
Full Correlation Matrix Analysis of fMRI Data on IntelR© Xeon
PhiTM Coprocessors

Yida Wang1, Michael J. Anderson2, Jonathan D. Cohen3, Alexander Heinecke2, Kai Li1, Nadathur Satish2, Narayanan

Sundaram2, Nicholas B. Turk-Browne3, and Theodore L. Willke2

1Department of Computer Science, Princeton University

2Parallel Computing Lab, Intel Corporation

3Princeton Neuroscience Institute, Princeton University

ABSTRACT
Full correlation matrix analysis (FCMA) is an unbiased ap-
proach for exhaustively studying interactions among brain
regions in functional magnetic resonance imaging (fMRI)
data from human participants. In order to answer neuro-
scientific questions efficiently, we are developing a closed-
loop analysis system with FCMA on a cluster of nodes with

IntelR© Xeon Phi
TM

coprocessors. Here we propose several
ideas for data-driven algorithmic modification to improve
the performance on the coprocessor. Our experiments with
real datasets show that the optimized single-node code runs
5x-16x faster than the baseline implementation using the
well-known IntelR© MKL and LibSVM libraries, and that
the cluster implementation achieves near linear speedup on
5760 cores.

Keywords
fMRI data, IntelR© Xeon Phi

TM

Coprocessor

1. INTRODUCTION
Neuroscientists use functional magnetic resonance imag-

ing (fMRI) technology to acquire volumes of activity from
human brains. Most previous studies focus on offline data
analysis to discover neural activity patterns and interactions
in different brain regions. Recently two new approaches have
shown promise as a means to accelerate discoveries in neu-
roscience: real-time fMRI with closed-loop feedback[7] and
exhaustive study of neural interactions via imaging data[27].

Real-time fMRI (rtfMRI) refers to any process that uses
functional information from the scanner in a manner that
keeps pace with data acquisition. rtfMRI has been applied
to interoperative surgical guidance, brain-computer inter-
faces, and neurofeedback[25]. A recent study shows that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SC ’15, November 15-20, 2015, Austin, TX, USA
c© 2015 ACM. ISBN 978-1-4503-3723-6/15/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2807591.2807631

closed-loop neurofeedback can be used to train participants
to improve their ability to attend selectively to a stimu-
lus[7]. A system that permits real-time analysis of neural
interactions for the entire brain will allow neuroscientists to
conduct new scientific and clinical studies at a time when
interest in rtfMRI neurofeedback is rising rapidly[25].

Full correlation matrix analysis (FCMA)[30] is a novel
attempt to exhaustively study the neural interactions in
a brain by applying multivariate pattern analysis (MVPA)
methods[21], to the whole-brain correlation matrix, rather
than focusing on the instantaneous amplitude of blood-oxygen-
level dependent (BOLD) activity, or on correlations in this
signal over limited subregions of the brain. However, FCMA
is computationally intensive, and has not yet been carried
our in real-time. Doing so on cost-effective computational
platforms presents a challenge, however it also holds the
promise of substantially boosting progress in neuroscience.

To address this challenge, we are developing a closed-loop
neuroscience research system with an fMRI scanner and a

cluster using Intel R© Xeon Phi
TM

coprocessors (henceforth
referred to as coprocessor), as shown in Fig. 1. The fMRI
scanner produces an entire brain’s worth of data every 1-
2 seconds as a human subject is exposed to stimuli and/or
asked to perform tasks. The stream of brain data is sent
to a compute cluster with coprocessors that runs FCMA.
The FCMA software analyzes the brain data in two ways:
performing offline brain interaction analysis after collecting
multiple subjects’ data; or selecting voxels to train a clas-
sifier using one subject’s data online to provide real-time
feedback as described in the following experiments. The
software must achieve satisfactory wall-clock time in both
scenarios.

The challenge is to achieve satisfactory performance for
both offline analysis and online real-time analysis without
substantial computational hardware costs. There are two
main design goals for FCMA closed-loop system. The first
is a scalable implementation that can achieves linear or near-
linear speedup on a large cluster. The second is to ensure
that the code running on each individual node fully exploits
the hardware capability of the coprocessor.

The input data for FCMA is a stream of 3D human brain
data (volumes of voxels) over time. Including the time di-
mension, the input is a 4D dataset. A separated full correla-
tion matrix (i.e. the temporal correlation in BOLD activity
of every voxel in the brain with every other voxel) is com-

Figure 1: A closed-loop neuroscience research sys-
tem with an fMRI scanner and a cluster using Intel R©

Xeon Phi
TM

coprocessors.

puted for each time epoch of interest during the fMRI scan.
Each matrix may then be categorically labeled based on the
experimental conditions experienced by the subject during
each epoch (e.g., the stimulus or task condition). The goal
of FCMA is to make an unbiased determination of which
correlations distinguish between conditions, thereby identi-
fying regions of interests (ROIs) that have different patterns
of interactions as a function of condition.

The data that FCMA deals with shapes as tall-skinny ma-
trices since the number of voxels (up to 100,000) is much
larger than the number of time points (typically dozens to
hundreds). Although it is fairly straightforward to paral-
lelize FCMA using cluster-level data partitioning, it is chal-
lenging to fully utilize the hardware capabilities of modern
architectures, specifically the increasing amounts of thread-
and data-level parallelism, and smaller amounts of cache per
core. Manycore architectures are leading these trends and
hence benefit more from optimizations such as vectorization
and blocking. Our baseline implementation using MKL and
LibSVM libraries achieved respectable performance, but was
found to significantly underutilize the hardware. These li-
braries, and others like them, use cache conscious algorithms
to implement their functions, but they do not co-optimize
functions or handle data with special characteristics such as
tall-skinny matrices well, things that we believe would help
in our application.

This paper describes several optimizations for FCMA on
manycore architectures, including blocking tall-skinny ma-
trices for multiplication, retaining L2 cache contents across
computation stages, and designing data layout and workflow
to be vectorization friendly. We have implemented an op-
timized version of FCMA that incorporates these ideas, as
well as optimized support vector machine (SVM) algorithm.

Our evaluation shows that the optimized implementation
on a single coprocessor runs 5x-16x faster than the baseline
with MKL and LibSVM libraries. Our optimized SVM runs
10x faster than the popular LibSVM package[6] on a single
coprocessor. Our parallel FCMA implementation on a clus-

ter of IntelR© Xeon Phi
TM

coprocessors achieves near linear
speedup on up to 96 coprocessors or 5760 cores. Although
being applied to FCMA as a case study, our optimizations
will also enhance the performance of other applications that
involve datasets with similar characteristics on IntelR© Xeon
Phi

TM

coprocessors.
We also show that our optimizations for the coprocessor

yield a faster implementation on IntelR© XeonR© processors.

The optimized implementation on an E5-2670 processor runs
1.4x-2.5x faster than the baseline with MKL and LibSVM
libraries.

This paper is organized as follows. Section 2 reviews the
coprocessor architecture. We describe FCMA in detail in
Section 3.1, followed by a discussion of the baseline imple-
mentation in Section 3.2 and its performance analysis in
Section 3.3. We propose three optimization ideas in Section
4 and evaluate their performance in Section 5. Section 6 dis-
cusses the related work, followed by conclusion and future
work in Section 7.

2. INTEL R© XEON PHITM ARCHITECTURE
The IntelR© Xeon Phi

TM

is a coprocessor based on the Intel
Many Integrated Core (MIC) architecture1. The coproces-
sor provides a general-purpose programming environment
similar to that of an IntelR© XeonR© processor.

