whether the objective is biological or 
computational accuracy, neuron models have a common an-
cestry. In the next subsection, the classical Hodgkin Huxley 
model is first described to establish a mathematical frame-
work. Then a series of four spiking neuron models and their 
efficient digital implementations are described.    
3.1 Hodgkin Huxley Model 
The Hodgkin Huxley (HH) Model [17] is the classic neuron 
model, for which its developers won the 1963 Nobel Prize in 
medicine.  At the top level, the HH model is based on an RC 
circuit (Figure 2) which characterizes the membrane poten-
tial.  From left to right, the RC model consists of 1) a con-
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ductance and reversal voltage (gt
I and VI) for inhibitory syn-

apses; the conductance is a function of time, as denoted by 
the t subscript, 2) a conductance and reversal voltage (gt

E 
and VE) for excitatory synapses (note the difference in polar-
ity for the two reversal voltages), 3) a membrane (leakage) 
conductance and rest voltage (gM and Vrest), and 4) a mem-
brane capacitance CM and voltage Vt.   In biologically realis-
tic models, coupled differential equations describing the var-
iable conductances are quite complex and are not given 
here. In the following, significantly simplified versions of 
the conductance equations are used. 

gt
I gt

E gM

VI VE Vrest
CM Vt

+_ +_+_

 
Figure 2. RC circuit which is the basis for the HH Model. 
A feature of the HH model is biological accuracy, e.g., it 

characterizes the entire dynamic waveform for the mem-
brane potential.  However, from a computational perspec-
tive, it appears that the spiking input-output behavior is what 
is important.  That is, all one really needs is functional in-
put/output spiking behavior that can support the neuron’s 
computational capabilities.  This leads to simpler models as 
are widely used in computational neuroscience. 
3.2 Leaky Integrate and Fire (LIF) Models 
As originally defined [41], an LIF model incorporates a 
membrane potential that decays exponentially with some 
time constant.  Over time, a number of different LIF-based 
models have been developed. What typically distinguishes 
LIF models is the modeling of synapse conductance in re-
sponse to input spikes.  The simplest LIF neurons do not di-
rectly model synapse conductances; an input spike causes a 
step change in the membrane potential. These simple LIF 
neurons are discussed in Section 3.4.   

A commonly used (and more accurate) LIF model con-
tains synaptic conductances that decay with time.   To dis-
tinguish this specific LIF model, it is referred to in this paper 
as the DLIF model, an LIF model with decaying synaptic 
conductances.  The DLIF model is based on a differential 
equation that describes membrane potential at time t, Vt. 

(1)  CM dVt/dt = -gM (Vt -Vrest) - gt
E(Vt - VE) - gt

I (Vt - VI) 

If Vt > Vth (threshold voltage), the neuron fires a spike and 
resets to the Vrest, where it remains for refractory time tref. 

If an excitatory input spike is received through synapse i at 
time t, then sti = 1; else sti = 0. Summing over all the input 
synapses i, at time t, the excitatory conductance gt

E is: 
gt

E ← gt-1
E  + ∑sti wi gE

max 

Where wi is the weight of synapse i (0 ≤ wi ≤ 1), and gE
max is 

the maximum excitatory conductance.  Similarly, for an in-
hibitory synapse:  

gt
I ← gt-1

I  + ∑sti wj gI
max

 

Meanwhile, the synaptic conductances decays satisfy the dif-
ferential equations: 

τE dgt
E/dt = -gt

E   and τI dgt
I/dt = -gt

I 

where τE  and τI are the respective time constants. 
Beginning with the mathematical description just given, 

one can derive an efficient digital implementation for com-
puting the neuron membrane potential, and, consequently, 
the spiking behavior of the DLIF neuron. 
3.2.1 Voltage Shifting and Scaling 
The first optimization for digital implementation efficiency 
shifts voltage levels so that Vrest = 0, this shifts the other 
voltage levels accordingly: 

VE ← VE - Vrest  ;    VI ← VI - Vrest 

This optimization is commonly done.  We continue on 
with additional optimizations, however.  We scale the V 
values by dividing by threshold voltage Vth.  This yields 
membrane potentials represented as fixed point fractions, so 
testing for crossing the firing threshold is reduced to detect-
ing when the membrane potential becomes 1 or greater. 
Note: to simplify notation in the remainder of the paper the 
same notation is used for both the pre- and post-shifted and 
scaled versions of voltage levels.   
3.2.2 Maintaining Membrane Potential 
Setting Vrest = 0 in equation (1) and dividing through by CM

 
yields the following. 

