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Our ability to sustain attention over long periods of time is limited, 
both in the laboratory1,2 and in the real world3,4. This has been dem-
onstrated using vigilance tasks in which participants monitor for and 
detect infrequent stimuli5–7. Behavior in these tasks is predictive of 
attention disorders8 and is reliable over time9. Within the normal 
population, there is considerable variability in attentional abilities as 
measured by these tasks, and this variability is related to other percep-
tual and mnemonic processes10. We hypothesized that lapses in these 
tasks—and in life—occur because humans do not adequately monitor 
how well they are attending from moment to moment. Lapses emerge 
gradually and may be detected too late, after the chain of events that 
produces behavioral errors has been initiated. Accordingly, one way 
to train sustained attention might be to provide a more sensitive feed-
back signal, such that participants can learn to sense upcoming lapses 
earlier and prevent them from manifesting in behavior.

To pursue this approach, we created a continuous feedback signal 
customized to each participant, reflecting moment-to-moment vari-
ations in their sustained attention. Participants were presented with 
a series of composite stimuli containing a mixture of information 
relevant and irrelevant to the task. Online analysis was used to track 
their attentional state, operationalized as the amount of task-relevant 
information active in their brains minus the amount of task-irrelevant 
information. Finally, this measure was provided to participants as feed-
back by altering the appearance of the next stimulus. When partici-
pants were attending well (that is, more task-relevant information was 
detected in their brains), we increased the proportion of task-relevant 
information in the stimulus. Conversely, when they were attending 
poorly (that is, more task-irrelevant information was detected), we 
reduced the proportion of task-relevant information in the stimulus. 
In this way, we amplified the consequences of their attentional state, 
rewarding them with a stronger stimulus and an easier task for stay-
ing focused and punishing them with a degraded stimulus and a more 

difficult task for lapsing. We hypothesized that this would make atten-
tional lapses more salient and that participants would be able to exploit 
this feedback to learn to improve their sustained attention.

For online analysis, we combined real-time functional magnetic 
resonance imaging (rtfMRI)11–13 with multivariate pattern analysis 
(MVPA)14. The rtfMRI component of the system involved immedi-
ately acquiring measurements of the blood oxygen level–dependent 
(BOLD) response over the whole brain. This technique has been used 
previously to display univariate activity for pain regulation15, to dis-
play multivariate activity for inducing perceptual learning16 and to 
trigger stimulus presentation based on univariate activity in brain 
regions associated with memory encoding17 and vigilance18. Our 
approach was related to these latter triggering designs, in the sense 
that brain states were used to control stimuli rather than controlling 
a separate feedback scale or gauge, but differed in that the stimulus 
triggered by a brain state at one moment in time influenced the brain 
state at the next moment, which in turn influenced the next stimulus, 
and so on. In other words, after a stimulus was triggered, the trial did 
not end and there was no delay imposed before the next stimulus 
could be triggered17,18. This approach of continually updating task 
stimuli as they perturb brain states has been referred to as “closed-
loop”12. The MVPA component of the system decoded differences in 
whole-brain BOLD activity patterns reflecting attention to the task-
relevant versus task-irrelevant stimuli. The combination of MVPA 
and rtfMRI is well suited for rapidly decoding distributed cognitive 
processes such as attention.

There are other, simpler ways of delivering real-time feedback: for 
example, based on electroencephalography (EEG), eye tracking or man-
ual responses. We used rtfMRI for two reasons. First, in combination 
with advanced analytical techniques, fMRI may provide more direct 
access to internal brain states. For instance, we sought to identify which 
specific kind of information a participant was attending to over time  
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Lapses of attention can have negative consequences, including accidents and lost productivity. Here we used closed-loop 
neurofeedback to improve sustained attention abilities and reduce the frequency of lapses. During a sustained attention task, 
the focus of attention was monitored in real time with multivariate pattern analysis of whole-brain neuroimaging data. When 
indicators of an attentional lapse were detected in the brain, we gave human participants feedback by making the task more 
difficult. Behavioral performance improved after one training session, relative to control participants who received feedback 
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network. A neural consequence of training was that the basal ganglia and ventral temporal cortex came to represent attentional 
states more distinctively. These findings suggest that attentional failures do not reflect an upper limit on cognitive potential and 
that attention can be trained with appropriate feedback about neural signals.
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rather than whether they were attentive in general (often called 
alertness, arousal or mindfulness), as is reflected in pupil size19 and 
response time variability20. Second, by using fMRI, we not only gain a 
sensitive neural measure for feedback but also the ability to character-
ize the neural mechanisms that support attention training. We take 
advantage of this opportunity by considering both how training alters 
the brain and which brain regions provide useful feedback signals for 
training. We do not claim that this is the only or best approach for 
training attention, but simply that it may prove valuable because of 
its sensitivity, its ability to generate neuroscientific data that can help 
constrain our interpretation, and its potential to lay the foundation 
for further advances in the use of other methods.