Fig. 2 illustrates the high-level architecture of the 5110P
coprocessor. This model has 60 CPU cores, each of which
runs at a fixed clock rate of 1053MHz and supports up to 4
hardware threads compensating for its in-order instruction
execution. Each core has a 32KB L1 data cache, a 32KB
L1 instruction cache, and a 512KB unified L2 cache shared
by up to four threads. The L2 caches belonging to different
cores are interconnected via a bidirectional ring. Cache co-
herence is maintained by a global-distributed tag directory.

An L2 cache miss triggered by a core can be satisfied by
either a remote cache or the memory with slightly differ-
ent latencies. A previous empirical study showed that the
latency of an L2 cache miss on Xeon Phi takes 250 CPU
cycles from a remote L2 cache location and 302 CPU cycles
from the main memory[11]. Both L1 and L2 caches use a
cache line size of 64B, therefore, a cache miss will bring 16
single precision or 8 double precision floating point numbers
into the cache.

Figure 2: Architecture of the Intel R© Xeon Phi
TM

5110P coprocessor.

Each core also has a 512-bit wide vector processing unit
(VPU), which allows 16 single precision or 8 double preci-
sion floating point numbers to be processed in a single CPU
1
Intel, Xeon and Intel Xeon Phi are trademarks of Intel Corporation in the U.S.

and/or other countries.

cycle. The wide VPU size makes vectorization challenging.
If the vectorization intensity, defined as the number of vec-
torized elements divided by the number of executed VPU
instructions, is low, the VPU is not fully utilized.

By using all available threads and VPU in the most effi-
cient way, the peak floating point performance of the copro-
cessor can reach 2.02 TFLOPS for single precision and 1.01
TFLOPS for double precision.

Each 5110P coprocessor board has 8GB DRAM, out of
which ∼2GB are dedicated to the operating system, leaving
∼6GB memory available for applications.

3. FCMA ALGORITHM

3.1 Overview
FCMA works on fMRI datasets. An fMRI dataset con-

tains the fMRI data from a neuroscientific experiment, often
conducted over multiple human subjects. A brain volume is
comprised of a number of voxels, depending on the resolu-
tion of the fMRI scanner and its scanning speed. An epoch
of interest consists of a series of continuous time points dur-
ing which the subject was doing some specific task. The
time epoch can be labeled based on the types of task.

The fMRI scanner used in this research (Siemens Skyra)
can be configured in various ways, but a relatively common
set of image parameters might be 35,000 voxels every 1.5 sec-
onds. The neuroscience datasets we consider contain fMRI
data from tens of subjects, each of whom has dozens of time
epochs of interest labeled in two conditions, meaning that
hundreds of full correlation matrices must be computed. Al-
though the size of such a dataset is approximately a giga-
byte, the size of the corresponding full correlation matrices
will be in terabytes.

The most computational intensive part of FCMA involves
a three-stage pipeline, as shown in Fig. 3. Before compu-
tation, FCMA reads in the preprocessed fMRI data (e.g.,
corrected for head motion and other noise sources) and the
text files specifying the labeled time epochs over which the
correlation is to be computed.

Figure 3: The three-stage pipeline of FCMA.

The first stage of FCMA is correlation computation. We
operationalize the temporal interaction between two brain
voxels during a time epoch of interest using Pearson corre-
lation, which is computed as

corr(X,Y) =
cov(X,Y)

σXσY
(1)

where X and Y are two vectors depicting the BOLD activity
of voxel x and y in a time epoch, and cov and σ refer to
the covariance and the standard deviation of the vectors,

respectively. We reduce the computation of the Pearson
correlation between voxel pairs to the multiplication of a
voxel-by-time matrix and its transpose by normalizing the
data within each time epoch[32]. Specifically, the reduction
first subtracts the mean value of the time epoch vector, and
then divides this mean-centered vector by its root sum of
squares as

x′i =
(xi − x̄)√
n∑

j=1

x2j − nx̄2
(2)

where xi and xj are elements of time epoch vector X, and
x̄ depicts its mean value. The Pearson correlation between
two of the resulting vectors X ′ and Y ′ is their pointwise
product

corr(X,Y) = X ′·Y ′ (3)

which for an arbitrary number of vectors becomes an inner
product matrix multiplication. A more detailed derivation
can be found in the appendix of [29]. To obtain the full
correlation matrix for a given time epoch, corr(X,X) is cal-
culated by taking the product of X ′ and its transpose. Such
reduction simplifies the computation. Suppose there are N
voxels in the whole brain (here N ≈ 35, 000), each matrix
multiplication yields a N ∗ N full correlation matrix C, in
which entry Cij represents the correlation over time in an
epoch between voxel i and j.

The second stage is within-subject normalization. The full
correlation matrices with various labels from the first stage
are the input of this stage. Because Pearson correlation co-
efficients are bounded [−1, 1] and not normally distributed
near the bounds, we apply the Fisher transformation to ev-
ery resulting correlation coefficient as

z =
1

2
ln(

1 + r

1− r) (4)

where r is the correlation coefficient between any two voxels.
After that, to put the correlation coefficients from different
subjects on the same scale for the cross-subject classification,
we also apply z-score transformation within each subject

∀z ∈ P, z′ =
z − µ
σ

(5)

where P is the population of Fisher-transformed correlation
coefficients within subject, and µ and σ are the mean and
standard deviation of the population, respectively. The out-
put of the second stage is then grouped by voxels so that
the correlation vectors for the same voxel from all epochs
are stored together as the input of the third stage (different
labels depicted as dark red and light pink in Fig. 3).

The third stage is SVM cross validation. This stage per-
forms voxel-wise cross validation to identify which voxels are
informative in terms of their correlations with other voxels.
Note that for each voxel there are only a few hundred correla-
tion vector samples (for cross-subject classification, number
of epochs per subject × number of subjects) while each sam-
ple has ∼35,000 dimensions (corresponding to the number
of voxels in the brain), so we use linear SVM to avoid over-
fitting. Linear SVM handles high-dimensional data better
than SVM with other kernels such as polynomial or Gaus-
sian, as well as other classification algorithms such as logis-
tic regression. For each voxel, we extract its corresponding
rows from all correlation matrices. Each of these rows con-
tains the normalized correlation values (stage 2) between

this voxel and all the other voxels in the brain in a time
epoch. These correlation vectors are then labeled with the
experimental conditions to which their epochs correspond
and fed into linear SVM as samples. Linear SVM runs cross-
validation across subjects (leave one subject out at a time)
to assign a classification accuracy value to each voxel, quan-
tifying its ability to distinguish between conditions.

3.1.1 Cluster parallelization framework
We use a task-based parallel framework on a compute clus-

ter to process this pipeline, in which a master assigns tasks
to workers. The master node first distributes brain data to
the worker nodes and then sends tasks to the workers to
process in parallel. A worker works on one task at a time.
When a worker finishes a task, it will receive a new task
from the master.

The tasks are defined by partitioning the correlation ma-
trices along their rows. Each task is one run of the three-
stage FCMA algorithm for the assigned number of voxels.

