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Large-Scale FPGA-Based Convolutional Networks
Micro-robots, unmanned aerial vehicles (UAVs), imaging sensor networks,

wireless phones, and other embedded vision systems all require low cost and
high-speed implementations of synthetic vision systems capable of recognizing
and categorizing objects in a scene.

Many successful object recognition systems use dense features extracted on
regularly-spaced patches over the input image. The majority of the feature ex-
traction systems have a common structure composed of a filter bank (generally
based on oriented edge detectors or 2D gabor functions), a non-linear operation
(quantization, winner-take-all, sparsification, normalization, and/or point-wise
saturation) and finally a pooling operation (max, average or histogramming).
For example, the scale-invariant feature transform (SIFT (Lowe, 2004)) operator
applies oriented edge filters to a small patch and determines the dominant orien-
tation through a winner-take-all operation. Finally, the resulting sparse vectors
are added (pooled) over a larger patch to form local orientation histogram.
Some recognition systems use a single stage of feature extractors (Lazebnik
et al., 2006; Dalal and Triggs, 2005; Berg et al., 2005; Pinto et al., 2008).

Other models like HMAX-type models (Serre et al., 2005; Mutch and Lowe,
2006) and convolutional networks use two more layers of successive feature ex-
tractors. Different training algorithms have been used for learning the parame-
ters of convolutional networks. In LeCun et al. (1998b) and Huang and LeCun
(2006), pure supervised learning is used to update the parameters. However, re-
cent works have focused on training with an auxiliary task (Ahmed et al., 2008)
or using unsupervised objectives (Ranzato et al., 2007b; Kavukcuoglu et al.,
2009; Jarrett et al., 2009; Lee et al., 2009).

This chapter presents a scalable hardware architecture for large-scale multi-
layered synthetic vision systems based on large parallel filter banks, such as con-
volutional networks. This hardware can also be used to accelerate the execution
(and partial learning) of recent vision algorithms like SIFT and HMAX (Lazeb-
nik et al., 2006; Serre et al., 2005). This system is a data-flow vision engine
that can perform real-time detection, recognition and localization in mega-pixel
images processed as pipelined streams. The system was designed with the goal
of providing categorization of an arbitrary number of objects, while consuming
very little power.

Graphics Processing Units (GPUs) are becoming a common alternative to
custom hardware in vision applications, as demonstrated in (Coates et al., 2009).
Their advantage over custom hardware are numerous: they are inexpensive,
available in most recent computers, and easily programmable with standard
development kits, such as nVidia CUDA SDK. The main reasons for continuing
developing custom hardware are twofold: performance and power consumption.
By developing a custom architecture that is fully adapted to a certain range
of tasks (as is shown in this chapter), the product of power consumption by
performance can be improved by a factor of 100.

1 Learning Internal Representations

One of the key questions of Vision Science (natural and artificial) is how to
produce good internal representations of the visual world. What sort of internal
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representation would allow an artificial vision system to detect and classify
objects into categories, independently of pose, scale, illumination, conformation,
and clutter? More interestingly, how could an artificial vision system learn
appropriate internal representations automatically, the way animals and humans
seem to learn by simply looking at the world? In the time-honored approach to
computer vision (and to pattern recognition in general), the question is avoided:
internal representations are produced by a hand-crafted feature extractor, whose
output is fed to a trainable classifier. While the issue of learning features has
been a topic of interest for many years, considerable progress has been achieved
in the last few years with the development of so-called deep learning methods.

Good internal representations are hierarchical. In vision, pixels are assem-
bled into edglets, edglets into motifs, motifs into parts, parts into objects, and
objects into scenes. This suggests that recognition architectures for vision (and
for other modalities such as audio and natural language) should have multiple
trainable stages stacked on top of each other, one for each level in the feature
hierarchy. This raises two new questions: what to put in each stage? and how to
train such deep, multi-stage architectures? Convolutional Networks (ConvNets)
are an answer to the first question. Until recently, the answer to the second
question was to use gradient-based supervised learning, but recent research in
deep learning has produced a number of unsupervised methods which greatly
reduce the need for labeled samples.

1.1 Convolutional Networks

convolutional network!overview
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Figure 1: Architecture of a typical convolutional network for object recognition.
This implements a convolutional feature extractor and a linear classifier for
generic N-class object recognition. Once trained, the network can be computed
on arbitrary large input images, producing a classification map as output.

Convolutional Networks (LeCun et al., 1990, 1998b) are trainable architec-
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tures composed of multiple stages. The input and output of each stage are sets
of arrays called feature maps. For example, if the input is a color image, each
feature map would be a 2D array containing a color channel of the input image
(for an audio input each feature map would be a 1D array, and for a video or
volumetric image, it would be a 3D array). At the output, each feature map
represents a particular feature extracted at all locations on the input. Each
stage is composed of three layers: a filter bank layer, a non-linearity layer, and
a feature pooling layer. A typical ConvNet is composed of one, two or three
such 3-layer stages, followed by a classification module.

Each layer type is now described for the case of image recognition. We intro-
duce the following convention: banks of images will be seen as three dimensional
arrays in which the first dimension is the number of independent maps/images,
the second is the height of the maps and the third is the width. The input bank
of a module is denoted x, the output bank y, an image in the input bank xi, a
pixel in the input bank xijk.