This study involved three sessions on different days: behavioral  
pre-training, rtfMRI training and behavioral post-training 
(Supplementary Fig. 1). Participants performed the same sustained 
attention task in all sessions, viewing blocks of face/scene compos-
ite stimuli. Before each block, they were cued to attend to one task-
 relevant category (for example, scenes) and were instructed to ignore 
the other, task-irrelevant category (in this case, faces). Within the 
task-relevant category, they responded (‘go’ trial) if the image was 
from a specified target subcategory that appeared with high frequency 
throughout the study (for example, indoor scenes; 90% of trials). They 
withheld their response (‘no-go’ trial) for the other, infrequent lure 
subcategory (in this case, outdoor scenes; 10%)9,20. Sustained atten-
tion was assessed behaviorally using signal detection measures. The 
average false alarm rate from the behavioral pre-training session was 
0.31 (s.e.m. = 0.03). In other words, college-aged adults made 30% 
errors in an ostensibly trivial task, which demonstrates that sustained 
attention abilities were limited at the start of the study, as expected.

During the rtfMRI training session, each of several training runs 
contained eight blocks of the sustained attention task in a counterbal-
anced design. The first four, ‘stable’ blocks were used for MVPA train-
ing and the last four, ‘feedback’ blocks were used for neurofeedback. 
During the stable blocks, composite stimuli were presented with a mix-
ture of 50% face and 50% scene. A whole-brain classifier was trained 
over a moving window of recent stable blocks to discriminate attention 
to faces versus scenes. This attentional manipulation is known to elicit 
distinct patterns of neural activity21,22. During feedback blocks, the 
trained classifier was used to decode in real time which category was 
being attended. The output was then used to update the mixture of 
the composite stimulus for the next trial (Fig. 1).

RESULTS
Real-time neurofeedback
The classifier’s output would be useful for training attention only 
if it provided an accurate measurement of attentional state (that is, 

attention to face versus scene). To assess the validity of this meas-
ure, we performed n-fold cross-validation on the stable blocks. Note 
that bottom-up stimulation in these blocks was identical at the cat-
egory level regardless of whether participants were instructed to 
attend to faces or to scenes. The average decoding accuracy was 0.78  
(s.e.m. = 0.02), which was highly reliable relative to chance (0.50) 
across participants (P < 0.00001, bootstrap resampling). This robust 
decoding validated our measure of top-down attentional state.

As a further preliminary step, we sought to verify that the classifier’s 
output was meaningfully related to participants’ behavior (Fig. 2). 
Across participants, there was a strong positive correlation between 
decoding accuracy in the stable blocks and performance in the earlier 
behavioral pre-training session (r = 0.70, P = 0.000008, Spearman rank 
correlation). This relationship was also evident within participants23,24: 
behavioral accuracy on no-go trials—that is, whether participants 
correctly withheld their response or responded incorrectly—could be 
predicted using the classifier evidence for the task-relevant category 
from the brain volumes immediately preceding trial onset (correct 
rejection: mean evidence = 0.78, s.e.m. = 0.02; false alarm: mean evi-
dence = 0.74, s.e.m. = 0.02; P < 0.00001). This effect remained robust 
after controlling for response time (RT) differences (Supplementary  
Figs. 2 and 3). This further confirmed that the classifier provided a 
predictive and behaviorally relevant measure of attention.

The feedback blocks used real-time classifier output to modulate 
the proportion of task-relevant versus task-irrelevant information 
in the composite stimuli. As outlined above, the proportion of the 
task-relevant stimulus on the next trial was increased when there 
was greater neural evidence of the task-relevant category in the pre-
ceding trial, whereas it was decreased when there was greater neural 
evidence of the task-irrelevant category (Supplementary Video 1). 
The motivation for weakening the task-relevant image when measures 
of attention waned was to amplify and externalize the consequences 
of the participant’s attentional state, providing them with an error 
signal, with the goal of increasing their self-monitoring ability. The 
opposite—strengthening the task-relevant image when attention 
lapsed—might have stabilized performance at that moment, but it 
may also have incentivized such lapses by making the task easier, 
thus undermining learning. The precise mapping between classifier 
output and mixture proportion was controlled by a sigmoidal transfer 
function (Supplementary Fig. 4).

