
Large Scale Distributed Deep Networks

Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Quoc V. Le, Mark Z. Mao, Marc’Aurelio Ranzato,

Andrew Senior, Paul Tucker, Ke Yang, Andrew Y. Ng
{jeff, gcorrado}@google.com

Google Inc., Mountain View, CA

Abstract

Recent work in unsupervised feature learning and deep learning has shown that be-
ing able to train large models can dramatically improve performance. In this paper,
we consider the problem of training a deep network with billions of parameters
using tens of thousands of CPU cores. We have developed a software framework
called DistBelief that can utilize computing clusters with thousands of machines to
train large models. Within this framework, we have developed two algorithms for
large-scale distributed training: (i) Downpour SGD, an asynchronous stochastic
gradient descent procedure supporting a large number of model replicas, and (ii)
Sandblaster, a framework that supports a variety of distributed batch optimization
procedures, including a distributed implementation of L-BFGS. Downpour SGD
and Sandblaster L-BFGS both increase the scale and speed of deep network train-
ing. We have successfully used our system to train a deep network 30x larger than
previously reported in the literature, and achieves state-of-the-art performance on
ImageNet, a visual object recognition task with 16 million images and 21k cate-
gories. We show that these same techniques dramatically accelerate the training
of a more modestly- sized deep network for a commercial speech recognition ser-
vice. Although we focus on and report performance of these methods as applied
to training large neural networks, the underlying algorithms are applicable to any
gradient-based machine learning algorithm.

1 Introduction

Deep learning and unsupervised feature learning have shown great promise in many practical ap-
plications. State-of-the-art performance has been reported in several domains, ranging from speech
recognition [1, 2], visual object recognition [3, 4], to text processing [5, 6].

It has also been observed that increasing the scale of deep learning, with respect to the number
of training examples, the number of model parameters, or both, can drastically improve ultimate
classification accuracy [3, 4, 7]. These results have led to a surge of interest in scaling up the
training and inference algorithms used for these models [8] and in improving applicable optimization
procedures [7, 9]. The use of GPUs [1, 2, 3, 8] is a significant advance in recent years that makes
the training of modestly sized deep networks practical. A known limitation of the GPU approach is
that the training speed-up is small when the model does not fit in GPU memory (typically less than
6 gigabytes). To use a GPU effectively, researchers often reduce the size of the data or parameters
so that CPU-to-GPU transfers are not a significant bottleneck. While data and parameter reduction
work well for small problems (e.g. acoustic modeling for speech recognition), they are less attractive
for problems with a large number of examples and dimensions (e.g., high-resolution images).

In this paper, we describe an alternative approach: using large-scale clusters of machines to distribute
training and inference in deep networks. We have developed a software framework called DistBe-
lief that enables model parallelism within a machine (via multithreading) and across machines (via

1



message passing), with the details of parallelism, synchronization and communication managed by
the framework. In addition to supporting model parallelism, the DistBelief framework also supports
data parallelism, where multiple replicas of a model are used to optimize a single objective. Within
this framework, we have designed and implemented two novel methods for large-scale distributed
training: (i) Downpour SGD, an asynchronous stochastic gradient descent procedure which lever-
ages adaptive learning rates and supports a large number of model replicas, and (ii) Sandblaster
L-BFGS, a distributed implementation of L-BFGS that uses both data and model parallelism.1 Both
Downpour SGD and Sandblaster L-BFGS enjoy significant speed gains compared to more conven-
tional implementations of SGD and L-BFGS.

Our experiments reveal several surprising results about large-scale nonconvex optimization. Firstly,
asynchronous SGD, rarely applied to nonconvex problems, works very well for training deep net-
works, particularly when combined with Adagrad [10] adaptive learning rates. Secondly, we show
that given sufficient resources, L-BFGS is competitive with or faster than many variants of SGD.

With regard to specific applications in deep learning, we report two main findings: that our dis-
tributed optimization approach can both greatly accelerate the training of modestly sized models,
and that it can also train models that are larger than could be contemplated otherwise. To illustrate
the first point, we show that we can use a cluster of machines to train a modestly sized speech model
to the same classification accuracy in less than 1/10th the time required on a GPU. To illustrate the
second point, we trained a large neural network of more than 1 billion parameters and used this
network to drastically improve on state-of-the-art performance on the ImageNet dataset, one of the
largest datasets in computer vision.