dVt/dt  = - gM Vt / CM - gt
E(Vt - VE) / CM – gt

I (Vt - VI) / CM 
For synchronous operation, we form a discrete time version 
with time step ∆t: 

(Vt -Vt-1)/∆t = -Vt-1(gM + gt
E + gt

I )/ CM + (VEgt
E + VI gt

I)/ CM
   

Defining membrane leakage time constant:  τm = CM/gM  and 
applying a series of straightforward algebraic operations: 
(2)      Vt = Vt-1[(1- ∆t/τm ) - (gt

E ∆t/CM + gt
I ∆t/CM)]  

    + (VE gt
E ∆t/CM

  + VI gt
I ∆t/CM

  )  
Equation (2) will be mapped directly into a digital imple-
mentation.  Next, we deal with digital synapses. 
3.2.3 Synapse Conductances 
The synapse conductances gt

E and gt
I are modeled as: 

τE dgt
E/dt = -gt

E   and τI dgt
I/dt = -gt

I 
Converting to discrete form, plus simple algebra yields:  

gt
E = gt-1

E  (1 - ∆t /τE) ;      gt
I = gt-1

I  (1 - ∆t /τI) 
Adding  the weighted synaptic inputs each clock cycle: 
(3) gt

E = gt-1
E(1-∆t /τE) +∑sti wi  gM

E;    
(4) gt

I = gt-1
I(1 - ∆t /τI) + ∑ sti wj gM

I  

3.2.4 Putting It All Together 
In equation (2), ∆t/CM

  is a constant.    We use the distribu-
tive property to push this constant back into equations (3) 
and (4) and define: Wi = wi (gM ∆t/CM

 ) .  This meta-weight 
eliminates a number of implied constant multiplications in 
(2).  It also means that the modified versions of (3) and (4) 
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produce dimensionless quantities that are voltage multipli-
ers, rather than conductances.  To avoid confusion, the “g” 
quantities are replaced with “d” quantities.  Then, we have:   

dt
E = dt-1

E (1- ∆t /τE) +∑ sti Wi     
dt

I = dt-1
I (1- ∆t /τI) +∑ stj Wj  

Vt = Vt-1 [(1 -  ∆t/τM ) - (dt
E +  dt

I)] + (VE dt
E + VI dt

I)  
The EPSP for a single input spike is illustrated in Figure 3a.  
The RTL that implements these equations is in Figure 4a.  In 
Figure 4 the numbers in braces {n} identify sources of dy-
namic operation counts to be referenced later (Section 7). 

The DLIF is a two stage model. The synapse stage (on 
the left) has latches holding the dimensionless multiplier (d) 
values, along with a multiplicative decay, followed by the 
membrane stage (on the right) with a latch level that holds 
the membrane potential and its multiplicative decay.   

a) b) c)  
Figure 3.  Excitatory Post Synaptic Potentials in response to a 
single input spike: 

a) DLIF and DSRM0 neurons 
b) SLIF neuron, 
c) LLIF neuron. 

3.3 Spike Response Models  (SRM0) 
SRM0 is the “zeroth order” version of the more general 
Spike Response Model [13][25]. In the SRM0 model indi-
vidual spike responses (Figure 3a) are assumed to be inde-
pendent and are simply summed to yield the membrane po-
tential. Besides leading to a simplification of the DLIF digi-
tal neuron, the SRM0 assumption also simplifies analysis of 
neuron computational capabilities.   

If we use the RC circuit in Figure 2 to characterize the 
response to individual spikes and make the SRM0 assump-
tion regarding independence of spike responses then, after 
several steps of derivation omitted for brevity, we arrive at a 
neuron which we call the DSRM0 neuron.  It is similar to the 
DLIF neuron except the term -(dt

E + dt
I) ∆t/CM

 in the DLIF 
neuron is not present in the DSRM0 neuron. This removed 
term reflects interactions among spike responses that affect 
the membrane potential in a relatively small way. Removing 
this term is not only a simplification by itself, but it also al-
lows the multiplications of constants VE and VI to be pushed 
back into the synapse meta-weights to yield the following. 

Wi = wi (VEgE
max ∆t/ CM

 )  and Wj = wj (VIgI
max ∆t/ CM)  

This also changes the quantities being maintained in the 
synapse stage to voltages.  Scaling voltages so that Vth = 1, 
as was done with the DLIF neuron, yields the implementa-
tion in Figure 4b. 
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d) LLIF Neuron 

Figure 4.  A complexity-ordered sequence of digital neurons.  
Refractory logic is not shown. 