• Filter Bank Layer - F : the input is a 3D array with n1 2D feature maps
of size n2 × n3. Each component is denoted xijk, and each feature map
is denoted xi. The output is also a 3D array, y composed of m1 feature
maps of size m2 ×m3. A trainable filter (kernel) kij in the filter bank has
size l1 × l2 and connects input feature map xi to output feature map yj .
The module computes

yj = bj +
∑

i

kij ∗ xi (1)

where bj is a trainable bias parameter, and ∗ is the 2D discrete convolution
operator:

(kij ∗ xi)pq =

l1/2−1∑

m=−l1/2

l2/2−1∑

n=−l2/2

kij,m,nxi,p+m,q+n. (2)

Each filter detects a particular feature at every location on the input.
Hence spatially translating the input of a feature detection layer will trans-
late the output but leave it otherwise unchanged.

• Non-Linearity Layer - R,N : In traditional ConvNets this simply con-
sists in a pointwise tanh function applied to each site (ijk). However,
recent implementations have used more sophisticated non-linearities. A
useful one for natural image recognition is the rectified tanh: Rabs(x) =
abs(gi.tanh(x)) where gi is a trainable gain parameter per each input fea-
ture map i. The rectified tanh is sometimes followed by a subtractive and
divisive local normalization N , which enforces local competition between
adjacent features in a feature map, and between features at the closeby
spatial locations. Local competition usually results in features that are
decorrelated, thereby maximizing their individual role. The subtractive
normalization operation for a given site xijk computes:
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vijk = xijk −
∑

ipq

wpq.xi,j+p,k+q, (3)

where wpq is a normalized truncated Gaussian weighting window (typically
of size 9× 9). The divisive normalization computes

yijk =
vijk

max(mean(σjk), σjk)
, (4)

where σjk = (
∑

ipq wpq.v
2
i,j+p,k+q)

1/2. The local contrast normalization

layer is inspired by visual neuroscience models (Lyu and Simoncelli, 2008;
Pinto et al., 2008).

• Feature Pooling Layer - P : This layer treats each feature map sepa-
rately. In its simplest instance, called PA, it computes the average values
over a neighborhood in each feature map. The neighborhoods are stepped
by a stride larger than 1 (but smaller than or equal the pooling neigh-
borhood). This results in a reduced-resolution output feature map which
is robust to small variations in the location of features in the previous
layer. The average operation is sometimes replaced by a max operation,
PM . Traditional ConvNets use a pointwise tanh() after the pooling layer,
but more recent models do not. Some ConvNets dispense with the sep-
arate pooling layer entirely, but use strides larger than one in the filter
bank layer to reduce the resolution (LeCun et al., 1989; Simard et al.,
2003). In some recent versions of ConvNets, the pooling also pools similar
features at the same location, in addition to the same feature at nearby
locations (Kavukcuoglu et al., 2009).

Supervised training is performed using on-line stochastic gradient descent to
minimize the discrepancy between the desired output and the actual output of
the network. All the coefficients in all the layers are updated simultaneously by
the learning procedure for each sample. The gradients are computed with the
back-propagation method. Details of the procedure are given in LeCun et al.
(1998b), and methods for efficient training are detailed in LeCun et al. (1998a).

1.2 History and Applications

convolutional network!history
ConvNets can be seen as a representatives of a wide class of models that we

will call Multi-Stage Hubel-Wiesel Architectures. The idea is rooted in Hubel
and Wiesel’s classic 1962 work on the cat’s primary visual cortex. It identified
orientation-selective simple cells with local receptive fields, whose role is similar
to the ConvNets filter bank layers, and complex cells, whose role is similar
to the pooling layers. The first such model to be simulated on a computer
was Fukushima’s Neocognitron (Fukushima and Miyake, 1982), which used a
layer-wise, unsupervised competitive learning algorithm for the filter banks,
and a separately-trained supervised linear classifier for the output layer. The
innovation in LeCun et al. (1989, 1990) was to simplify the architecture and to
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use the back-propagation algorithm to train the entire system in a supervised
fashion.

The approach was very successful, and led to several implementations, rang-
ing from optical character recognition (OCR) to object detection, scene segmen-
tation, and robot navigation:

• check reading (handwriting recognition) at AT&T (LeCun et al., 1998b)
and Microsoft (Simard et al., 2003; Chellapilla et al., 2006),

• detection in images, including faces with record accuracy and real-time
performance (Vaillant et al., 1994; Garcia and Delakis, 2004; Osadchy
et al., 2007; Nasse et al., 2009), license plates and faces in Google’s StreetView (Frome
et al., 2009), or customers’ gender and age at NEC,

• more experimental detection of hands/gestures (Nowlan and Platt, 1995),
logos and text (Delakis and Garcia, 2008),

• vision-based navigation for off-road robots: in the DARPA-sponsored
LAGR program, ConvNets were used for long-range obstacle detection (Had-
sell et al., 2009). In Hadsell et al. (2009), the system is pre-trained off-line
using a combination of unsupervised learning (as described in section 1.3)
and supervised learning. It is then adapted on-line, as the robot runs,
using labels provided by a short-range stereovision system (see videos at
http://www.cs.nyu.edu/~yann/research/lagr),

• interesting new applications include image restoration (Jain and Seung,
2008) and image segmentation, particularly for biological images (Ning
et al., 2005).