Training effects in behavior
The rtfMRI neurofeedback produced a significant training effect: 
behavioral sensitivity improved from the pre-training session to 
the post-training session (P = 0.01; Fig. 3). This improvement was 
quantitatively related to what happened during the training session,  

Figure 1 Real-time pipeline. (a) During 
feedback blocks, each brain volume (green) 
was acquired, preprocessed with masking, 
smoothing and z-scoring, and analyzed during 
the next volume with a multivariate classifier 
trained on volumes from recent stable blocks 
in which faces (blue) or scenes (pink) were 
attended. The result was averaged with the 
results for the two preceding volumes and used 
to update the stimulus shown to the participant 
on trials in the subsequent volume. (b) The 
classifier output indicated how attentive the 
participant was to the task-relevant versus  
task-irrelevant categories. This output was converted to a mixture proportion using a sigmoidal transfer function: less attention to the task-relevant 
category resulted in a decrease in the proportion of that category’s image in the composite stimulus on the next trial. These values were updated 
throughout the block as attention fluctuated over time.

Face

Scene

–1

0

1

0

0.5

1.0

C
at

eg
or

y
de

co
di

ng

1 10 20 30 40

S
tim

ul
us

pr
op

or
tio

ns

Trial number

50

Category decoding

Transfer function

ba
Preprocessing

Data acquisition

Multivariate pattern analysis

Subject display

np
g

©
 2

01
5 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



472	 VOLUME 18 | NUMBER 3 | MARCH 2015 nature neurOSCIenCe

a r t I C l e S

as it could be predicted by the extent to which a participant’s  
neurofeedback became more positive over time (r = 0.78, P = 0.002). 
To further verify that improved sensitivity was the result of accu-
rate neurofeedback, we collected data from 16 control participants 
who were each uniquely matched in age, gender and handedness to 
one of the 16 feedback participants. During the pre-training ses-
sion, there was no difference between the groups in false alarm rate  
(P = 0.72) or sensitivity (P = 0.90). Control participants were given 
identical instructions and underwent the same procedure, except 
that, during the feedback blocks, their feedback was yoked to their 
matched participant in the experimental group, rather than to meas-
ures of their own attentional state. This yoking ensured that control 
participants were exposed to the same overall stimulus statistics 
and variations in task difficulty. Their sensitivity did not reliably 
increase from pre- to post-training (P = 0.26), and the change  
was weaker than in the feedback group (P = 0.04). This interac-
tion reflected a reliable difference in the change in false alarm rate 
between groups (P = 0.007).

Rather than a benefit of accurate neurofeedback, the difference 
between groups could reflect a generic practice effect in the feed-
back group that was stymied by inaccurate neurofeedback in the 
control group. If so, then an improvement in sensitivity should be 
found even without feedback. We therefore ran a behavioral experi-
ment with a new group of 16 participants who completed the same 
procedure but received only stable blocks. Unlike the feedback 
group, their sensitivity did not increase from pre- to post-training 
(P = 0.67), inconsistent with this alternative account. In addition, 
accurate neurofeedback may have been effective simply because it 
resonated with a participant’s attentional state and increased task 
engagement and motivation. If so, then feedback about any reliable 
measure of attention should be useful for training. We therefore 
ran a second behavioral experiment that was closely matched to 
the fMRI study, in which a new group of 16 participants received 
feedback based on RT (which was robustly related to attention; 
see Online Methods and Supplementary Fig. 2), along with a new 
group of 16 control participants who received yoked RT feedback. 
Unlike in the fMRI study, the change in sensitivity from pre- to  
post-training was not stronger in the feedback group than in the 
control group (P = 0.29), suggesting that not all correlates of atten-
tion are sufficient for training.