3.4 LIF with Step Inputs (SLIF) Model 
For the next in the sequence of digital neuron simplifica-
tions, we begin with the neuron model defined by Stein [41].   
This model uses a simple step to model the effect an input 
spike has on the membrane potential, yielding: 

 Vt = Vt-1 (1 -  ∆t/τm ) +∑ stj vE
max

 wj  + ∑ sti vI
max wi 

Where vE
max and  vI

max  are a spike’s maximum contributions 
to membrane potential (occurring when wi = 1 or wj = 1, re-
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spectively).  As a simplification, we define meta-weights Wi 
= wi*vE

max,  Wj = wj*vI
max, in a manner similar to that used 

for the previous neurons. This is the SLIF neuron; its EPSP 
for a single input spike is in Figure 3b and the RTL imple-
mentation is in Figure 4c.  
3.5 Linear Leak Integrate and Fire (LLIF) 
The fourth neuron model to be considered is a further sim-
plification which performs linear decay of the membrane po-
tential rather than exponential decay[33][39][43].  This 
means that the decay can be performed by subtracting a con-
stant rather than multiplying by a constant.  The equation for 
membrane potential follows. 

 Vt = max(Vt-1 – VL ,0) +∑ sti vE
max

 wj  + ∑ stj vI
max wj 

VL is a constant leak value which is repeatedly subtracted 
from the membrane voltage.  This neuron is referred to as a 
Linear Leak Integrate and Fire (LLIF) neuron. Its EPSP for 
a single input spike is in Figure 3c and the RTL implementa-
tion is in Figure 4d. 

4. Neuron Behavior  
In this section, the four neuron implementations are ana-
lyzed in terms of spike-based input-output behavior. Then, 
in subsequent sections, their spike response behaviors and 
relative computational efficiencies are compared. 

The motivation for using spiking neurons is that precise 
timing relationships are often critical for the brain’s compu-
tational paradigm. This is articulated in papers [4][29][42] 
summarizing experimental data that strongly suggests that 
timing of individual spikes (rather than rates alone) are es-
sential for some of the low latency computations that a 
mammalian brain performs.  Maass [28] provides strong 
theoretical arguments for spike-based computation, as op-
posed to rate-based computation.    

Maass  also identified the leading edge slope of a PSP as 
a potentially significant computational feature for individual 
neurons [27].    Qualitatively, the key difference between the 
one and two stage neurons is that the PSP leading edge of 
the one stage neurons has an infinite slope and the PSP of 
the two stage neurons has a non-infinite leading edge slope 
(refer to Figure 4).  This difference leads to different input-
output transfer characteristics.  This is illustrated via an ex-
ample in Figure 5. 

The leading edge slope affects input-output behavior 
when a number of spikes occur closely in time so that their 
leading edge slopes overlap.  Informally, we will say that a 
neuron’s input spike intensity is greater if there are more in-
put spikes appearing closer together in time.  Figure 5a left 
shows membrane potential for the DSRM0 neuron where a 
number of spikes (ranging from one to six) occur simultane-
ously; this case, chosen for purposes of illustration, exhibits 
maximum leading edge overlap. The response to fewer 
spikes takes longer to reach the threshold Vth than the re-
sponse to more spikes.  Figure 5a right shows the resulting 
relationship between the input intensity (number of simulta-

neous spikes) and the output spike latency. Although it does 
not satisfy the SRM0 assumption of PSP independence, the 
response for the DLIF neuron is very similar. 

In contrast, Figure 5b left shows the spike response and 
latency vs. intensity relationships for the SLIF neuron.  In 
this case, the latency is the same regardless of the intensity, 
as long as the intensity is sufficient to reach the threshold. 
Although it does not fit satisfy the SRM0 assumption of PSP 
independence, the response for the LLIF neuron is similar. 
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Figure 5. Behavior of neuron models as the number of simulta-
neous input spikes (intensity) is increased. 

Some modelers prefer to construct systems that include 
background “noise” which is added to a neuron model’s be-
havior [6][37].  Consequently, a set of simulations were per-
formed where Gaussian noise was added to the membrane 
potentials at each time step.  The sigma value for Gaussian 
noise was chosen so that with no input spike stimulus, the 
spontaneous output spike rate was about 5 Hz.  Then, the 
number of simultaneous input spikes was varied, and the la-
tency to the output spike was measured. Results were aver-
aged over 500 trials.  The results as latency vs. intensity are 
in Figure 6.    