2 Previous work

In recent years commercial and academic machine learning data sets have grown at an unprece-
dented pace. In response, a great many authors have explored scaling up machine learning algo-
rithms through parallelization and distribution [11, 12, 13, 14, 15, 16, 17]. Much of this research has
focused on linear, convex models, where distributed gradient computation is the natural first step.
Within this area, some groups have relaxed synchronization requirements, exploring delayed gradi-
ent updates for convex problems [12, 17]. In parallel, other groups working on problems with sparse
gradients (problems where only a tiny fraction of the coordinates of the gradient vector are non-zero
for any given training example) have explored lock-less asynchronous stochastic gradient descent
on shared-memory architectures (i.e. single machines) [5, 18]. We are interested in an approach
that captures the best of both worlds, allowing the use of a cluster of machines asynchronously
computing gradients, but without requiring that the problem be either convex or sparse.

In the context of deep learning, most work has focused on training relatively small models on a single
machine (e.g., Theano [19]). Suggestions for scaling up deep learning include the use of a farm of
GPUs to train a collection of many small models and subsequently averaging their predictions [20],
or modifying standard deep networks to make them inherently more parallelizable [21]. Our focus
is scaling deep learning techniques in the direction of training very large models, those with a few
billion parameters, but without introducing restrictions on the form of the model. In special cases
where one layer dominates computation, some authors have considered distributing computation in
that one layer and replicating computation in the remaining layers [5]. But in the general case where
many layers of the model are computationally intensive, full model parallelism in a spirit similar
to [22] is required. To be successful, however, we believe that model parallelism must be combined
with clever distributed optimization techniques that leverage data parallelism.

We considered a number of existing large-scale computational tools for application to our prob-
lem, MapReduce [23] and GraphLab [24] being notable examples. We concluded that MapRe-
duce, designed for parallel data processing, was ill-suited for the iterative computations inherent in
deep network training; whereas GraphLab, designed for general (unstructured) graph computations,
would not exploit computing efficiencies available in the structured graphs typically found in deep
networks.

1We implemented L-BFGS within the Sandblaster framework, but the general approach is also suitable for
a variety of other batch optimization methods.

2



M
ac

hi
ne

 1
M

achine 2
M

ac
hi

ne
 3

M
achine 4

Figure 1: An example of model parallelism in DistBelief. A five layer deep neural network with
local connectivity is shown here, partitioned across four machines (blue rectangles). Only those
nodes with edges that cross partition boundaries (thick lines) will need to have their state transmitted
between machines. Even in cases where a node has multiple edges crossing a partition boundary,
its state is only sent to the machine on the other side of that boundary once. Within each partition,
computation for individual nodes will the parallelized across all available CPU cores.

3 Model parallelism

To facilitate the training of very large deep networks, we have developed a software framework,
DistBelief, that supports distributed computation in neural networks and layered graphical models.
The user defines the computation that takes place at each node in each layer of the model, and the
messages that should be passed during the upward and downward phases of computation.2 For
large models, the user may partition the model across several machines (Figure 1), so that respon-
sibility for the computation for different nodes is assigned to different machines. The framework
automatically parallelizes computation in each machine using all available cores, and manages com-
munication, synchronization and data transfer between machines during both training and inference.

The performance benefits of distributing a deep network across multiple machines depends on the
connectivity structure and computational needs of the model. Models with a large number of param-
eters or high computational demands typically benefit from access to more CPUs and memory, up
to the point where communication costs dominate. We have successfully run large models with up
to 144 partitions in the DistBelief framework with significant speedups, while more modestly sized
models show decent speedups for up to 8 or 16 partitions. (See Section 5, under the heading Model
Parallelism Benchmarks, for experimental results.) Obviously, models with local connectivity struc-
tures tend to be more amenable to extensive distribution than fully-connected structures, given their
lower communication requirements. The typical cause of less-than-ideal speedups is variance in
processing times across the different machines, leading to many machines waiting for the single
slowest machine to finish a given phase of computation. Nonetheless, for our largest models, we can
efficiently use 32 machines where each machine achieves an average CPU utilization of 16 cores, for
a total of 512 CPU cores training a single large neural network. When combined with the distributed
optimization algorithms described in the next section, which utilize multiple replicas of the entire
neural network, it is possible to use tens of thousands of CPU cores for training a single model,
leading to significant reductions in overall training times.