Over the years, other instances of the Multi-Stage Hubel-Wiesel Architec-
ture have appeared that are in the tradition of the Neocognitron: unlike su-
pervised ConvNets, they use a combination of hand-crafting, and simple unsu-
pervised methods to design the filter banks. Notable examples include Mozer’s
visual models (Mozer, 1991), and the so-called HMAX family of models from
T. Poggio’s lab at MIT (Serre et al., 2005; Mutch and Lowe, 2006), which uses
hard-wired Gabor filters in the first stage, and a simple unsupervised random
template selection algorithm for the second stage. All stages use point-wise
non-linearities and max pooling. From the same institute, Pinto et al. (Pinto
et al., 2008) have identified the most appropriate non-linearities and normaliza-
tions by running systematic experiments with a single-stage architecture using
GPU-based parallel hardware.

1.3 Unsupervised Learning of ConvNets

convolutional network!unsupervised learning
Training deep, multi-stage architectures using supervised gradient back prop-

agation requires many labeled samples. However in many problems labeled data
is scarce whereas unlabeled data is abundant. Recent research in deep learn-
ing (Hinton and Salakhutdinov, 2006; Bengio et al., 2007; Ranzato et al., 2007a)
has shown that unsupervised learning can be used to train each stage one af-
ter the other using only unlabeled data, reducing the requirement for labeled
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samples significantly. In Jarrett et al. (2009), using abs and normalization
non-linearities, unsupervised pre-training, and supervised global refinement has
been shown to yield excellent performance on the Caltech-101 dataset with only
30 training samples per category (more on this below). In Lee et al. (2009),
good accuracy was obtained on the same set using a very different unsupervised
method based on sparse Restricted Boltzmann Machines. Several works at NEC
have also shown that using auxiliary tasks (Ahmed et al., 2008; Weston et al.,
2008) helps regularizing the system and produces excellent performance.

1.3.1 Unsupervised Training with Predictive Sparse Decomposition

The unsupervised method we propose, to learn the filter coefficients in the filter
bank layers, is called Predictive Sparse Decomposition (PSD) (Kavukcuoglu
et al., 2008). Similar to the well-known sparse coding algorithms (Olshausen
and Field, 1997), inputs are approximated as a sparse linear combination of
dictionary elements.

Z∗ = min
Z

‖X −WZ‖22 + λ|Z|1 (5)

In conventional sparse coding ( 5), for any given input X, an expensive op-
timization algorithm is run to find the optimal sparse representation Z∗ (the
“basis pursuit” problem). PSD trains a non-linear feed-forward regressor (or
encoder) C(X,K) = g.(tanh(X ∗ k+ b)) to approximate the sparse solution Z∗.
During training, the feature vector Z∗ is obtained by minimizing the following
compound energy:

E(Z,W,K) = ‖X −WZ‖22 + λ‖Z‖1 + ‖Z − C(X,K)‖22 (6)

where W is the matrix whose columns are the dictionary elements and K =
k, g, b are the encoder filter, bias and gain parameters. For each training sample
X, one first finds Z∗ that minimizes E, then W and K are adjusted by one step
of stochastic gradient descent to lower E. Once training is complete, the feature
vector for a given input is simply approximated with Z∗ = C(X,K), hence the
process is extremely fast (feed-forward).

1.3.2 Results on Object Recognition

convolutional network!object recognition
In this section, various architectures and training procedures are compared

to determine which non-linearities are preferable, and which training protocol
makes a difference.

Generic Object Recognition using Caltech 101 Dataset. Caltech 101
is a standard dataset of labeled images, containing 101 categories of objects in
the wild.

We use a two-stage system where, the first stage is composed of an F layer
with 64 filters of size 9× 9, followed by different combinations of non-linearities
and pooling. The second-stage feature extractor is fed with the output of the
first stage and extracts 256 output features maps, each of which combines a
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Table 1: Average recognition rates on Caltech-101 with 30 training samples
per class. Each row contains results for one of the training protocols (U =
unsupervised, X = random, + = supervised fine-tuning), and each column for
one type of architecture (F = filter bank, PA = average pooling, PM = max
pooling, R = rectification, N = normalization).

Single Stage [64.F9×9 −R/N/P5×5 − logreg]
F−Rabs −N−PA F−Rabs −PA F−N−PM F−PA

U+ 54.2% 50.0% 44.3% 14.5%
X+ 54.8% 47.0% 38.0% 14.3%
U 52.2% 43.3% 44.0% 13.4%
X 53.3% 31.7% 32.1% 12.1%

Two Stages [256.F9×9 −R/N/P4×4 − logreg]
F−Rabs −N−PA F−Rabs −PA F−N−PM F−PA

U+ 65.5% 60.5% 61.0% 32.0%
X+ 64.7% 59.5% 60.0% 29.7%
U 63.7% 46.7% 56.0% 9.1%
X 62.9% 33.7% 37.6% 8.8%

random subset of 16 feature maps from the previous stage using 9 × 9 kernels.
Hence the total number of convolution kernels is 256× 16 = 4096.