3.1.2 Three-stage algorithm on a worker node
We then describe the three-stage algorithm on a single

worker node after being assigned a number of voxels as a
task. In stage one, a worker node computes correlation vec-
tors for all epochs of its given voxels as shown in Fig. 4.
The number of given voxels is typically a few hundred or
less to permit all correlation data to fit into memory. Since
in most cases one time epoch consists of less than 20 time
points, the matrix multiplications used to compute correla-
tion have one very small dimension (the k dimension) which
limits performance. On the other hand, in order to facili-
tate the subsequent steps, we arrange the data in memory
such that all correlation vectors corresponding to a single
voxel are contiguous, which means the result of the correla-
tion matrix multiplications must be interleaved row by row.
Fig. 4 illustrates the data layout in different colors, where
the activity values of the first and second epochs are colored
in dark red and light pink, respectively. The first voxel out
of the V voxels computes its correlation vector of the first
epoch and places as the first row of the correlation data of
the first voxel depicted in dark red; the last voxel computes
its correlation vector of the second epoch and places as the
second row of the correlation data of the last voxel depicted
in light pink.

In stage two, the worker node applies Fisher transforma-
tion and within subject z-scoring to the resulting correlation
coefficients of its assigned voxels from stage one. As depicted
in the bottom half of Fig. 4, a voxel’s M correlation vectors
are partitioned into E epochs per subject (dashed lines).
For within-subject normalization, a sub-column of E values
belonging to the same subject (e.g. the vertical black line in
the second subject of the first voxel in Fig. 4) is extracted
as a population P in formula 5 to process together.

In stage three, the normalized correlation vectors for the
assigned voxels with two different labels can then be sent
to the linear SVM classifier to determine how well the vec-
tors differentiate the labeled categories via cross validation.
The attained accuracies of these voxels are sent back to the
master node.

Finally, the master node collects all voxels and sorts them
by their resulting accuracies of cross validation. The brain
regions constituted by top voxels are identified as ROIs in
terms of correlation for following studies.

Figure 4: Correlation Computation for V voxels in
M epochs, the results are grouped by voxels and
then normalized within subject (assuming E epochs
per subject).

3.2 Baseline Implementation
We implemented the three-stage algorithm described above

in C++. All floating point values are represented in single
precision. Our baseline implementation can be viewed as a
typical implementation using sound programming discipline
and the state-of-the-art libraries.

For correlation computation in the first stage, we allocate
continuous aligned space in the memory to store the corre-
lation vectors of all voxels so that the cblas sgemm routine
of MKL can be called to compute the correlation vectors
epoch by epoch and place the results in an alternate way
grouping by voxels via specifying the parameter ldc appro-
priately. The normalization of the second stage is paral-
lelized along all voxels while applying vectorization within
z-scoring. The SVM training that takes place in the third
stage is essentially an algorithm that repeatedly calculates
the matrix-vector product of one voxel’s corresponding data
matrix with different rows of the matrix itself. Since there
are many more voxels (corresponding to the length of a cor-
relation vector) than there are training examples (one time
epoch corresponds to one sample), we precomputed all such
matrix-vector products (also called the kernel matrix) before
beginning SVM cross validation. Given that it is a linear
SVM and the kernel function is a dot product, this kernel
matrix can be cast as a symmetric matrix multiplication and
solved with the cblas ssyrk routine of MKL over one voxel’s
corresponding data matrix and its transpose. The SVM
cross validation works based on the precomputed kernel ma-
trix by applying the sequential minimal optimization (SMO)
algorithm implemented in the LibSVM[6] package for train-
ing. SMO is an iterative method to solve large quadratic
programming problems in the training phase of SVM. It
breaks the problem into smallest possible sub-problems and
each time solves one analytically until convergence[24]. In
this way, one thread takes care of one voxel’s kernel matrix
computation and cross validation at a time so that different
voxels can progress simultaneously.

We have tuned this implementation by carefully designing

the data structures to utilize the high performance MKL
routines. We have also deliberately precomputed the kernel
matrices to avoid duplicate pairwise kernel computation and
to keep more frequently used data in the cache. In practice,
this results in good performance on a cluster consisting of
nodes with IntelR© XeonR© processors, where FCMA runs in
the master-worker mode communicating via MPI calls, and
the master node allocates different sets of voxels to different
workers for processing.

3.3 Performance Analysis
This subsection reports our analysis of the baseline im-

plementation on the IntelR© Xeon Phi
TM

coprocessors. All
of our measurements were collected by running the baseline
implementation on the face-scene dataset (more details in
Section 5), which contains brain data with 34,470 voxels,
in 216 12-time-point epochs with two different labels. The
master node assigns 120 voxels to a worker node as a single
task for processing. We analyzed the performance of a single
worker task.

3.3.1 Low efficiency of matrix multiplication
The first finding is that the matrix multiplications of MKL

does not perform efficiently for our tall-skinny matrices on
the coprocessor.

At the correlation computation stage, a worker is respon-
sible for 120 voxels. It calls cblas sgemm to perform 216
matrix multiplications between 120×12 and 12×34,470 ma-
trix pairs to obtain correlation coefficients between the as-
signed 120 voxels and the entire brain over 216 epochs. At
the SVM cross validation stage, it computes 120 symmetric
kernel matrices between 216×34470 matrices and the corre-
sponding transposes for 120 voxels using cblas ssyrk.

The first row of Table 1 summarizes the performance of

the matrix multiplication routines using IntelR© vTune
TM

Amplifier. There are three performance issues. The first
issue is that the number of memory references is too high.
Our instrumentation shows that there are 34.9 billion mem-
ory references, whereas the matrix multiplications for the
correlation computation and for SVM cross validation stages
should have fewer than 10 billion.

time #mem refs L2 miss
Vector
intensity

Matrix mul-
tiplication

1830 ms 34.9 billion 709 million 3.6

Normalization 766 ms 6.2 billion 179 million 8.5
LibSVM 3600 ms 23.0 billion 7 million 1.9

Table 1: The instrumentation results of the baseline.

The second issue is that the cache miss overhead is high.
Since empirically the latency of a L2 cache miss on the copro-
cessor is ∼250 CPU cycles from remote L2 cache and ∼302
CPU cycles from memory[11], and the clock rate of the co-
processor (5110P) is 1053MHz, we can estimate the latency
of an L2 cache miss to be ∼300 ns so the total latency of L2
cache misses could be as high as ∼880 ms if not well hidden
by other operations, which is significant compared to the
total elapsed time (1830 ms).

The third issue is that the vectorization intensity value is
only 3.6 while the ideal vectorization intensity is 16. Only
23% of the VPU capability is used during computation.

These three observations show that when computing our
tall-skinny matrices, MKL doesn’t leverage L2 cache well
and does poorly to take advantage of the VPUs of the co-
processor.

3.3.2 Lack of cached data reuse between stages
By manually calculation, we noticed that the second stage

of FCMA causes ∼112 million compulsory L2 cache misses.
The first stage (correlation computation) generates correla-
tions and writes them into their data structures. The second
stage (within-subject normalization) reads the data back to
perform Fisher transformation and z-scoring.

Optimization within a function cannot avoid such compul-
sory L2 cache misses between function calls. When such situ-
ations happen between two stages of the processing pipeline,
retaining cache contents becomes difficult. To avoid such
cache misses, we need to have higher-level optimizations.

In addition, Table 1 shows that the vectorization intensity
of within-subject normalization is 8.5, indicating that there
are rooms to improve the utilization of the vector unit.