4 Distributed optimization algorithms

Parallelizing computation within the DistBelief framework allows us to instantiate and run neural
networks considerably larger than have been previously reported. But in order to train such large
models in a reasonable amount of time, we need to parallelize computation not only within a single

2In the case of a neural network ‘upward’ and ‘downward’ might equally well be called ‘feedforward’ and
‘backprop’, while for a Hidden Markov Model, they might be more familiar as ‘forward’ and ‘backward’.

3



Parameter Server

Model
Replicas

Data
Shards

w’ = w - ηΔw

w Δw

Parameter Server

Model
Replicas

Data

Coordinator
(small messages)

Figure 2: Left: Downpour SGD. Model replicas asynchronously fetch parameters w and push gra-
dients ∆w to the parameter server. Right: Sandblaster L-BFGS. A single ‘coordinator’ sends small
messages to replicas and the parameter server to orchestrate batch optimization.

instance of the model, but to distribute training across multiple model instances. In this section we
describe this second level of parallelism, where we employ a set of DistBelief model instances, or
replicas, to simultaneously solve a single optimization problem.

We present a comparison of two large-scale distributed optimization procedures: Downpour SGD,
an online method, and Sandblaster L-BFGS, a batch method. Both methods leverage the concept
of a centralized sharded parameter server, which model replicas use to share their parameters. Both
methods take advantage of the distributed computation DistBelief allows within each individual
replica. But most importantly, both methods are designed to tolerate variance in the processing
speed of different model replicas, and even the wholesale failure of model replicas which may be
taken offline or restarted at random.

In a sense, these two optimization algorithms implement an intelligent version of data parallelism.
Both approaches allow us to simultaneously process distinct training examples in each of the many
model replicas, and periodically combine their results to optimize our objective function.

4.1 Downpour SGD

Stochastic gradient descent (SGD) is perhaps the most commonly used optimization procedure for
training deep neural networks [25, 26, 3]. Unfortunately, the traditional formulation of SGD is
inherently sequential, making it impractical to apply to very large data sets where the time required
to move through the data in an entirely serial fashion is prohibitive.

To apply SGD to large data sets, we introduce Downpour SGD, a variant of asynchronous stochas-
tic gradient descent that uses multiple replicas of a single DistBelief model. The basic approach is
as follows: We divide the training data into a number of subsets and run a copy of the model on
each of these subsets. The models communicate updates through a centralized parameter server,
which keeps the current state of all parameters for the model, sharded across many machines (e.g.,
if we have 10 parameter server shards, each shard is responsible for storing and applying updates
to 1/10th of the model parameters) (Figure 2). This approach is asynchronous in two distinct as-
pects: the model replicas run independently of each other, and the parameter server shards also run
independently of one another.

In the simplest implementation, before processing each mini-batch, a model replica asks the pa-
rameter server service for an updated copy of its model parameters. Because DistBelief models
are themselves partitioned across multiple machines, each machine needs to communicate with just
the subset of parameter server shards that hold the model parameters relevant to its partition. After
receiving an updated copy of its parameters, the DistBelief model replica processes a mini-batch of
data to compute a parameter gradient, and sends the gradient to the parameter server, which then
applies the gradient to the current value of the model parameters.

It is possible to reduce the communication overhead of Downpour SGD by limiting each model
replica to request updated parameters only every nfetch steps and send updated gradient values only
every npush steps (where nfetch might not be equal to npush). In fact, the process of fetching

4



parameters, pushing gradients, and processing training data can be carried out in three only weakly
synchronized threads (see the Appendix for pseudocode). In the experiments reported below we
fixed nfetch = npush = 1 for simplicity and ease of comparison to traditional SGD.