The x-axis shows spike intensity and the y-axis shows 
the average latency.  Because of the presence of noise, when 
intensity is relatively low, some trials result in no output 
spike; this is indicated by dotted lines in the curves for the 
cases where fewer than 50% of the trials result in a spike.  
With added noise, the profile of the SLIF neuron now has 
the same general shape of the DSRM0 profile.  However, 
the DSRM0 behavior remains distinguishable from the be-
havior of the SLIF neuron.   First, at the end of the curve 
with high intensity, the response of the SLIF neuron is 
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somewhat flatter than the response of the DSRM0 neuron; 
which is qualitatively similar to the noise-free case, but less 
extreme.  At lower intensity,  the SLIF neuron shows an up-
ward curve, but a higher fraction of the responses show no 
output spike.  Hence, there remains a behavioral difference 
between the one stage and two stage neurons in the presence 
of  added background noise, although the difference is 
smaller than the noise-free case, and overall shapes of the 
curves are now more similar. 

 
Figure 6. Average latency vs. spike intensity (# simultaneous 
spikes) for SLIF neuron (lower curve) and DSRM0 neuron 
(upper curve).  Dotted lines indicate cases where fewer than 
50% of trials resulted in an output spike. 

A final, somewhat related, point is that using a one stage 
neuron with its step input can simplify event driven model-
ing. When a spike arrives at a one stage neuron’s input, it 
can immediately be determined if and when the neuron will 
generate an output spike.  Hence, a spike event can be 
placed immediately in event queue (s) without the need for 
later adjustments to the queue(s).  In this paper, however, we 
do not consider event driven simulation, rather we assume 
clock cycle simulation.  

5. Evaluation Methods 
The four digital neurons just described differ with respect to 
spiking behavior and energy efficiency.  In this section, 
methods for evaluating both spiking behavior and efficiency 
are described. 
5.1 Simulator 
Evaluations are simulation-based.  Neuron simulation mod-
els were coded using GNU Octave (a Matlab clone).  The 
models take multiple spike trains as inputs and generate a 
single output spike train.  As a byproduct, simulation models 
maintain important internal neuron values. For example, the 
membrane potential is common to all the neuron models.   
5.2 Spike Train Benchmark 
The simulation models are configured to have 100 synapses 
each, with a ratio of 80% excitatory and 20% inhibitory (a 
typical ratio found in a real cortex region).   

The benchmark consists of correlated, randomly distrib-
uted input spike trains as per Vogels et al. [44].   The meth-
od first generates a “white noise” signal:  random numbers 
between -.5 and .5.  Then, this random sequence is filtered 
and normalized to -1, 1.  Next, the signal is rectified and re-
normalized to .1.  Finally 5*∆t (.5 msec) is added to assure a 
background firing rate of 5 HZ.   This waveform is used for 
generating all 100 input spike trains.  For each spike train, at 
each time step, a random number between 0 and 1 is gener-
ated.  If the random number is less than the waveform value 
then a spike is generated; else there is no spike.  The raster 
diagram for all 100 spike trains is shown in Figure 7a.  

For benchmark runs, synapse weights were set according 
to a lognormal distribution [40].  The mean for excitatory 
synapses is .55, and for inhibitory synapses it is .24.  These 
weights, coupled with the 80/20 distribution of excitation 
and inhibition, yield output spike trains containing about 70 
spikes for the 20,000 time step (2 seconds) simulations.  
Figure 7b shows the membrane potential for the DLIF neu-
ron; the threshold is normalized to one, and the places spikes 
occur is evident.  

Note that the above normalization value of .1 was chosen 
to produce an overall spike rate of about 35 Hz, a value in 
the normal active range.  If a more realistic number of syn-
aptic inputs were modeled, say one thousand, then the nor-
malization value would be reduced to produce roughly the 
same number of output spikes.  Consequently, the overall 
synaptic activity reported here (Section 7) would be essen-
tially unchanged for the larger number of synapses.  

 
a) 

 

 
b) 

Figure 7. a) Raster diagram of benchmark input spike trains.  
Trains 1-79 are excitatory, and trains 80-100 are inhibitory. b) 
Resulting membrane potential for DLIF neuron. 

5.3 Comparing Spike Trains 
For comparing output spike trains, the coincidence measure 
defined by Gerstner’s group is used [22][25].    