3.3.3 Poor VPU utilization in SVM cross validation
We noticed that the SVM cross validation stage takes a lot

of time and most of the time spent in the LibSVM library.
The first reason is that the vectorization intensity of Lib-

SVM is only 1.9 (Table 1), indicating it does not take advan-
tage of the vector unit of the coprocessor well. As we started
looking at the code of LibSVM, we found that it stores data
in sparse index set instead of dense matrix.

The second reason is LibSVM does unnecessary data type
conversions during computation and uses double precision
values in the computationally intensive loops.

The third reason is about the memory limitation of the co-
processor. The implementation uses one thread to run cross
validation for one voxel. Therefore, the master node needs
to assign at least 240 voxels at a time to the coprocessor for
fully utilizing its available 240 threads. However, each 5110P
coprocessor has only about 6GB memory available to appli-
cations. 240 voxels’ correlation vectors will consume 8.3GB
memory. This forces the master node to only assign a small
number of voxels to the coprocessor once, consequently the
computing resource is under utilized during the linear SVM
cross validation stage.

The poor performance of LibSVM motivated us to op-
timize the LibSVM. In addition, we implemented PhiSVM
based on a GPU SVM implementation[5]. We will report
the performance of these implementations in Section 5.

4. OPTIMIZATIONS
Based on the optimization opportunities identified above,

we came up with three optimization ideas. This section first
describes our ideas and then presents how we optimized our
implementation.

4.1 Optimization Ideas
We employed three optimization ideas to optimize the

FCMA algorithm for a single worker node task:
1) Partitioning tall-skinny matrices for blocking to fit small

amount of L2 cache for each thread. The traditional way of
blocking is to change the looping structure of the code to
process a square block of data in inner loops. However, this
approach would exceed the relatively small L2 cache per
thread on the coprocessor.

2) Retaining cache contents across stages of the procedure
pipeline. Our approach is to look at the contents of L2
cache in the current stage. If the contents will be reused
frequently in the next stage, we will consider merging the
two stages to avoid cache misses at the next stage. Typically,
a cache conscious algorithm of the current stage uses blocked
data structure to reduce cache misses. When finishing the
computation with the blocks, it will proceed with the next
stage computation without waiting for other blocks of the
current stage to complete their computations. Obviously,
merging stages will reduce modularity of the program. So
one needs to be careful when applying this idea.

3) Designing data structures and workflow for vectoriza-
tion. A vector unit typically requires its data to be layout
in memory in consecutive fashion so that they can be moved
into and out of its large register file quickly. This optimiza-
tion ensures that the data structures fit the required layout
to maximize the utilization of the vector unit.

4.2 Correlation Computation
As mentioned before, computing correlations are reduced

to matrix multiplications. At this stage, a single worker node
needs to correlate its assigned V voxels with all brain voxels
over all epochs of interest, so the job is essentially doing
matrix multiplications between relatively small matrices and
tall-skinny matrices as illustrated in the top half of Fig. 5.
Our optimization idea #1 is applied to block voxel data as
depicted in dark red in Fig. 5. Performing computation
within blocks won’t trigger unnecessary L2 cache misses.
In order to fully utilize the VPUs, we defined the size of
blocks to be integral multiples of the vector unit width. Also,
we consciously transpose the block of tall-skinny matrix to
better utilize the VPUs (idea #3).

Figure 5: Retain correlations (red blocks) in L2
cache for the normalization stage.

4.3 Within-Subject Normalization
The within-subject normalization stage of FCMA is the

second pipeline stage in Fig. 3. It uses the data computed
in the correlation computation stage. Applying idea #2 will
allow us to avoid many cache misses at this stage.

After computing the correlation coefficients in local blocks,
the normalization can be applied to the data before they are

written back. What we need to take into consideration, be-
sides the blocking, is that the data necessary for a complete
normalization should reside in the same block. It is a cache
locality driven job scheduling approach.

Fig. 5 indicates the merging process. Out of V assigned
voxels, each thread only takes B voxels to compute their cor-
relations with some other B′ voxels for E epochs belonged
to one subject, yielding B portions of within-subject cor-
relation coefficients that can be normalized. Note that all
blocks in red can be fit into L2 cache, we won’t spend addi-
tional time to fetch the data between stages. Using different
threads to handle different blocks in this way, all correla-
tion data would be computed and immediately normalized
then written to the memory. The idea of merging adjacent
stages in the procedure pipeline can be generalized to all
memory-bound processes where the memory latency cannot
be hidden completely by the computation.

on
e

su
bj

ec
t,

on
e

vo
xe

l {
Co

rr
el

at
io

n
ve

ct
or

s

Voxels

Block size
SIMD width (16)

Compute Prefetch
into L1

Presumed
L2 resident

Figure 6: The z-score normalization deals with cor-
relation vectors in L2 cache and processes 16 voxels
at a time using SIMD instructions.

In addition to merging stages, we also apply our opti-
mization idea #3 to this stage. Our approach to vectorizing
the normalization procedure is shown in Fig. 6, which de-
tails the processing that takes place for each dark red block
shown on the bottom half of Fig. 5. The correlation vectors
are placed contiguously into a temporary block of memory.
We process the data in chunks of 16 voxels using SIMD in-
structions and registers (enabled with the #pragma SIMD
directive). To compute the Fisher transformation, we must
perform a logf operation on each data element. On the
coprocessor, the logf computation benefits from hardware
support for single precision transcendental functions in the
extended math unit (EMU). During the first pass through
the data, we also compute the mean and standard deviation
across correlation vectors. We use the E[X2] − E[X]2 for-
mulation for variance in order to compute both the mean
and standard deviation in one pass. As one block of 16 vox-
els are processed, we prefetch the next set of voxels into the
L1 cache using mm prefetch(MM HINT T0) We do not
do L2 software prefetching because the data are presumed
to be L2 resident by our blocking design. After the mean
and standard deviation are computed, a second pass through
the data subtracts the mean and scales by the inverse of the
standard deviation.

4.4 SVM Cross Validation
This stage consists of two parts, a linear kernel matrix

precomputation followed by linear SVM cross validation over
the precomputed kernel matrices.

SVM kernel matrix precomputation in FCMA is essen-
tially a matrix multiplication between a voxel’s M ∗N data

matrix and its transpose, where M is the number of epochs
over which the correlation is computed, and N is the number
of voxels in the brain, normally M << N . We implemented
a custom symmetric matrix multiplication function for the
coprocessor which attempts to optimize for our particular
setting by applying our optimization ideas #1 and #3 sim-
ilar to the first stage.

Fig. 7 shows the workflow of our optimized implementa-
tion. Since one worker node deals with certain number of
voxels simultaneously, a number of independent matrix mul-
tiplications are running in parallel, one per voxel, as shown
in the depth dimension. The size of a data matrix is typi-
cally ∼60 MB (400 epochs times 35,000 voxels matrix stored
in single precision values), making it possible to consume
the ∼6GB of on-board memory of the coprocessor by pro-
cessing only a 100 voxels’ worth of matrices. Therefore the
number of independent, concurrently executed matrix mul-
tiplications is limited. They cannot saturate the coproces-
sor, which compels us to split the problems across multiple
threads and use OpenMP locks to control access to the C
matrices.

Thread 0
Thread 1

Thread 2
Thread 3

Thread 4
Thread 5

C1=A1
TA1

Copy

C local

A local

AT local

Transpose

add
when
complete

A1

A2

A3

C2

C3

L1

Figure 7: Multiple tall-skinny matrix multiplica-
tions (sryk) are performed to precompute the SVM
kernel matrices.