Downpour SGD is more robust to machines failures than standard (synchronous) SGD. For syn-
chronous SGD, if one machine fails, the entire training process is delayed; whereas for asynchronous
SGD, if one machine in a model replica fails, the other model replicas continue processing their
training data and updating the model parameters via the parameter servers. On the other hand, the
multiple forms of asynchronous processing in Downpour SGD introduce a great deal of additional
stochasticity in the optimization procedure. Most obviously, a model replica is almost certainly
computing its gradients based on a set of parameters that are slightly out of date, in that some other
model replica will likely have updated the parameters on the parameter server in the meantime. But
there are several other sources of stochasticity beyond this: Because the parameter server shards act
independently, there is no guarantee that at any given moment the parameters on each shard of the
parameter server have undergone the same number of updates, or that the updates were applied in
the same order. Moreover, because the model replicas are permitted to fetch parameters and push
gradients in separate threads, there may be additional subtle inconsistencies in the timestamps of
parameters. There is little theoretical grounding for the safety of these operations for nonconvex
problems, but in practice we found relaxing consistency requirements to be remarkably effective.

One technique that we have found to greatly increase the robustness of Downpour SGD is the use
of the Adagrad [10] adaptive learning rate procedure. Rather than using a single fixed learning
rate on the parameter sever (η in Figure 2), Adagrad uses a separate adaptive learning rate for each
parameter. Let ηi,K be the learning rate of the i-th parameter at iteration K and ∆wi,K its gradient,

then we set: ηi,K = γ/
√∑K

j=1 ∆wi,j
2. Because these learning rates are computed only from the

summed squared gradients of each parameter, Adagrad is easily implemented locally within each
parameter server shard. The value of γ, the constant scaling factor for all learning rates, is generally
larger (perhaps by an order of magnitude) than the best fixed learning rate used without Adagrad.
The use of Adagrad extends the maximum number of model replicas that can productively work
simultaneously, and combined with a practice of “warmstarting” model training with only a single
model replica before unleashing the other replicas, it has virtually eliminated stability concerns in
training deep networks using Downpour SGD (see results in Section 5).

4.2 Sandblaster L-BFGS

Batch methods have been shown to work well in training small deep networks [7]. To apply these
methods to large models and large datasets, we introduce the Sandblaster batch optimization frame-
work and discuss an implementation of L-BFGS using this framework.

A key idea in Sandblaster is distributed parameter storage and manipulation. The core of the opti-
mization algorithm (e.g L-BFGS) resides in a coordinator process (Figure 2), which does not have
direct access to the model parameters. Instead, the coordinator issues commands drawn from a
small set of operations (e.g., dot product, scaling, coefficient-wise addition, multiplication) that can
be performed by each parameter server shard independently, with the results being stored locally
on the same shard. Additional information, e.g the history cache for L-BFGS, is also stored on the
parameter server shard on which it was computed. This allows running large models (billions of
parameters) without incurring the overhead of sending all the parameters and gradients to a single
central server. (See the Appendix for pseudocode.)

In typical parallelized implementations of L-BFGS, data is distributed to many machines and each
machine is responsible for computing the gradient on a specific subset of data examples. The gra-
dients are sent back to a central server (or aggregated via a tree [16]). Many such methods wait for
the slowest machine, and therefore do not scale well to large shared clusters. To account for this
problem, we employ the following load balancing scheme: The coordinator assigns each of the N
model replicas a small portion of work, much smaller than 1/Nth of the total size of a batch, and
assigns replicas new portions whenever they are free. With this approach, faster model replicas do
more work than slower replicas. To further manage slow model replicas at the end of a batch, the
coordinator schedules multiple copies of the outstanding portions and uses the result from whichever
model replica finishes first. This scheme is similar to the use of “backup tasks” in the MapReduce
framework [23]. Prefetching of data, along with supporting data affinity by assigning sequential

5



portions of data to the same worker makes data access a non-issue. In contrast with Downpour
SGD, which requires relatively high frequency, high bandwidth parameter synchronization with the
parameter server, Sandblaster workers only fetch parameters at the beginning of each batch (when
they have been updated by the coordinator), and only send the gradients every few completed por-
tions (to protect against replica failures and restarts).