Table 1 summarizes the results for the experiments, where U and X denotes
unsupervised pre-training and random initialization respectively, and + denotes
supervised fine-tuning of the whole system.
1. Excellent accuracy of 65.5% is obtained using unsupervised pre-training and
supervised refinement with abs and normalization non-linearities. The result
is on par with the popular model based on SIFT and pyramid match kernel
SVM (Lazebnik et al., 2006). It is clear that abs and normalization are crucial
for achieving good performance. This is an extremely important fact for users
of convolutional networks, which traditionally only use tanh().
2. Astonishingly, random filters without any filter learning whatsoever achieve
decent performance (62.9% for X), as long as abs and normalization are present
(Rabs − N − PA). A more detailed study on this particular case can be found
in Jarrett et al. (2009).
3. Comparing experiments from rows X vs X+, U vs U+, we see that super-
vised fine tuning consistently improves the performance, particularly with weak
non-linearities.
4. It seems that unsupervised pre-training (U , U+) is crucial when newly pro-
posed non-linearities are not in place.

Handwritten Digit Classification using MNIST Dataset. MNIST is a
dataset of handwritten digits (LeCun and Cortes, 1998): it contains 60, 000 28×
28 image patches of digits on uniform backgrounds, and a standard testing set of
10, 000 different samples, widely used by the vision community as a benchmark
for algorithms. Each patch is labeled with a number ranging from 0 to 9.

Using the evidence gathered in previous experiments, we used a two-stage
system with a two-layer fully-connected classifier to learn the mapping between

8



the samples’ pixels and the labels. The two convolutional stages were pre-
trained unsupervised (without the labels), and refined supervised (with the la-
bels). An error rate of 0.53% was achieved on the test set. To our knowledge,
this is the lowest error rate ever reported on the original MNIST dataset, with-
out distortions or preprocessing. The best previously reported error rate was
0.60% (Ranzato et al., 2007a).

1.3.3 Connection with Other Approaches in Object Recognition

Many recent successful object recognition systems can also be seen as single
or multi-layer feature extraction systems followed by a classifier. Most common
feature extraction systems like SIFT (Lowe, 2004), HoG (Dalal and Triggs, 2005)
are composed of filter banks (oriented edge detectors at multiple scales) followed
by non-linearities (winner take all) and pooling (histogramming). A Pyramid
Match Kernel (PMK) SVM (Lazebnik et al., 2006) classifier can also be seen as
another layer of feature extraction since it performs a K-means based feature
extraction followed by local histogramming.

2 A Dedicated Digital Hardware Architecture

convolutional network!hardware architecture FPGA ASIC
Biologically inspired vision models, and more generally image processing al-

gorithms are usually expressed as sequences of operations or transformations.
They can be well described by a modular approach, in which each module pro-
cesses an input image bank and produces a new bank. Figure 1 is a graphical
illustration of this approach. Each module requires the previous bank to be fully
(or at least partially) available before computing its output. This causality pre-
vents simple parallelism to be implemented across modules. However parallelism
can easily be introduced within a module, and at several levels, depending on
the kind of underlying operations.

In the following discussion, banks of images will be seen as three dimensional
arrays in which the first dimension is the number of independent maps/images,
the second is the height of the maps and the third is the width. As in section 1.1,
the input bank of a module is denoted x, the output bank y, an image in the
input bank xi, a pixel in the input bank xijk. Input banks’ dimensions will be
noted n1×n2×n3, output banks m1×m2×m3. Each module implements a type
of operation that requires K operations per input pixel xijk. The starting point
of the discussion is a general purpose processor composed of an arithmetic unit, a
fast internal cache of size SINT , and an external memory of size SEXT >> SINT .
The bandwidth between the internal logic and the external memory array will
be noted BEXT .

The coarsest level of parallelism can be obtained at the image bank level. A
module that applies a unary transformation to produce one output image for
each input image (n1 = m1) can be broken up in n1 independent threads. This
is the most basic form of parallelism, and it finds its limits when n2×n3 becomes
larger than a threshold, closely related to SINT . In fact, past a certain size, the
number of pixels that can be processed in a given time equals BEXT /(2 ×K)
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(bandwidth is shared between writes and reads). In other terms, the amount of
parallelism that can be introduced at this level is limited by BEXT /K.

A finer level of parallelism can be introduced at the operation level. The cost
of fetching pixels from the external memory being very high, the most efficient
form of parallelism can occur when pixels are reused in multiple operations
(K > 1). It can be shown that optimal performances are reached ifK operations
can be produced in parallel in the arithmetic unit. In other terms, the amount
of parallelism that can be introduced at this level is limited by BEXT .

If the internal cache size SINT is large enough to hold all the images of the
entire set of modules to compute, then the overall performance of the system if
defined by BINT , the bandwidth between the arithmetic unit and the internal
cache. The size of internal memory caches growing according to Moore’s Law,
more data can fit internally, which naturally pulls performances of computations
from K ×BEXT to K ×BINT .