      Γ = (Ncoinc − 〈Ncoinc 〉 ) * .5 (Ndata + Nmodel) * (1/N) 
Where Ndata is the number of spikes in the reference spike 
train (DLIF will be the reference),  Nmodel is the number of 
spikes in the spike train to be compared with the reference,  
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and Ncoinc
  is the number of coincidences between the spike 

trains with precision δ.  〈Ncoinc 〉 = 2fδ Ndata  is the number of 
coincidences that would occur for spikes generated by a ho-
mogeneous Poisson process with the same rate as the model 
spike train.  The last factor, 1/N, normalizes Γ to a maxi-
mum of one (N = 1 - 2fδ).  Γ = 1 only if both spike trains are 
entirely coincident (within time δ). δ = 2 msec as in [22]. 
Because the refractory time, tref  = 5 msec, “coincidence” is 
unambiguous. If the number of coincidences is the same as if 
the model were a homogeneous Poisson process with the 
same number of spikes (i.e. random chance), then Γ= 0.  
Note that  Γ can be negative, i.e., the coincidence can be 
worse than random chance would predict.     
5.4 Model Calibration 
An important consideration when comparing neuron models 
is that structural differences in the models lead to different 
sets of model parameters.  Consequently, one would like to 
establish model parameters so that input/output behavior 
among models is as similar as possible, thereby enabling 
more meaningful efficiency and functionality comparisons.  

To establish parameters across the models, the most 
complex neuron, DLIF, is used as a reference.  Then, given 
the reference and its parameters, the parameters of the other 
neurons chosen by maximizing their Γ metric.  

Parameters for the DLIF neuron are in Table 1.   These 
numbers are within the ranges of real neurons, keeping in 
mind that in real neurons the parameter ranges are fairly 
wide.  The table shows the original parameter value, and the 
value used in the simulation model after it has been shifted 
and/or scaled to make the implementation more efficient 
(see Section 3.2.1). 
 

Table 1. Simulated DLIF Neuron Parameters 
DLIF  
Parameter  

Value 
original  

Value 
shifted/scaled 

gE  .14 nS .014 nS  (scaled) 
gI  .35 nS .035 nS  (scaled) 
gM  10 nS 1 nS    (scaled) 
Vrest

  -60 mV 0  mV (shifted &scaled) 
Vth

  -50 mV 1 mV  (shifted & scaled) 
VE   0 mV 6 mV  (shifted & scaled) 
VI  -80 mV -2mV (shifted & scaled) 
tref 5 msec 5 msec 
τ M  20 msec 20 msec 
τ E  5 msec 5 msec 
τ I  10 msec 10 msec  

The fitting process for the other neurons is straightforward. 
Parameters for the other neurons are fit as follows. 
1) DSRM0: the time constants are adjusted, but are kept in 

the same ratio as in the DLIF neuron.  All the other pa-
rameters are the same as in the DLIF neuron.   

2) SLIF: The DLIF parameters are used to determine the 
maximum EPSP and IPSP values that can be achieved.  
Then, these values are multiplied by a fitted scaling pa-

rameter to determine the step change in membrane po-
tential. The membrane decay time constant is the se-
cond fitted parameter. 

3) LLIF:  The step increase in membrane potential is mod-
eled as in the SLIF neuron.  The linear decrement value 
VL is an additional fitted parameter.  

Also, the one stage neurons have an inherently lower latency 
than the two stage neurons because their membrane potential 
changes instantaneously in response to an input spike.  This 
causes a systematic time shift in the neurons’ output spikes. 
Consequently, to get the best fit, it is necessary to time shift 
(delay) the output spike trains of the one stage neurons.  Pa-
rameters for the neurons, including the time shifts, are given 
in Table 2.  Also given are the corresponding Γ values.   
  

Table 2. Parameters Fit to DLIF Neuron 
DSRM0 Fitted Parameters Γ = 1.0 
τ M  17.675 msec 
τ E  4.15 msec 
τ I  8.3   msec 
SLIF  Fitted Parameters Γ = .87 
vE

max .19 mV 
vI

max -.3mV 
τ M 12.5 msec 
time shift +1.5msec 
LLIF Fitted Parameters Γ = .80 
vE

max .21 mV 
vI

max -.33 mV 
VL .06 mV 
time shift +1.2 msec 

6. Behavior Comparison 
The Γ measure, as given in Table 2, provides one way of 
comparing output spike similarity.  The DSRM0 neuron 
yields maximum similarity to the DLIF reference neuron, Γ 
= 1.0.  Scaling the time constants for both the synaptic and 
membrane decays in the DSRM0 neuron can largely com-
pensate for the structural simplification with respect to the 
DLIF neuron. 