5 Experiments

We evaluated our optimization algorithms by applying them to training models for two different deep
learning problems: object recognition in still images and acoustic processing for speech recognition.

The speech recognition task was to classify the central region (or frame) in a short snippet of audio as
one of several thousand acoustic states. We used a deep network with five layers: four hidden layer
with sigmoidal activations and 2560 nodes each, and a softmax output layer with 8192 nodes. The
input representation was 11 consecutive overlapping 25 ms frames of speech, each represented by
40 log-energy values. The network was fully-connected layer-to-layer, for a total of approximately
42 million model parameters. We trained on a data set of 1.1 billion weakly labeled examples,
and evaluated on a hold out test set. See [27] for similar deep network configurations and training
procedures.

For visual object recognition we trained a larger neural network with locally-connected receptive
fields on the ImageNet data set of 16 million images, each of which we scaled to 100x100 pixels [28].
The network had three stages, each composed of filtering, pooling and local contrast normalization,
where each node in the filtering layer was connected to a 10x10 patch in the layer below. Our
infrastructure allows many nodes to connect to the same input patch, and we ran experiments varying
the number of identically connected nodes from 8 to 36. The output layer consisted of 21 thousand
one-vs-all logistic classifier nodes, one for each of the ImageNet object categories. See [29] for
similar deep network configurations and training procedures.

Model parallelism benchmarks: To explore the scaling behavior of DistBelief model parallelism
(Section 3), we measured the mean time to process a single mini-batch for simple SGD training as
a function of the number of partitions (machines) used in a single model instance. In Figure 3 we
quantify the impact of parallelizing across N machines by reporting the average training speed-up:
the ratio of the time taken using only a single machine to the time taken using N. Speedups for
inference steps in these models are similar and are not shown here.

The moderately sized speech model runs fastest on 8 machines, computing 2.2× faster than using a
single machine. (Models were configured to use no more than 20 cores per machine.) Partitioning

1 16 32 64 128
0

5

10

15

Machines per model instance

Tr
ai

ni
ng

 s
pe

ed
up

 

 
Speech: 42M parameters
Images: 80M parameters
Images: 330M parameters
Images: 1.7B parameters

Figure 3: Training speed-up for four different deep networks as a function of machines allocated
to a single DistBelief model instance. Models with more parameters benefit more from the use of
additional machines than do models with fewer parameters.

6



0 20 40 60 80 100 120
0

5

10

15

20

25

Time (hours)

A
v
e
ra

g
e
 F

ra
m

e
 A

c
c
u
ra

c
y
 (

%
)

Accuracy on Training Set

 

 

SGD [1]

DownpourSGD [20]

DownpourSGD [200] w/Adagrad

Sandblaster L−BFGS [2000]

0 20 40 60 80 100 120
0

5

10

15

20

25

Time (hours)

A
v
e
ra

g
e
 F

ra
m

e
 A

c
c
u
ra

c
y
 (

%
)

Accuracy on Test Set

 

 

SGD [1]
GPU [1]
DownpourSGD [20]

DownpourSGD [20] w/Adagrad
DownpourSGD [200] w/Adagrad
Sandblaster L−BFGS [2000]

Figure 4: Left: Training accuracy (on a portion of the training set) for different optimization meth-
ods. Right: Classification accuracy on the hold out test set as a function of training time. Downpour
and Sandblaster experiments initialized using the same ∼10 hour warmstart of simple SGD.

the model on more than 8 machines actually slows training, as network overhead starts to dominate
in the fully-connected network structure and there is less work for each machine to perform with
more partitions.

In contrast, the much larger, locally-connected image models can benefit from using many more
machines per model replica. The largest model, with 1.7 billion parameters benefits the most, giving
a speedup of more than 12× using 81 machines. For these large models using more machines
continues to increase speed, but with diminishing returns.

Optimization method comparisons: To evaluate the proposed distributed optimization proce-
dures, we ran the speech model described above in a variety of configurations. We consider two
baseline optimization procedures: training a DistBelief model (on 8 partitions) using conventional
(single replica) SGD, and training the identical model on a GPU using CUDA [27]. The three dis-
tributed optimization methods we compare to these baseline methods are: Downpour SGD with a
fixed learning rate, Downpour SGD with Adagrad learning rates, and Sandblaster L-BFGS.