For a given technology though, SINT has an upper bound, and the only
part of the system we can act upon is the internal architecture. Based on
these observations, our approach is to tackle the problem of producing the K
parallel operations by rethinking the architecture of the arithmetic units, while
conserving the traditional external memory storage. Our problem can be stated
simply:

Problem 1. K being the number of operations performed per input pixel;
BEXT being the bandwidth available between the arithmetic units and the
external memory array; we want to establish an architecture that produces K
operations in parallel, so that BEXT is fully utilized.

2.1 A Data-Flow Approach

data-flow computing
The data-flow hardware architecture was initiated by Adams (1969), and

quickly became an active field of research (Dennis and Misunas, 1974; Hicks
et al., 1993; l. Gaudiot et al., 1994). Cho et al. (2008) presents one of the latest
data-flow architectures that has several similarities to the approach presented
here.

Figure 2 shows a data-flow architecture whose goal is to process homogeneous
streams of data in parallel (Farabet et al., 2010). It is defined around several
key ideas:

• a 2D grid of NPT Processing Tiles (PTs) that contain:

– a bank of processing operators. An operator can be anything from a
FIFO to an arithmetic operator, or even a combination of arithmetic
operators. The operators are connected to local data lines,

– a routing multiplexer (MUX). The MUX connects the local data lines
to global data lines or to neighboring tiles.

• a Smart Direct Memory Access module (Smart DMA), that interfaces
off-chip memory and provides asynchronous data transfers, with priority
management,
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• a set of Nglobal global data lines used to connect PTs to the Smart DMA,
Nglobal << NPT ,

• a set of local data lines used to connect PTs with their 4 neighbors,

• a Runtime Configuration Bus, used to reconfigure many aspects of the
grid at runtime—connections, operators, Smart DMA modes. . . (the con-
figurable elements are depicted as squares on Fig.2),

• a controller that can reconfigure most of the computing grid and the Smart
DMA at runtime.

2.1.1 On Runtime Reconfiguration

reconfigurable hardware
One of the most interesting aspects of this grid is its configuration capabil-

ities. Many systems have been proposed which are based on two-dimensional
arrays of processing elements interconnected by a routing fabric that is reconfig-
urable. Field Programmable Gate Arrays (FPGAs) for instance, offer one of the
most versatile grid of processing elements. Each of these processing elements—
usually a simple look-up table—can be connected to any of the other elements
of the grid, which provides with the most generic routing fabric one can think
of. Thanks to the simplicity of the processing elements, the number that can
be packed in a single package is in the order of 104 to 105. The drawback is the
reconfiguration time, which takes in the order of milliseconds, and the synthesis
time, which takes in the order of minutes to hours depending on the complexity
of the circuit.

At the other end of the spectrum, recent multicore processors implement
only a few powerful processing elements (in the order of 10s to 100s). For these
architectures, no synthesis is involved, instead, extensions to existing program-
ming languages are used to explicitly describe parallelism. The advantage of
these architectures is the relative simplicity of use: the implementation of an
algorithm rarely takes more than a few days, whereas months are required for
a typical circuit synthesis for FPGAs.

The architecture presented here is at the middle of this spectrum. Building
a fully generic data-flow computer is a tedious task. Reducing the spectrum of
applications to the image processing problem—as stated in Problem 1—allows
us to define the following constraints:

• high throughput is a top priority, low latency is not. Indeed, most of
the operations performed on images are replicated over both dimensions
of these images, usually bringing the amount of similar computations to
a number that is much larger than the typical latencies of a pipelined
processing unit,

• therefore each operator has to provide with a maximum throughput (e.g.
one operation per clock cycle) to the detriment of any initial latency, and
has to be stallable (e.g. must handle discontinuities in data streams).

• configuration time has to be low, or more precisely in the order of the
system’s latency. This constraint simply states that the system should be
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able to reconfigure itself between two kinds of operations in a time that
is negligible compared to the image sizes. That is a crucial point to allow
runtime reconfiguration,

• the processing elements in the grid should be as coarse grained as per-
mitted, to maximize the ratio between computing logic and routing logic.
Creating a grid for a particular application (e.g. ConvNets) allows the use
of very coarse operators. On the other hand, a general purpose grid has
to cover the space of standard numeric operators,

• the processing elements, although they might be complex, should not have
any internal state, but should just passively process any incoming data.
The task of sequencing operations is done by a global control unit that
simply configures the entire grid for a given operation, lets the data flow
in, and prepares the following operation.

The first two points of this list are crucial to create a flexible data-flow
system. Several types of grids have been proposed in the past (Dennis and
Misunas, 1974; Hicks et al., 1993; Kung, 1986), often trying to solve the dual
latency/throughput problem, and often providing a computing fabric that is too
rigid.

The grid proposed here provides a flexible processing framework, due to the
stallable nature of the operators. Indeed, any paths can be configured on the
grid, even paths that require more bandwidth that is actually feasible. Instead
of breaking, each operator will stall its pipeline when required. This is achieved
by the use of FIFOs at the input and output of each operators, that compensate
for bubbles in the data streams, and force the operators to stall when they are
full. Any sequence of operators can then be easily created, without concern for
bandwidth issues.