The one stage neurons have less similarity with the DLIF 
reference neuron, but their Γ values of .80 and .87 are still 
relatively close (as compared with results in [22], for exam-
ple), and, to be fair, this measure by itself is not especially 
significant. Real neurons of the same type typically deviate 
from each other more than the one stage neurons deviate 
from the DLIF neuron.   

To illustrate the effect of the PSP leading edge slope dis-
cussed in Section 4, the benchmark spike trains were ex-
cerpted and used in the following way.  First, a region of 
high spiking activity was identified – between time steps 
16500 and 16650.  Then, in that region the neurons were 
simulated for a series of runs, where the number of excitato-
ry spike trains was incrementally increased from 40 to 80, 
while all 20 inhibitory spike trains were active. Hence, each 
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run incrementally increased the overlapping spike responses, 
but with some randomness in the actual spike patterns.  

The results are in Figure 8 for three neurons: DLIF, 
LLIF, and PSRM0 (see Section 8).  To reduce clutter, the 
other two neurons are not shown, but DSRM0 is similar to 
DLIF, and SLIF is similar to LLIF, as would be expected. 

The behavior difference due to the  PSP leading edge 
slope is apparent, but is more subtle than in the explicitly 
constructed example in Figure 5.   Each set of data points 
essentially plots the relative latency as a function of the 
number of input spike trains.  The two stage DLIF neuron 
shows a greater ability to resolve differences in intensity 
than LLIF, a one stage neuron. Quantitatively, the DLIF 
neuron resolves the input intensities to output spikes at 31 
different time steps, while the LLIF neuron has output spikes 
at 20 different time steps. One small region where the differ-
ence is clear is enclosed in an ellipse. This region shows be-
havior very much like the behavior predicted in Figure 5. 

LLIF
PSRM0
DLIF

DLIF & PSRM0

 
Figure 8. Latency (time to first spike) vs. spike intensity (num-
ber of active input excitatory spike trains). 

7. Efficiency 
A digital neuron with high energy efficiency is of critical 
importance when constructing a large scale system.   The 
primary operations in the RTL implementations are addition 
and multiplication, so we use a simple efficiency metric 
which counts the number of addition-equivalent operations. 
7.1 Reducing Multiplications to Additions 
Multiplications are converted to addition-equivalents, and, 
in the process, the implementations are made more efficient 
via multiplier recoding.  The multiplications in the DLIF and 
DSRM0 neurons have constant operands (e.g., the decay 
values).  These constants are not very precise in the first 
place (they are biologically based), and, with multiplier re-
coding, they can be approximated with a relatively small 
number of bits, thereby reducing each multiplication to a 
small number of additions (e.g., two or three). 

For example,   from Table 2, for the DSRM0 neuron, τM 
=.017675, and ∆t = .1 msec, so the decay multiplier is 1-
∆t/τM = 0.994342291.   This is approximately 0.994628906 

= 1- .00000001011 in binary.  Implementing the multiplica-
tion is three additions (and/or subtractions) of four operands, 
all shifted versions of the scaled membrane potential.  

If one performs truncation and recoding on a decay val-
ue, the reduction of  implied multiplications to numbers of 
additions is shown in Figure 9.  Each symbol in the figure 
corresponds to a decay value (on the x-axis), and the row the 
symbol appears in (y-axis) is the number additions required 
to achieve a multiplication by the given decay value. 

 
Figure 9. Decay multiplications reduced to additions. 

In row 1, the values correspond to the subtraction of a 
single shifted version of the membrane potential from itself.  
I.e. the top value in the first column is 1-2-11  (all fractions 
were truncated to 11 bits).   This set of decay values formed 
with only one addition appears overly coarse.  The set for 
two additions will often be sufficient (row 2), but there are 
still some significant gaps.  With three additions (row 3), it 
appears likely that all the practical decay values can be ap-
proximated with sufficient precision. For example, if we re-
duce the decay multiplications in the DSRM0 neuron to 
three addition-equivalents each and compare output spike 
trains for the benchmark with the full precision constants 
given in Table 2, the similarity metric Γ= 1.0. 
7.2 Results 
After  decay multiplications are replaced by three additions, 
add-equivalent dynamic operation counts for the benchmark 
are shown in Figure 10. The neuron in the rightmost column 
will be discussed in Section 8. It is assumed that a zero op-
erand causes the corresponding addition to be gated off and 
is not included in the count.  Note that for the DLIF neuron, 
one can also convert the multiplications by constant VE and 
VI to three additions.  Operation counts are annotated with 
the braced numbers in the Figure 4 schematics.    
{1} Synapse Adds – The two stage neurons perform more 
operations in adding synapse weights due to the additional 
operands into the synapse adders in their first stage.  