Figure 4 shows classification performance as a function of training time for each of these methods
on both the training and test sets. Our goal is to obtain the maximum test set accuracy in the
minimum amount of training time, regardless of resource requirements. Conventional single replica
SGD (black curves) is the slowest to train. Downpour SGD with 20 model replicas (blue curves)
shows a significant improvement. Downpour SGD with 20 replicas plus Adagrad (orange curve)
is modestly faster. Sandblaster L-BFGS using 2000 model replicas (green curves) is considerably
faster yet again. The fastest, however, is Downpour SGD plus Adagrad with 200 model replicas (red
curves). Given access to sufficient CPU resourses, both Sandblaster L-BFGS and Downpour SGD
with Adagrad can train models substantially faster than a high performance GPU.

Though we did not confine the above experiments to a fixed resource budget, it is interesting to
consider how the various methods trade off resource consumption for performance. We analyze
this by arbitrarily choosing a fixed test set accuracy (16%), and measuring the time each method
took to reach that accuracy as a function of machines and utilized CPU cores, Figure 5. One of the
four points on each traces corresponds to a training configuration shown in Figure 4, the other three
points are alternative configurations.

In this plot, points closer to the origin are preferable in that they take less time while using fewer re-
sources. In this regard Downpour SGD using Adagrad appears to be the best trade-off: For any fixed
budget of machines or cores, Downpour SGD with Adagrad takes less time to reach the accuracy
target than either Downpour SGD with a fixed learning rate or Sandblaster L-BFGS. For any allotted
training time to reach the accuracy target, Downpour SGD with Adagrad used few resources than
Sandblaster L-BFGS, and in many cases Downpour SGD with a fixed learning rate could not even
reach the target within the deadline. The Sandblaster L-BFGS system does show promise in terms

7



1 1000 2000 3000 4000 5000 6000
10

20

30

40

50

60

70

80

Machines

T
im

e
 (

h
o

u
rs

)

Time to 16% accuracy

 

 

Downpour SGD

Downpour SGD w/Adagrad

Sandblaster L−BFGS

GPU

1 2000 4000 6000 8000 10000 12000
10

20

30

40

50

60

70

80

Cores

T
im

e
 (

h
o
u
rs

)

Time to 16% accuracy

 

 

Downpour SGD

Downpour SGD w/Adagrad

Sandblaster L−BFGS

GPU (CUDA cores)

Figure 5: Time to reach a fixed accuracy (16%) for different optimization strategies as a function of
number of the machines (left) and cores (right).

of its scaling with additional cores, suggesting that it may ultimately produce the fastest training
times if used with an extremely large resource budget (e.g., 30k cores).

Application to ImageNet: The previous experiments demonstrate that our techniques can accel-
erate the training of neural networks with tens of millions of parameters. However, the more sig-
nificant advantage of our cluster-based approach to distributed optimization is its ability to scale to
models that are much larger than can be comfortably fit on single machine, let alone a single GPU.
As a first step toward exploring the capabilities of very large neural networks, we used Downpour
SGD to train the 1.7 billion parameter image model described above on the ImageNet object classi-
fication task. As detailed in [29], this network achieved a cross-validated classification accuracy of
over 15%, a relative improvement over 60% from the best performance we are aware of on the 21k
category ImageNet classification task.

6 Conclusions

In this paper we introduced DistBelief, a framework for parallel distributed training of deep net-
works. Within this framework, we discovered several effective distributed optimization strategies.
We found that Downpour SGD, a highly asynchronous variant of SGD works surprisingly well for
training nonconvex deep learning models. Sandblaster L-BFGS, a distributed implementation of
L-BFGS, can be competitive with SGD, and its more efficient use of network bandwidth enables it
to scale to a larger number of concurrent cores for training a single model. That said, the combi-
nation of Downpour SGD with the Adagrad adaptive learning rate procedure emerges as the clearly
dominant method when working with a computational budget of 2000 CPU cores or less.