Each thread proceeds down the long dimension of the
matrix in blocks of 96 rows (an integral multiple of VPU
length). These blocks are copied into a local buffer (A local).
Smaller blocks of A local are then transposed and copied into
a smaller buffer (AT local). Once the data is ready, we call
an auto-generated 16x9x96 assembly-level matrix multiply
routine in the inner loop to generate each block of C local.
We pad A local with zeros for the last block if A’s height is
not a perfect multiple of 96, and use vectorized loops for the
other dimensions. After the thread completes its portion of
the matrix multiply, it takes a lock corresponding to the C
matrix and adds its contribution to C [22].

Regarding the SVM cross validation algorithm over the
precomputed kernel matrix, in order to circumvent the draw-
backs of LibSVM mentioned above, we adopt a fast SVM
algorithm[5] implemented for GPUs and rewrote the CUDA
code into C++ to run on the coprocessor. Like LibSVM,

this fast SVM applies SMO algorithm to solve a SVM train-
ing problem. Typically, a single iteration of SMO algorithm
involves choosing two rows from the kernel matrix and using
them to update information for all other rows. The choice
of the two rows is done heuristically. But instead of only
using the LibSVM heuristic in the working set selection, our
fast SVM adaptively chooses the faster heuristic (either first
order[17] or second order[10]) based on the convergence rate
on the specific training data. The original CUDA implemen-
tation aims at solving huge SVM problems involving tens of
thousands of samples by coordinating all GPU cores to work
together. In our problem setting, we face a large number of
smaller scale SVM problems, one per voxel, each of which
only contains a few hundred of samples and has the kernel
matrix (linear kernel) precomputed. Therefore, we make it
so that a thread takes full responsibility for the cross vali-
dation of one voxel. Moreover, using our optimization idea
#3, we vectorize the most computationally intensive part of
the code for better usage of VPUs. We call the adopted fast
SVM algorithm implemented on the coprocessor PhiSVM.

Another challenge is finding enough parallelism (i.e. in-
dependent SVM problems) to fully utilize the coprocessor
during the cross validation stage without exceeding the lim-
its of the on-board memory. This can be solved by redesign-
ing the computing procedure, in which we accumulate a least
240 voxels’ kernel matrices before conducting the SVM cross
validation. Since a kernel matrix is significantly smaller than
a data matrix, reducing to kernel matrices can save a lot of
space so that doing SVM cross validation for at least 240
voxels becomes possible, therefore no available computing
power will be wasted during the SVM cross validation.

5. EVALUATIONS
To evaluate the proposed optimization ideas, we pursued

answers to following questions:

1. What is the system performance for the offline and
online data analysis cases?

2. Is the system scalable as we add more coprocessor
nodes to the cluster?

3. For a typical dataset, what are the performance con-
tributions of the proposed optimization ideas?

4. How does the resulting system work on general-purpose
processors?

To answer these questions, we will first describe our experi-
mental setup and then present our results and analysis.

5.1 Experimental Setup
We ran our experiments on a 48-node cluster, intercon-

nected by an Arista 10GE switch. Each node of the cluster
has a motherboard with: 2 IntelR© XeonR© E5-2670 proces-
sors, both running at a 2.6GHz clock rate, 2 IntelR© Xeon

Phi
TM

5110P coprocessors running at 1053MHz, connected
via PCI-e slots, 256GB memory, 8 x 3TB SATA disks, and
1.65TB FusionIO ScaleIO Flash memory card.

The host node runs CentOS 6.3 and each coprocessor runs
its on-board Linux (version 2.6.38.8). The software pack-
ages used in our experiments include MPSS (version 3.3),
Intel MPI (version 5.0.2.044), and Intel compiler (version
15.0.2) 2. IntelR© MKL (version 11.2) and LibSVM (version

2
Intel’s compilers may or may not optimize to the same degree for non-Intel

3.20) libraries were applied to the baseline implementation

for comparison. We used IntelR© vTune
TM

Amplifier (version
2015.2.0.39344) to collect the performance data.

Our experiments used two fMRI datasets. The first one
is a face-scene dataset consisting of fMRI data from 18 sub-
jects who passively viewed either face or scene images as
described in [30]. The second one is an attention dataset
used in [16] consisting of fMRI data from 30 subjects who
were asked to look at either left or right images on a screen
while being scanned. Detailed information on the datasets
is listed in Table 2.

Dataset Voxels Subjects Epochs Epoch length

Face-scene 34,470 18 216 12
Attention 25,260 30 540 12

Table 2: Datasets used in the experiments.

5.2 System Performance
In this section, we present the results for both offline and

emulated online data analysis. The offline case is time con-
suming because it involved leave-one-subject-out nested n-
fold cross validation, which we elaborate on below, on all n
subjects in the dataset. The emulated online data analysis
involved selecting voxels to train a classifier using one sub-
ject’s data on the fly to provide real-time neurofeedback in
subsequent experiments.

5.2.1 Offline analysis performance
We ran the nested leave-one-subject-out n-fold cross val-

idation on both face-scene and attention datasets, where n
is the total number of subjects in a dataset. In each fold of
the outer loop cross validation, a training set consisting of
n−1 subjects was used for voxel selection by conducting an-
other level of leave-one-subject-out cross validation. Voxels
were selected based on their classification accuracies of their
correlation vectors, determined by the procedure illustrated
in Fig. 3. After voxel selection in each fold, a final classifier
can be trained using the correlation patterns of the selected
voxels to test on the left out subject of the outer loop to
verify the selection. In addition, the selected voxels across
different folds can be statistically compared to identify the
reliable voxels whose correlation patterns with the rest of
the brain are informative[30].

Table 3 shows the elapsed time in seconds as a function of
the number of coprocessor nodes. For the face-scene dataset,
the experiment ran 18 folds of leave-one-subject-out valida-
tion. The whole process took 85 seconds using 96 coproces-
sors. On average, each fold took 4.7 seconds.

For the attention dataset, the experiment ran 30 folds of
leave-one-subject-out validation. The whole process took
741 seconds using 96 coprocessors. On average, each fold
took 24.7 seconds. The attention experiment took longer be-
cause it involved more subjects and each subject performed
more epochs.

We reproduced the results used in [30] and [16].

microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or ef-
fectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use
with Intel microprocessors. Certain optimizations not specific to Intel micro-
architecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice. Notice revision #20110804

#nodes 1 8 16 32 64 96

Face-scene 5101 694 385 242 124 85
Attention 54506 6813 3620 2172 1099 741

Table 3: The elapsed times (seconds) of offline data
analysis as a function of the number of coprocessors
used.

5.2.2 Emulated online analysis performance
In closed-loop rtfMRI study of brain interactions, a clas-

sifier needs to be trained online using the voxels selected by
FCMA based on the whole-brain correlation. This classi-
fier will be used for sending feedback to the subject while
being scanned. The voxel selection procedure is similar to
the offline analysis, except that instead of taking data from
multiple subjects to process in batch, we only use the data
received from the subject being scanned, and no nested cross
validation is applied.

We performed the emulated online analysis on one sub-
ject’s data from each of the face-scene and attention datasets.
The voxels for building the classifier were selected using the
subject’s data. Table 4 shows the elapsed time in seconds
as a function of the number of coprocessors. Using 96 co-
processors, voxels were selected within 3 seconds which is
fast enough to build an online classifier to provide real-time
feedback to the subject in the subsequent experiments.