The third point is achieved by the use of a runtime configuration bus, com-
mon to all units. Each module in the design has a set of configurable parameters,
routes or settings (depicted as squares on Figure 2), and possesses a unique ad-
dress on the network. Groups of similar modules also share a broadcast address,
which dramatically speeds up reconfiguration of elements that need to perform
similar tasks.

The last point depicts the data-flow idea of having (at least theoretically)
no state, or instruction pointer. In the case of the system presented here, the
grid has no state, but a state does exit in a centralized control unit. For each
configuration of the grid, no state is used, and the presence of data drives
the computations. Although this leads to an optimal throughput, the system
presented here strives to be as general as possible, and having the possibility of
configuring the grid quickly to perform a new type of operation is crucial to run
algorithms that require different types of computations.

A typical execution of an operation on this system is the following: (1)
the control unit configures each tile to be used for the computation and each
connection between the tiles and their neighbors and/or the global lines, by
sending a configuration command to each of them, (2) it configures the Smart
DMA to prefetch the data to be processed, and to be ready to write results
back to off-chip memory, (3) when the DMA is ready, it triggers the streaming
out, (4) each tile processes its respective incoming streaming data, and passes
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the results to another tile, or back to the Smart DMA, (5) the control unit is
notified of the end of operations when the Smart DMA has completed.
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Figure 3: The grid is configured for a complex computation that involves several
tiles: the 3 top tiles perform a 3×3 convolution, the 3 intermediate tiles another
3 × 3 convolution, the bottom left tile sums these two convolutions, and the
bottom centre tile applies a function to the result.

Example 2. Such a grid can be used to perform arbitrary computations on
streams of data, from plain unary operations to complex nested operations.
As stated above, operators can be easily cascaded and connected across tiles,
independently managing their flow by the use of input/output FIFOs.

Figure 3 shows an example of configuration, where the grid is configured to
compute a sum of two convolutions followed by a non-linear activation function

y1,i,j = Tanh(

K−1∑

m=0

K−1∑

n=0

x1,i+m,j+nw1,m,n +

K−1∑

m=0

K−1∑

n=0

x2,i+m,j+nw2,m,n). (7)

The operator
∑∏

performs a sum of products, or a dot-product between
an incoming stream and a local set of weights (preloaded as a stream too).
Therefore each tile performs a 1D convolution, and 3 tiles are used to compute
a 2D convolution with a 3×3 kernel. All the paths are simplified of course, and
in some cases one line represents multiple parallel streams.
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It can be noted that this last example provides a nice solution to Problem 1.
Indeed, the input data being 2 images x1 and x2, and the output data one
image y1, the K operations are performed in parallel, and the entire operation
is achieved at a bandwidth of BEXT /3.

2.2 An FPGA-Based ConvNet Processor

convolutional network!hardware implementation
Recent DSP-oriented FPGAs include a large number of hard-wired MAC

units and several thousands of programmable cells (lookup tables), which allows
fast prototyping and real-time simulation of circuits, but also actual implemen-
tations to be used in final products.

In this section we present a concrete implementation of the ideas presented in
section 2.1, specially tailored for ConvNets. We will refer to this implementation
as the Convnet Processor. The architecture presented here has been fully coded
in hardware description languages (HDL) that target both ASIC synthesis and
programmable hardware like FPGAs.

A schematic summary of the ConvNet Processor system is presented in Fig-
ure 4. The main components of our system are: (1) a Control Unit (implemented
on a general purpose CPU), (2) a grid of Processing Tiles (PTs), and (3) a Smart
DMA interfacing external memory via a standard controller.
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Figure 4: Overview of the ConvNet Processor system. A grid of multiple full-
custom Processing Tiles tailored to ConvNet operations, and a fast streaming
memory interface (Smart DMA).
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In this implementation, the Control Unit is implemented by a general purpose
CPU. This is more convenient than a custom state machine as it allows the use
of standard C compilers. Moreover, the CPU has full access to the external
memory (via global data lines), and it can use this large storage to store its
program instructions.

2.2.1 Specialized Processing Tiles

The PTs are independent processing tiles laid out on a two-dimensional grid.
As presented in section 2.1, they contain a routing multiplexer (MUX) and
local operators. Compared to the general purpose architecture proposed above,
this implementation is specialized for ConvNets and other applications that rely
heavily on two-dimensional convolutions (from 80% to 90% of computations for
ConvNets).

Figure 4 shows this specialization:

• the top row PTs only implement Multiply and Accumulate (MAC) arrays
(
∑∏

operators), which can be used as 2D convolvers (implemented in
the FPGA by dedicated hardwired MACs). It can also perform on-the-
fly subsampling (spatial pooling), and simple dot-products (linear classi-
fiers) (Farabet et al., 2009),

• the middle row PTs contain general purpose operators (squaring and di-
viding are necessary for divisive normalization),

• the bottom row PTs implement non-linear mapping engines, used to com-
pute all sorts of functions from Tanh() to Sqrt() or Abs(). Those can
be used at all stages of the ConvNets, from normalization to non-linear
activation units.

The operators in the PTs are fully pipelined to produce one result per clock
cycle. Image pixels are stored in off-chip memory as Q8.8 (16bit, fixed-point),
transported on global lines as Q8.8 but scaled to 32bit integers within operators,
to keep full precision between successive operations. The numeric precision, and
hence the size of a pixel, will be noted Pbits.