Adagrad was not originally designed to be used with asynchronous SGD, and neither method is
typically applied to nonconvex problems. It is surprising, therefore, that they work so well together,
and on highly nonlinear deep networks. We conjecture that Adagrad automatically stabilizes volatile
parameters in the face of the flurry of asynchronous updates, and naturally adjusts learning rates to
the demands of different layers in the deep network.

Our experiments show that our new large-scale training methods can use a cluster of machines to
train even modestly sized deep networks significantly faster than a GPU, and without the GPU’s
limitation on the maximum size of the model. To demonstrate the value of being able to train larger
models, we have trained a model with over 1 billion parameters to achieve better than state-of-the-art
performance on the ImageNet object recognition challenge.

Acknowledgments

The authors would like to thank Samy Bengio, Tom Dean, John Duchi, Yuval Netzer, Patrick Nguyen, Yoram
Singer, Sebastian Thrun, and Vincent Vanhoucke for their indispensable advice, support, and comments.

8



References
[1] G. Dahl, D. Yu, L. Deng, and A. Acero. Context-dependent pre-trained deep neural networks for large

vocabulary speech recognition. IEEE Transactions on Audio, Speech, and Language Processing, 2012.

[2] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen,
T. Sainath, and B. Kingsbury. Deep neural networks for acoustic modeling in speech recognition. IEEE
Signal Processing Magazine, 2012.

[3] D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber. Deep big simple neural nets excel on
handwritten digit recognition. CoRR, 2010.

[4] A. Coates, H. Lee, and A. Y. Ng. An analysis of single-layer networks in unsupervised feature learning.
In AISTATS 14, 2011.

[5] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. A neural probabilistic language model. Journal of
Machine Learning Research, 3:1137–1155, 2003.

[6] R. Collobert and J. Weston. A unified architecture for natural language processing: Deep neural networks
with multitask learning. In ICML, 2008.

[7] Q.V. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, and A.Y. Ng. On optimization methods for deep
learning. In ICML, 2011.

[8] R. Raina, A. Madhavan, and A. Y. Ng. Large-scale deep unsupervised learning using graphics processors.
In ICML, 2009.

[9] J. Martens. Deep learning via hessian-free optimization. In ICML, 2010.

[10] J. C. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

[11] Q. Shi, J. Petterson, G. Dror, J. Langford, A. Smola, A. Strehl, and V. Vishwanathan. Hash kernels. In
AISTATS, 2009.

[12] J. Langford, A. Smola, and M. Zinkevich. Slow learners are fast. In NIPS, 2009.

[13] G. Mann, R. McDonald, M. Mohri, N. Silberman, and D. Walker. Efficient large-scale distributed training
of conditional maximum entropy models. In NIPS, 2009.

[14] R. McDonald, K. Hall, and G. Mann. Distributed training strategies for the structured perceptron. In
NAACL, 2010.

[15] M. Zinkevich, M. Weimer, A. Smola, and L. Li. Parallelized stochastic gradient descent. In NIPS, 2010.

[16] A. Agarwal, O. Chapelle, M. Dudik, and J. Langford. A reliable effective terascale linear learning system.
In AISTATS, 2011.

[17] A. Agarwal and J. Duchi. Distributed delayed stochastic optimization. In NIPS, 2011.

[18] F. Niu, B. Retcht, C. Re, and S. J. Wright. Hogwild! A lock-free approach to parallelizing stochastic
gradient descent. In NIPS, 2011.

[19] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley,
and Y. Bengio. Theano: a CPU and GPU math expression compiler. In SciPy, 2010.

[20] D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image classification.
Technical report, IDSIA, 2012.

[21] L. Deng, D. Yu, and J. Platt. Scalable stacking and learning for building deep architectures. In ICASSP,
2012.

[22] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, U. Toronto, 2009.

[23] J. Dean and S. Ghemawat. Map-Reduce: simplified data processing on large clusters. CACM, 2008.

[24] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. Hellerstein. Distributed GraphLab: A
framework for machine learning in the cloud. In VLDB, 2012.

[25] L. Bottou. Stochastic gradient learning in neural networks. In Proceedings of Neuro-Nı̂mes 91, 1991.

[26] Y. LeCun, L. Bottou, G. Orr, and K. Muller. Efficient backprop. In Neural Networks: Tricks of the trade.
Springer, 1998.