#nodes 1 8 16 32 64 96

Face-scene 12.00 3.18 2.51 2.26 2.24 2.21
Attention 16.50 3.96 2.97 2.59 2.52 2.51

Table 4: The elapsed time (seconds) of voxel selec-
tion for building the online classifier as a function of
the number of coprocessors used.

5.3 Speedup
We studied the scalability of our optimized implementa-

tion of FCMA by varying the number of coprocessors used
in the offline analysis.

Fig. 8 shows the speedup of both datasets as a function
of the number of coprocessors. With 96 coprocessors, we
achieved a 59.8x on the face-scene dataset and a 73.5x on the
attention dataset. The speedup is greater for the attention
dataset due to its larger size.

Figure 8: Speedups of the optimized implementation
with face-scene and attention datasets.

5.4 Performance Implications of Optimizations
In this subsection, we focus on the performance of a sin-

gle coprocessor to demonstrate the contributions of our pro-
posed optimization ideas.

5.4.1 Performance of a three-stage task
We first compare the overall performance of a single co-

processor for our optimized implementation and the base-
line implementation with MKL and LibSVM libraries. Both
face-scene and attention datasets were used.

As we described in Section 3.1.1, in the parallel FCMA
framework, the master node distributes tasks to worker nodes
by partitioning all voxels into pieces. In the baseline imple-
mentation, due to the memory limitation of the coprocessor,
the master only can allocate 120 voxels of the face-scene
dataset or 60 voxels of the attention dataset to a copro-
cessor for processing, respectively. As a result, the third
stage of the baseline implementation of the FCMA pipeline
cannot fully exploit the available hardware capability of the
coprocessor, since one thread takes care of only one voxel’s
cross validation. This constraint is largely relaxed in the
optimized implementation in which a coprocessor can take
more voxels (e.g. 240) by reducing the large correlation data
into much smaller precomputed kernel matrices portion by
portion to guarantee the consumed memory size doesn’t go
beyond the available on-board memory of the coprocessor.

Figure 9: Improvement of the optimized implemen-
tation over the baseline for a single worker task. The
baseline performance is normalized to 1.

Since the number of voxels one coprocessor can take dif-
fers between the baseline and optimized implementations,
we normalized the performance to processing time per voxel.
Fig. 9 shows the speedup of the optimized implementation
over the baseline. The performance of the baseline was set
to 1 for both datasets. Our optimized implementation runs
5.24x and 16.39x faster than the baseline, respectively. For
attention dataset, the fraction of time spent in SVM compu-
tation is significantly larger, and hence benefits much more
from our optimizations.

Next, we break down the contributions based on the pro-
posed optimizations. We compared the performance of pro-
cessing a task of 120 voxels from the face-scene dataset in a
single coprocessor.

5.4.2 Blocking skinny matrices (vs. MKL)
There are two matrix multiplications in two stages of the

FCMA processing pipeline: in correlation computation and
in SVM cross validation. For offline analysis on face-scene
dataset, at the correlation computation stage, FCMA per-
forms 216 (epochs) multiplications of matrix of A[120,12]
with B[12,34,470] and writes results to matrix C[120,34,470]

(illustrated in Fig. 4). 21.443 billion floating-point opera-
tions and 4.136 million memory writes are performed.

In the SVM cross validation stage, FCMA performs a mul-
tiplication of matrix A[204,34,470] with its transpose AT and
writes results to matrix C[204,204] (illustrated in Fig. 7).
Since A is multiplied with its transpose, only upper or lower
triangle of the resulting matrix needs to be computed. This
matrix multiplication performs 172.14 billion floating point
operations but only 20,088 memory writes.

Table 5 reports the elapsed times and Giga FLoating Op-
erations/Seconds (GFLOPS) for both cases. Our optimized
matrix multiplication achieved 126 GFLOPS in the correla-
tion computation stage and 430 GFLOPS in the SVM cross
validation stage. The matrix multiplication using MKL achieved
93 GFLOPS for the correlation computation stage, and 108
GFLOPS for the SVM cross validation stage.

The matrix multiplication in the correlation computation
stage produced many more writes than the SVM cross val-
idation stage did, explaining why the latter reached 3.4x
higher GFLOPS.

Function Time GFLOPS

Our blocking
correlation matrix
computation

170 ms 126

SVM kernel ma-
trix computation

400 ms 430

MKL
correlation matrix
computation

230 ms 93

SVM kernel ma-
trix computation

1600 ms 108

Table 5: The performance results of matrix multipli-
cation routines used in both correlation computation
and SVM cross validation stages.

Table 6 shows the total number of memory references, the
number of L2 cache misses, and the vectorization intensi-
ties of the matrix multiplication routines in our optimized
implementation and in MKL. These are the combined re-
sults of both stages. The vectorization intensity measured
from vTune for our optimized implementation was close to
the theoretical peak value 16, whereas that for MKL was
3.6. The results show that our implementation took full ad-
vantage of the vector unit, whereas MKL only utilized 23%
of the hardware capability. Our implementation had 5.82x
fewer L2 cache misses than MKL (121.8 vs. 708.9 million).
These results show that MKL performed relatively poorly
because of its large number of L2 cache misses and low vec-
torization intensity.

Our measurements also indicate that MKL made 3.49x
more memory references than our implementation (34,858.37
vs. 9,974.87 millions).

#memory refs L2 miss
Vector
intensity

Our blocking 9,974,870,500 121,800,000 16
MKL 34,858,368,500 708,900,000 3.6

Table 6: Memory references, L2 misses and vector
intensity of the matrix multiplication routines.

5.4.3 Retaining cache contents
To understand the performance impact of modifying the

FCMA algorithm to retain cache contents across the correla-
tion computation and normalization stages, we implemented
two cases: separated and merged.

As we discussed in Section 4.3, the merged implemen-
tation performed normalization on correlations as soon as
they were computed, without waiting for the entire correla-
tion computation stage to finish. The data in the L2 cache
was retained for within-subject normalization without writ-
ing out to memory and reading back in again. Conversely,
the separated implementation finished all correlation com-
putation before moving forward to the normalization stage.

Table 7 shows the results of elapsed times, number of
memory references, and number of L2 cache misses for both
implementations. The merged implementation had a fewer
number of memory references (1.93 vs. 4.35 billion) and a
fewer number of L2 cache misses (67.5 vs. 188.1 million),
resulting in a 24% reduction in elapsed time.

Method Time #memory refs L2 miss

merged 320 ms 1,925,806,500 67,500,000
separated 420 ms 4,347,490,500 188,100,000

Table 7: Performance comparisons of retaining L2
cache contents (merged stages vs separated stages).

5.4.4 Vectorization for SVM
To determine the performance impact of vectorization in

the coprocessor, we compared LibSVM, our optimized Lib-
SVM, and our optimized PhiSVM.

In both optimized implementations, we reorganized the
data layout and workflow for the computationally intensive
loops in order to better utilize the VPUs of the coprocessor.
Since single precision floating point numbers are accurate
enough for our application, we used float type in PhiSVM.
For fair comparison, we also converted all double type values
in LibSVM to float type so that the VPU can process an
equal number of values in a single SIMD instruction.