The 2D convolver can be viewed as a data-flow grid itself, with the only
difference that the connections between the operators (the MACs) are fixed.
The reason for having a full-blown 2D convolver within a tile (instead of a 1D
convolver per tile, or even simply one MAC per tile) is that it maximizes the
ratio between actual computing logic and routing logic, as stated previously.
Of course it is not as flexible, and the choice of the array size is a hardwired
parameter, but it is a reasonable choice for an FPGA implementation, and for
image processing in general. For an ASIC implementation, having a 1D dot-
product operator per tile is probably the best compromise.

The pipelined implementation of this 2D convolver (as described in Farabet
et al. (2009)), computes Equation 8 at every clock cycle.

y1,i,j = x2,i,j +

K−1∑

m=0

K−1∑

n=0

x1,i+m,j+nw1,m,n (8)
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In equation 8 x1,i,j is a value in the input plane, w1,m,n is a value in a K×K
convolution kernel, x2,i,j is a value in a plane to be combined with the result,
and y1 is the output plane.

Both the kernel and the image are streams loaded from the memory, and the
filter kernels can be pre-loaded in local caches concurrently to another operation:
each new pixel thus triggers K ×K parallel operations.

All the non-linearities in neural networks can be computed with the use of
look-up tables or piece-wise linear decompositions.

A loop-up table associates one output value for each input value, and there-
fore requires as much memory as the range of possible inputs. It is the fastest
method to compute a non-linear mapping, but the time required to reload a
new table is prohibitive if different mappings are to be computed with the same
hardware.

A piece-wise linear decomposition is not as accurate (f is approximated
by g, as in Eq. 9), but only requires a couple of coefficients ai to represent
a simple mapping such as a hyperbolic tangent, or a square root. It can be
reprogrammed very quickly at runtime, allowing multiple mappings to reuse
the same hardware. Moreover, if the coefficients ai follow the constraint given
by Eq. 10, the hardware can be reduced to shifters and adders only.

g(x) = aix+ bi for x ∈ [li, li+1] (9)

ai =
1

2m
+

1

2n
m,n ∈ [0, 5]. (10)

2.2.2 Smart DMA Implementation

A critical part of this architecture is the Direct Memory Access (DMA) module.
Our Smart DMA module is a full custom engine that has been designed to allow
NDMA ports to access the external memory totally asynchronously.

A dedicated arbiter is used as hardware Memory Interface to multiplex and
demultiplex access to the external memory with high bandwidth. Subsequent
buffers on each port insure continuity of service on a port while the others are
utilized.

The DMA is smart, because it complements the Control Unit. Each port of
the DMA can be configured to read or write a particular chunk of data, with
an optional stride (for 2D streams), and communicate its status to the Control
Unit. Although this might seem trivial, it respects of one the foundations of
data-flow computing: while the Control Unit configures the grid and the DMA
ports for each operation, an operation is driven exclusively by the data, from
its fetching, to its writing back to off-chip memory.

If the PTs are synchronous to the memory bus clock, the following relation-
ship can be established between the memory bandwidth BEXT , the number of
possible parallel data transfers MAX(NDMA) and the bits per pixel Pbits:

MAX(NDMA) =
BEXT

Pbits
. (11)

For example Pbits = 16 and BEXT = 128bit/cyc allows MAX(NDMA) = 7
simultaneous transfers.
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2.3 Compiling ConvNets for the ConvNet Processor

Prior to being run on the ConvNet Processor, a ConvNet has to be trained
offline, on a regular computer, and then converted to a compact representation
that can be interpreted by the Control Unit to generate controls/configurations
for the system.

Offline, the training is performed with existing software such as Lush (LeCun
and Bottou, 2002) or Torch-5 (Collobert, 2008). Both libraries use the modular
approach described in the introduction of section 2.

On board, the Control Unit of the ConvNet Processor decodes the repre-
sentation, which results in several grid reconfigurations, interspersed with data
streams. This representation will be denoted as bytecode from now on. Com-
piling a ConvNet for the ConvNet Processor can be summarized as the task of
mapping the offline training results to this bytecode.

Extensive research has been done on the question of how to schedule data-
flow computations (Lee and David, 1987), and how to represent streams and
computations on streams (l. Gaudiot et al., 1994). In this section, we only care
about how to schedule computations for a ConvNet (and similar architectures)
on our ConvNet Processor engine.

It is a more restricted problem, and can be stated simply:

Problem 3. Given a particular ConvNet architecture, and trained parameters,
and given a particular implementation of the data-flow grid, what is the sequence
of grid configurations that yield the shortest computation time? Or in other
terms, for a given ConvNet architecture, and a given data-flow architecture,
how to produce the bytecode that yields the shortest computing time?

As described in the introduction of section 2, there are three levels at which
computations can be parallelized:

• across modules: operators can be cascaded, and multiple modules can be
computed on the fly (average speedup),

• across images, within a module: can be done if multiple instances of the
required operator exist (poor speedup, as each independent operation re-
quires its own input/output streams, which are limited by BEXT ),

• within an image: some operators naturally implement that (the 2D con-
volver, which performs all the MACs in parallel), in some cases, multiple
tiles can be used to parallelize computations.