{2} Synapse Decays – These are performed only by the two 
stage neurons, and this is where more operations are per-
formed than in any other part of the implementations. 

{3}, {4} Compute Potential Changes and Compute Decay 
Value – The DLIF neuron performs these two operations 
which model interaction among spike responses (see Section 
3.3). The two multiplications by the reversal voltages con-
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sume a large number of operations, yet, as observed earlier, 
they have relatively little effect on spiking behavior.  

{5} Sum Membrane Inputs – Both the DLIF and DSRM0 
neurons must sum data from stage one before passing it to 
stage two.  This is not done in the one stage neurons.   
{6} Membrane Decay – All except the LLIF neuron use a 
multiplicative decay (three add-equivalents) while the LLIF 
neuron performs a single subtraction of the linear leak value.   
Furthermore, the LLIF membrane potential is zero more of-
ten, so the decay operation is gated off more often. Hence, 
the LLIF neuron performs about a quarter the membrane de-
cay operations as the two stage neurons. 

 
Figure 10.  Dynamic operation counts for the benchmark spike 
trains. Numbers in braces identify components in Figure 4 and 
Figure 11 RTL.  

To summarize briefly: the LLIF neuron requires fewer 
than a tenth the operations of the DLIF neuron.   The 
DSRM0 neuron requires fewer operations than the DLIF, 
but it still requires almost eight times as many operations as 
the LLIF neuron. Meanwhile, the SLIF neuron requires 
about twice the number of operations as the LLIF neuron. 

With regard to the above analysis, there is an important 
caveat: these efficiency numbers are just for the neuron and 
synapses.  The energy required to distribute output spikes 
throughout a large network of neurons will be significant 
compared with the core neuron energy.  

8. An Efficient Two Stage Neuron 
Depending on the overall design objectives and assump-
tions, a designer may want a two stage neuron for computa-
tional reasons (Section 4), yet, as just shown, there is a very 
large gap between the one and two stage neurons when it 
comes to efficiency.  In this section, two ways of reducing 
efficiency of a two stage neuron are proposed and evaluated.  
When both features are used in combination, the result is a 
new, highly efficient two stage neuron.   

8.1 Combined Synaptic Decay 
The DSRM0 neuron is the starting point. Because the largest 
single contributor to the DSRM0’s total operation count is 
synapse decays, it is the first target for simplification.  Then 
in the next subsection, both synapse and membrane decay 
operations are simplified.   

Excitatory and inhibitory conductances decay with dif-
ferent time constants.   Roughly half the synaptic decay op-
erations can be eliminated if they both decay with the same 
time constant.  So, one can use τE for both and compensate 
for the decrease in τI by adjusting (increasing) the inhibitory 
synapse weights.   Through simulations, it was determined 
that the conductances can be combined with little change in 
input/output behavior if the inhibitory weights are increased 
by a factor of 1.90, which makes intuitive sense because the 
inhibitory time constant is decreased by a factor of 2.0.   
When this optimization is implemented in the DSRM0 neu-
ron, it cuts the operations for synapse decays and updating 
membrane potential roughly in half (Figure 10 {2} and {5}).  
8.2 Piecewise Linear Approximation of  Decay 
In Section 7.1, the decay multiplication was reduced to three 
(or fewer) additions.  In this section, we go further and re-
duce the decay operation to a single subtraction.   Rather 
than subtracting a single leak value throughout the range of 
membrane potentials as with the LLIF neuron, we use a se-
ries of leak values that form a piecewise linear approxima-
tion to exponential decay.  

If the decay time constant is τ, then the half-life is τln2.  
In discrete terms, decaying the scaled membrane potential 
from 2-n to 2 –n-1 will take τln2/∆t time intervals.  Therefore, 
within the range of  2-n to 2 –n-1  one can use constant decre-
ment amount 2–n-1  *∆t /τln2.   For example, to decay the 
membrane potential with τM = 20 msec, ∆t = .1 msec, the 
membrane decay operand is DM = .00347. So, for membrane 
potentials 2-n > Vt ≥ 2 –n-1, the decrement value is 2–n-1  * 
.00347.  At each time step, the implementation produces the 
decay decrement value as a binary shift of the constant DM.  
The implementation logic determines the position of the 
leading one in the value being decayed (e.g., the membrane 
potential Vt).   If the weight of this bit position is 2–n-1 , then  
the decrement value is DM shifted right by  n-1 bit positions.   