Table 8 shows the elapsed times and vectorization intensi-
ties for all three implementations. Optimized PhiSVM took
390 ms whereas optimized LibSVM and the single precision
LibSVM took 1,150 ms and 3,600 ms, respectively. PhiSVM
outperformed LibSVM even after its careful vectorization
because of the advances in algorithm and data structure as
described in section 3.3.3.

Time Vector intensity

LibSVM 3600 ms 1.9
Optimized LibSVM 1150 ms 8.9
PhiSVM 390 ms 9.8

Table 8: The performance of SVM cross validation.

5.5 Performance on IntelR© XeonR© Processors
To determine how well our optimizations for the coproces-

sor would work on a general-purpose processor, we compared
our optimized implementation with the baseline implemen-
tation on a single E5-2670 processor in one node of our clus-

Figure 10: The performance improvement of our op-
timized version over the baseline implementation on
Intel R© Xeon R© E5-2670 processor. The baseline per-
formance is normalized to 1.

ter, described in Section 5.1. This experiment was identical
to what is described in Section 5.4.1.

Figure 10 shows that our optimizations for the coprocessor
worked quite well for the processor. Our optimized imple-
mentation ran 1.4x and 2.5x faster than the baseline for the
face-scene and attention datasets, respectively.

The performance improvements on the processor were sig-
nificant but less dramatic than on the coprocessor for sev-
eral reasons. First, the processor has a relatively large Last
Level Cache (LLC) per CPU core or per thread. It has 8
CPU cores and 16 hyperthreads and 20MB LLC. On av-
erage, each thread has 1.28MB LLC per thread, which is
an order of magnitude larger than that for the coprocessor.
The large cache allows fewer LLC cache misses, making the
performance tuning for L2 cache misses less important.

Second, the width of vector registers on the processor is
256-bit, only half of that on the coprocessor. The narrower
vector unit makes the effect of vectorization less significant.

Third, the processor supports 2 hyperthreading threads,
whereas the coprocessor supports 4 per core. The total num-
ber of concurrent threads on the processor is 16 versus 240
on the coprocessor. Therefore, the thread starvation issue
presenting during SVM cross validation of the baseline im-
plementation on the coprocessor doesn’t exist on the pro-
cessor.

Figure 11: The performance comparisons between

Xeon R© E5-2670 processor and Xeon Phi
TM

5110P
coprocessor (a) face-scene dataset; (b) attention
dataset. The baseline performance of E5-2670 pro-
cessor is normalized to 1.

We also compared the baseline and the optimized imple-
mentation on the processor and coprocessor. Fig. 11 shows
that the optimized implementation on the coprocessor out-
performed the same code running on the processor for both
face-scene and attention datasets.

6. RELATED WORK
Many scientific computing applications in multiple disci-

plines such as physics and chemistry have taken advantage

of manycore architectures such as the IntelR© Xeon Phi
TM

coprocessors[3, 15]. To the best of our knowledge, this paper
presents the first neuroscience application that adopts the
coprocessor for achieving performance goals (for both offline
and online analysis). We have improved upon previously
published FCMA runtime results [30]. Even our baseline
implementation is 9.7X faster than [30]. Overall, using the
coprocessor we achieve a 50.8X speedup. While some of the
performance difference can be attributed to the different pro-
cessor generations used, much of it is due to the algorithm
and performance optimization.

Data locality optimizing algorithms for improving the effi-
ciency of accessing data residing in memory hierarchies have
been well studied for a long time[18, 31]. Several optimiza-
tions have been performed to fully exploit the processor ar-
chitecture in order to achieve high performance of linear al-
gebra operations especially matrix multiplication[13], based
on which different versions of BLAS routines such as MKL
and GotoBlas were implemented. There are studies about
optimizing matrix multiplication on manycore architectures
such as GPUs[19, 26, 28] and some recent work on IntelR©

Xeon Phi
TM

coprocessors[12, 14]. Most of the optimizations
for GEMM focus on coordinating multiple threads to con-
quer huge, nearly-square matrices. Our application, on the
other hand, requires a single thread to work on one matrix
multiplication between matrices with one small dimension.
Dense matrix multiplication involving tall-skinny matrices
is known to be difficult to optimize[8]. Tall-skinny matrix
operations appear in other contexts as well, such as QR
decomposition or eigenvalue problems [1, 2, 4, 20]. Cache
locality optimizations are among the most important opti-
mizations required for tall-skinny problems. Cache locality
driven thread scheduling (e.g. [23]) is a general way to block
data efficiently. We have implemented similar ideas (Section
4.2.1 and 4.2.2) in our pipeline for better L2 cache reuse.

While other techniques for solving linear SVM exist (such
as [9]), we use PhiSVM (which is derived from SMO-based
techniques such as [5] and [10]) as it is fast and efficient
for small SVM problems that we solve for FCMA. PhiSVM
is also usable in other applications that require an efficient
coprocessor-based SVM library.

The optimization ideas presented in this paper (such as
tall-skinny matrix multiplication) are relevant and general-
izable to a lot of other applications as well e.g. [20].

7. CONCLUSIONS
This paper describes an emerging neuroscience application

FCMA and its optimization on IntelR© Xeon Phi
TM

copro-
cessors. Our optimized implementation for a single node
task on the coprocessor runs 5x-16x faster than an opti-
mized baseline version with MKL and LibSVM libraries for
two different datasets. Our optimization also improves the
performance on the E5-2670 processor by a factor 2. In ad-
dition, we show that our parallel code achieves near linear
speedup on 5760 coprocessor cores. This work reduces the
previously intractable timescale of computing and analyz-
ing the full correlation matrix in an fMRI dataset of the
human brain to minutes for offline analysis, and seconds for
online analysis. This latter finding makes plugging FCMA

into established closed-loop rtfMRI studies possible.
Due to increasing amounts of parallelism as we move from

multicore to manycore architectures, optimizations to ex-
ploit these hardware features become increasingly impor-
tant. This paper optimized FCMA code by redesigning ma-
trix multiplication for tall-skinny matrices, merging adjacent
memory-bound stages in the procedure pipeline, and rewrit-
ing more vectorization-friendly SVM algorithms, in the con-
sideration of making efficient use of the available hardware
(cache and VPUs). The optimizations described in this pa-
per can be generalized as independent components that have
many other applications. We also showed that most of the
optimizations done on the coprocessor works as well on the
processor, although to a lesser degree, due to similar mem-
ory hierarchical structure and vectorization techniques. In
addition, we believe our implementation can be migrated on

to the next generation of IntelR© Xeon Phi
TM

(KNL) with
moderate effort.

Our future work will pursue two directions, computational
and neuroscientific. Computationally, we plan to develop a
more general framework for efficiently running a variety of

applications on the IntelR© Xeon Phi
TM

coprocessor. Neuro-
scientifically, we are using these new tools to explore other
applications of the FCMA approach that will benefit from
advanced high performance computing devices such as the

IntelR© Xeon Phi
TM

coprocessor.

8. ACKNOWLEDGMENTS
We would like to thank our shepherd Mihai Anitescu and

the anonymous reviewers of the SC program committee for
their valuable comments which improved the paper a lot. We
are also grateful to Yungang Bao, Guangming Tan and Lin-
peng Tang for helpful discussion. This work was supported
in part by Intel Corporation, the J. Insley Blair Pyne fund
at Princeton University, the John Templeton Foundation,
the National Science Foundation (MRI BCS1229597), and
the National Institutes of Health (R01 EY021755).