[27] V. Vanhoucke, A. Senior, and M. Z. Mao. Improving the speed of neural networks on cpus. In Deep
Learning and Unsupervised Feature Learning Workshop, NIPS 2011, 2011.

[28] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR, 2009.

[29] Q.V. Le, M.A. Ranzato, R. Monga, M. Devin, K. Chen, G.S. Corrado, J. Dean, and A.Y. Ng. Building
high-level features using large scale unsupervised learning. In ICML, 2012.

9



Large Scale Distributed Deep Networks: Appendix

Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Quoc V. Le, Mark Z. Mao, Marc’Aurelio Ranzato,

Andrew Senior, Paul Tucker, Ke Yang, Andrew Y. Ng
{jeff, gcorrado}@google.com

Google Inc., Mountain View, CA

1 Appendix

For completeness, here we provide pseudocode for the model replica (client) side of Downpour SGD
(Algorithm 0.1), and Sandblaster L-BFGS (Algorithm 0.2).

Algorithm 1.1: DOWNPOURSGDCLIENT(α, nfetch, npush)

procedure STARTASYNCHRONOUSLYFETCHINGPARAMETERS(parameters)
parameters← GETPARAMETERSFROMPARAMSERVER()

procedure STARTASYNCHRONOUSLYPUSHINGGRADIENTS(accruedgradients)
SENDGRADIENTSTOPARAMSERVER(accruedgradients)
accruedgradients← 0

main
global parameters, accruedgradients
step← 0
accruedgradients← 0
while true

do



if (step mod nfetch) == 0
then STARTASYNCHRONOUSLYFETCHINGPARAMETERS(parameters)

data← GETNEXTMINIBATCH()
gradient← COMPUTEGRADIENT(parameters, data)
accruedgradients← accruedgradients+ gradient
parameters← parameters− α ∗ gradient
if (step mod npush) == 0

then STARTASYNCHRONOUSLYPUSHINGGRADIENTS(accruedgradients)
step← step+ 1

Sandblaster is a framework for distributed batch optimization procedures. An essential concept in
Sandblaster is decomposing operations into local computation on the DistBelief parameter server.
By way of example, suppose we have 1 billion parameters and 10 parameter server shards, so that
each shard has 1/10 of the parameters. It is possible to decompose L-BFGS into a sequence of
scalar-vector products (α×x) and vector-vector inner products (xT y), where each vector is 1 billion
dimensional. If one shard is always responsible for the first 1/10 of every vector used internally in
L-BFGS, and a second shard is always responsible for the second 1/10 of every vector, and so on up
to the final shard always being responsible for the final 1/10 of every vector, it is possible to show
that these scalar-vector and vector-vector operations can all be done in a distributed fashion with
very little communication, so that any intermediate vector-valued results are automatically stored in
the same distributed fashion, and any intermediate scalar-valued result is communicated to all the
shards.

1



Algorithm 1.2: SANDBLASTERLBFGS()

procedure REPLICA.PROCESSPORTION(portion)
if (!hasParametersForStep)

then parameters← GETPARAMETERSFROMPARAMSERVER()
data← GETDATAPORTION(portion)
gradient← COMPUTEGRADIENT(parameters, data)
localAccruedGradients← localAccruedGradients+ gradient

procedure PARAMETERSERVER.PERFORMOPERATION(operation)
PerformOperation

main
step← 0
while true

do



comment: PS: ParameterServer

PS.accruedgradients← 0
while (batchProcessed < batchSize)

do



for all (modelReplicas)comment: Loop is parallel and asynchronous

if (modelReplicaAvailable)

then
{

REPLICA.PROCESSPORTION(modelReplica)
batchProcessed← batchProcessed+ portion

if (modelReplicaWorkDone and timeToSendGradients)

then
{

SENDGRADIENTS(modelReplica)
PS.accruedGradients← PS.accruedGradients+ gradient

COMPUTELBFGSDIRECTION(PS.Gradients, PS.History, PS.Direction)
LINESEARCH(PS.Parameters, PS.Direction)
PS.UPDATEPARAMETERS(PS.parameters, PS.accruedGradients)
step← step+ 1

2