Parallelizing computations across modules can be done in special cases. Ex-
ample 2 illustrates this case: two operators (each belonging to a separate mod-
ule) are cascaded, which speeds up this computation by a factor of 2.

Parallelizing computations across images is straightforward but very limited.
Here is an example that illustrates that point:

Example 4. The data-flow system built has 3 PTs with 2D convolvers, 3 PTs
with standard operators, and 2 PTs with non-linear mappers (as depicted in
Figure 4, and the exercise is to map a fully-connected filter-bank with 3 inputs
and 8 outputs, e.g. a filer bank where each of the 8 outputs is a sum of 3 inputs
convolved with a different kernel:
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yj =
2∑

i=0

kij ∗ xi for j ∈ [0, 7]. (12)

For the given hardware, the optimal mapping is: each of the three 2D con-
volvers is configured to convolve one of the three inputs xi with a kernel kij , and
a standard PT is configured to accumulate those 3 streams in one and produce
yj .

Although optimal (3 images are processed in parallel), 4 simultaneous streams
are created at the Smart DMA level, which imposes a maximum bandwidth of
BEXT /4 per stream.

Parallelizing computations within images is what this grid is best at. Ex-
ample 2 is a perfect example of how an operation (in that case a sequence of
operations) can be done in a single pass on the grid.

2.4 Performance

Figure 5 reports a performance comparison for the computation of a typical
ConvNet on multiple platforms:

• the CPU data was measured from compiled C code (GNU C compiler and
Blas libraries) on a Core 2 Duo 2.66GHz Apple Macbook PRO laptop
operating at 90W (30 to 40W for the CPU);

• the FPGA data was measured on both a Xilinx Virtex-4 SX35 operating
at 200MHz and 7W and a Xilinx Virtex-6 VLX240T operating at 200MHz
and 10W;

• the GPU data was obtained from a CUDA-based implementation running
on a laptop-range nVidia GT335m operating at 1GHz and 40W;

• the ASIC data is simulation data gathered from an IBM 65nm CMOS
process.For an ASIC-based design with a speed of 400MHz (speeds of up
to > 1 GHz are possible), the projected power consumption is simulated
at 3W.

The test ConvNet is composed of a non-linear normalization layer, 3 con-
volutional layers, 2 pooling layers, and a linear classifier. The convolutional
layers and pooling layers are followed by non-linear activation units (hyperbolic
tangent). Overall, it possesses NKER K × K learned kernels, NPOOL P × P
learned pooling kernels, and N 200 dimension classification vectors.

Figure 5 was produced by increasing the parameters NKER, NPOOL, K and
P simultaneously, and estimating the time to compute the ConvNet for each
set of parameters. The x-axis reports the overall number of linear connections
in the ConvNet (e.g. the number of multiply and accumulate operations to
perform).

Note: on the spectrum of parallel computers described in Section 2.1.1,
GPUs belong to the small grids (100s of elements) of large and complex pro-
cessing units (full-blown streaming processors). Although they offer one of the
most interesting ratio of computing power over price, their drawback is their
high power consumption (from 40W to 200W per unit).
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Figure 5: Compute time for a typical ConvNet (as seen in Figure 1).

2.4.1 Precision

Recognition rates for standard datasets were obtained to benchmark the preci-
sion loss induced by the fixed-point coding. Using floating-point representation
for training and testing, the following results were obtained: for NORB, 85%
recognition rate was achieved on the test dataset, for MNIST, 95% and for
UMASS (faces dataset), 98%. The same tests were conducted on the ConvNet
Processor with fixed-point representation (Q8.8), and the results were, respec-
tively: 85%, 95% and 98%, which confirms the assumptions made a priori on
the influence of quantization noise.

To provide more insight into the fixed-point conversion, the number of
weights being zeroed with quantization was measured, in the case of the NORB
object detector. Figure 6 shows the results: at 8bits, the quantization impact
is already significant (10% of weights become useless), although it has no effect
on the detection accuracy.

3 Summary

The convolutional network architecture is a remarkably versatile, yet concep-
tually simple paradigm that can be applied to a wide spectrum of perceptual
tasks. While traditional ConvNets trained with supervised learning are very
effective, training them requires a large number of labeled training samples.
We have shown that using simple architectural tricks such as rectification and
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contrast normalization, and using unsupervised pre-training of each filter bank,
the need for labeled samples is considerably reduced.

We presented a data-flow computer that can be optimized to compute con-
volutional networks. Different use cases were studied, and it was seen that
mapping/unrolling a convolutional network was straight-forward on such an
architecture, thanks to their relatively uniform design.

Because of their applicability to a wide range of tasks, ConvNets are per-
fect candidates for hardware implementations, and embedded applications, as
demonstrated by the increasing amount of work in this area. We expect to see
many new embedded vision systems based on ConvNets in the next few years.

Future work on our data-flow architecture will aim at making it more gen-
eral, to open the doors to more complex and generic recognition tasks. Multiple
object detection (LeCun et al., 2004) or online learning for adaptive robot guid-
ance (Hadsell et al., 2009) are tasks that will be largely improved by this system.
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