9. REFERENCES
[1] H. M. Aktulga, A. Buluç, S. Williams, and C. Yang.

Optimizing sparse matrix-multiple vectors
multiplication for nuclear configuration interaction
calculations. In Proceedings of the 2014 IEEE 28th
International Parallel and Distributed Processing
Symposium, IPDPS ’14, pages 1213–1222, May 2014.

[2] M. Anderson, G. Ballard, J. Demmel, and K. Keutzer.
Communication-avoiding qr decomposition for gpus.
In Proceedings of the 2011 IEEE International Parallel
and Distributed Processing Symposium, IPDPS ’11,
pages 48–58, May 2011.

[3] E. Aprà, M. Klemm, and K. Kowalski. Efficient
implementation of many-body quantum chemical
methods on the intel R© xeon phiTM coprocessor. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC ’14, pages 674–684, Nov 2014.

[4] T. Auckenthaler, T. Huckle, and R. Wittmann. A
blocked qr-decomposition for the parallel symmetric
eigenvalue problem. Parallel Comput., 40(7):186–194,
2014.

[5] B. Catanzaro, N. Sundaram, and K. Keutzer. Fast
support vector machine training and classification on

graphics processors. In Proceedings of the 25th
international conference on Machine learning, ICML
’08, pages 104–111, Jul 2008.

[6] C.-C. Chang and C.-J. Lin. Libsvm: A library for
support vector machines. ACM Trans. Intell. Syst.
Technol., 2(3):1–27, 2011.

[7] M. T. deBettencourt, J. D. Cohen, R. F. Lee, K. A.
Norman, and N. B. Turk-Browne. Closed-loop training
of attention with real-time brain imaging. Nature
Neuroscience, 18(3):470–475, 2015.

[8] J. Demmel, D. Eliahu, A. Fox, S. Kamil, B. Lipshitz,
O. Schwartz, and O. Spillinger. Poster: Beating mkl
and scalapack at rectangular matrix multiplication
using the bfs/dfs approach. In Proceedings of the 2012
SC Companion: High Performance Computing,
Networking Storage and Analysis, SCC ’12, pages
1370–1370, Nov 2012.

[9] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang,
and C.-J. Lin. Liblinear: A library for large linear
classification. J. Mach. Learn. Res., 9:1871–1874, 2008.

[10] R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set
selection using second order information for training
support vector machines. J. Mach. Learn. Res.,
6:1889–1918, 2005.

[11] J. Fang, A. L. Varbanescu, H. J. Sips, L. Zhang,
Y. Che, and C. Xu. An empirical study of intel xeon
phi. arXiv preprint arXiv:1310.5842, 2013.

[12] P. Gepner, V. Gamayunov, D. L. Fraser, E. Houdard,
L. Sauge, D. Declat, and M. Dubois. Evaluation of
dgemm implementation on intel xeon phi coprocessor.
Journal of Computers, 9(7):1566–1571, 2014.

[13] K. Goto and R. A. Geijn. Anatomy of
high-performance matrix multiplication. ACM
Transactions on Mathematical Software (TOMS),
34(3):1–25, 2008.

[14] A. Heinecke, K. Vaidyanathan, M. Smelyanskiy,
A. Kobotov, R. Dubtsov, G. Henry, A. G. Shet,
G. Chrysos, and P. Dubey. Design and
implementation of the linpack benchmark for single
and multi-node systems based on intel R© xeon phiTM

coprocessor. In Proceedings of the 27th IEEE
International Parallel and Distributed Processing
Symposium, IPDPS ’13, pages 126–137, May 2013.

[15] S. Heybrock, B. Joó, D. D. Kalamkar,
M. Smelyanskiy, K. Vaidyanathan, T. Wettig, and
P. Dubey. Lattice qcd with domain decomposition on
intel R© xeon phiTM co-processors. In Proceedings of the
International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’14,
pages 69–80, Nov 2014.

[16] J. Hutchinson, Y. Wang, and N. Turk-Browne.
Decoding the locus of attention from the full
correlation matrix of the human brain. In Society for
Neuroscience, SfN ’14, Nov 2014.

[17] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and
K. R. K. Murthy. Improvements to platt’s smo
algorithm for svm classifier design. Neural
Computation, 13(3):637–649, 2001.

[18] M. S. Lam, E. E. Rothberg, and M. E. Wolf. The

cache performance and optimizations of blocked
algorithms. ACM SIGOPS Operating Systems Review,
25(Special Issue):63–74, 1991.

[19] Y. Li, J. Dongarra, and S. Tomov. A note on
auto-tuning gemm for gpus. In Computational Science
- ICCS 2009, pages 884–892. Springer, 2009.

[20] A. Marek, V. Blum, R. Johanni, V. Havu, B. Lang,
T. Auckenthaler, A. Heinecke, H.-J. Bungartz, and
H. Lederer. The elpa library: scalable parallel
eigenvalue solutions for electronic structure theory and
computational science. Journal of Physics: Condensed
Matter, 26(21):213201, 2014.

[21] K. A. Norman, S. M. Polyn, G. J. Detre, and J. V.
Haxby. Beyond mind-reading: multi-voxel pattern
analysis of fmri data. Trends in cognitive sciences,
10(9):424–430, 2006.

[22] H. Pabst. Libxsmm. https://github.com/hfp/libxsmm.

[23] J. Philbin, J. Edler, O. J. Anshus, C. C. Douglas, and
K. Li. Thread scheduling for cache locality. In
Proceedings of the 7th International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS VII, pages 60–71, Oct
1996.

[24] J. Platt. Sequential minimal optimization: A fast
algorithm for training support vector machines.
Technical Report MSR-TR-98-14, Microsoft Research,
Apr 1998.

[25] J. Sulzer, S. Haller, F. Scharnowski, N. Weiskopf,
N. Birbaumer, M. L. Blefari, A. Bruehl, L. Cohen,
R. Gassert, R. Goebel, et al. Real-time fmri
neurofeedback: progress and challenges. NeuroImage,
76:386–399, 2013.

[26] G. Tan, L. Li, S. Triechle, E. Phillips, Y. Bao, and
N. Sun. Fast implementation of dgemm on fermi gpu.
In Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage
and Analysis, SC ’11, pages 35:1–35:11, Nov 2011.

[27] N. B. Turk-Browne. Functional interactions as big
data in the human brain. Science, 342(6158):580–584,
2013.

[28] V. Volkov and J. W. Demmel. Benchmarking gpus to
tune dense linear algebra. In Proceedings of the 2008
ACM/IEEE Conference on Supercomputing, SC ’08,
pages 31:1–31:11, Nov 2008.

[29] Y. Wang, J. D. Cohen, K. Li, and N. B. Turk-Browne.
Full correlation matrix analysis of fmri data. Technical
report, Princeton Neuroscience Institute, 2014.

[30] Y. Wang, J. D. Cohen, K. Li, and N. B. Turk-Browne.
Full correlation matrix analysis (fcma): An unbiased
method for task-related functional connectivity.
Journal of Neuroscience Methods, 251:108–119, 2015.

[31] M. E. Wolf and M. S. Lam. A data locality optimizing
algorithm. ACM Sigplan Notices, 26(6):30–44, 1991.

[32] K. J. Worsley, J.-I. Chen, J. Lerch, and A. C. Evans.
Comparing functional connectivity via thresholding
correlations and singular value decomposition.
Philosophical Transactions of the Royal Society B:

Biological Sciences, 360(1457):913–920, 2005.