In a two stage neuron, one can apply this piecewise line-
ar approximation in both stages: the synapse decay logic and 
the membrane decay logic.  
8.3 Two Stage Neuron with Piece-wise Linear Decay 
If  the simplifications in the two preceding subsections are 
combined, the result is a neuron with piecewise-linear decay 
(denoted PSRM0); see Figure 11. This is a two stage neuron 
that has the latency vs. intensity relationship as in Figure 5a. 

After parameter fitting the decay constants and compar-
ing the output spike trains with the DLIF neuron, its Γ met-
ric is .82 for the spike train benchmark; in the same ballpark 
as the LLIF and SLIF neurons.  Its functional behavior is 
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very similar to the DLIF neuron (Figure 8).  Finally, Figure 
10 shows that the PSRM0 neuron requires slightly more than 
a factor of 2 more add-equivalent operations than the LLIF 
neuron.  So, we get functional  characteristics of a two stage 
neuron, with efficiency that is much closer to that of the 
LLIF neuron than the other two stage neurons. 
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Figure 11. PSRM0 neuron with combined synapses and  piece-
wise linear decay. 

Finally, note that logic for the shift operations is not 
counted in operation estimates; it will require more detailed 
design to get a better energy estimate.   However, the shift 
constants are at least quasi-static, because the shift value is 
unchanged as decaying values pass through a given range. 

9. Conclusions 
The focus in this paper has been on digital neurons to sup-
port architectures for discovery and future implementation 
of the brain’s computational paradigm. So, conclusions are 
drawn from that perspective. 

Two stage neurons provide a PSP with a sloping leading 
edge, while the one stage neurons with their single step in-
puts to membrane potential do not.  This leads to a behav-
ioral difference which may or may not be important depend-
ing on the system in which the neuron model is placed and 
the assumptions made by the designer. On the other hand 
one stage neurons are much more energy efficient and may 
have advantages in event-driven system implementations.  
Furthermore, if background noise is added and spiking be-
havior is averaged over a number of trials, the behavioral 
differences are less than in the noise-free case. 

Given that the brain’s computing paradigm is not yet 
known, a computer architect/researcher  must make an im-
portant decision:  either the PSP leading edge slope is im-
portant for implementing the  computational paradigm being 
studied, or it is not.  If it is, then one should use a two stage 
neuron.  If not, then a one stage neuron is the clear winner. 

Of the two stage neurons, the DSRM0 neuron is about 
30% more efficient than the DLIF. And, it can be argued 
that the extra operations in the DLIF neuron are only an arti-
fact of biological implementation, and are unnecessary for 
capturing the brain’s computational paradigm. Computa-
tional neuroscientists implicitly make this argument when 
they use the SRM0 model. 

By 1) combining the synaptic decays (and compensating 
by adjusting weights) and 2) implementing piecewise linear 
decay, the PSRM0 neuron provides a sloping leading edge 

PSP and gives efficiencies several factors better than the 
DSRM0 implementation. This makes it an excellent choice 
for a large scale system where the behavior of two stage 
neurons is desired.  

If one were to choose a one stage neuron, then the LLIF 
neuron is twice as efficient as the SLIF, and does not appear 
to have any significant computational disadvantages.  So, for 
sheer efficiency, the LLIF neuron is the winner.  Moreover, 
from a functional perspective, multiple LLIF neurons can be 
interconnected to give more complex spike timing relation-
ships, but efficiency becomes worse [7].  

The selection of a two stage neuron also adds fuel to the 
analog vs. digital debate.  Using a two stage neuron will on-
ly widen the efficiency gap highlighted by Joubert et al. 
[23].  However, as has already been pointed out, one should 
consider the efficiency of the entire system, including the 
passing of spikes through a large interconnection structure, 
before making any final decisions regarding efficiency. 

Finally, an assumption underpinning all research into 
hardware neuron implementations is that individual neurons 
will form the basic building blocks for future large scale sys-
tems.  It may turn out that once the paradigm is better under-
stood, a higher level of abstraction, say the cortical column, 
may be a better basis (see [11] for example), and individual 
neurons do not have to be modeled.  If this is the case, then 
the functionality / efficiency tradeoffs shift significantly. 
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