Training effects in the brain
One advantage of using whole-brain fMRI to provide feedback is that 
we could also gain insight into the neural changes induced by train-
ing. In particular, we hypothesized that learning via neurofeedback 
might strengthen and differentiate the two attentional states, such 
that they would become more discriminable in the brain from pre- to 
post-training. This might occur both in areas that represent attended 
stimulus features21,22 and in areas that represent task goals and con-
trol attention25,26. Although MVPA over the whole brain can be hard 
to interpret27, this differentiation analysis tested for a very specific 
effect that would be hard to explain parsimoniously on the basis of 
generic confounds: namely, regions that showed an improvement in 
classification as a result of training that was greater for the feedback 
relative to control groups.

We trained and tested classifiers on the first and last run of the 
rtfMRI training session (stable blocks) to distinguish attention to 
faces versus scenes and measured the change in cross-validation 
accuracy. Whole-brain classification (the basis for neurofeedback) 
showed a greater increase in accuracy from pre- to post-training in 
the feedback group than in the control group (P = 0.01). This interac-
tion was present when the same analysis was performed separately in 
an anatomical mask of the frontal lobe (P = 0.02) and occipital lobe 
(P = 0.04), and it was trending in the temporal and parietal lobes  
(P = 0.09 and 0.08, respectively). Searchlight analyses further identified 
specific areas where activity patterns showed this interaction (Fig. 4). 
The largest clusters were found in fusiform and parahippocampal gyri 
of ventral temporal cortex and in subcortical structures including the 
basal ganglia (striatum, globus pallidus) and amygdala (all P < 0.05, 
randomization test with threshold-free cluster correction).

Contribution of specific brain systems
Beyond investigating the consequences of training in the brain, the 
fMRI data can also be used to infer which brain regions were involved 
in the training process itself. Specifically, we examined which regions 

Figure 2 Brain-behavior relationship. To verify that the classifier could 
provide useful feedback, we examined how predictive it was of behavior. 
(a) Across participants, average decoding accuracy from the stable blocks 
of the rtfMRI session (determined by offline MVPA with n-fold cross-
validation) was highly correlated with behavioral performance in the 
pre-training session. (b) Within participants, there was greater classifier 
output for the task-relevant category than for the task-irrelevant category 
before correctly rejecting than before false alarming to a lure trial.  
Error bars represent ±1 s.e.m.
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contributed to the whole-brain feedback and how these contributions 
affected behavioral training. This analysis consisted of three steps. 
First, we identified neural signals that could have been used to pro-
vide more targeted feedback from particular brain regions. Second, 
for each participant, we correlated these signals with whole-brain 
classifier output to quantify the extent to which the actual feedback 
that the participant received reflected information that was present 
within these regions. Third, we related these correlations to individual 
differences in the behavioral training effect to assess which regions 
were most useful for training. In sum, if we had based the feedback 
on specific brain regions rather than the whole brain, how similar, 
and how useful, would this feedback have been?

Perhaps the simplest neural measure of when attention is allocated 
to faces versus scenes is the relative univariate activity of visual areas 
with selectivity for these categories, the fusiform face area (FFA) and 
the parahippocampal place area (PPA)21, respectively. This is analo-
gous to the approach used in several previous rtfMRI studies, in which 
the average activity from one or more regions of interest (ROIs) was 
returned as feedback11,15,17. The difference in univariate activity for 

task-relevant versus task-irrelevant ROIs (for example, PPA minus 
FFA for scene attention) was weakly but reliably correlated with the 
difference in whole-brain multivariate evidence for these categories 
over time (mean r = 0.25, s.e.m. = 0.02; P < 0.00001). That is, on 
average, ~6% of variance in the whole-brain signal used for real-time 
feedback was explained by the relative activity levels of FFA and PPA. 
Individual differences in the size of the behavioral training effect were 
unrelated to this reliance on information in FFA versus PPA for feed-
back (r = −0.04, P = 0.89).

Information about visual categories is also represented outside 
peak category-selective areas, in patterns of activity distributed over 
regions of occipitotemporal cortex28. Likewise, under attentionally 
demanding conditions, distributed activity patterns over frontopa-
rietal regions linked to cognitive control contain stimulus-specific 
information29. Therefore, classifiers applied to these ‘perceptual’ 
and ‘attentional’ networks of regions in occipitotemporal and fronto-
parietal cortices, respectively (constrained functionally, see Online 
Methods), provide additional neural measures of when attention 
was allocated to faces versus scenes (Fig. 5). The difference in multi-

variate evidence for task-relevant versus 
task-irrelevant categories in the whole brain 
was reliably correlated with the difference 
in multivariate evidence for these categories 
in the perceptual network (mean r = 0.77,  
s.e.m. = 0.02; P < 0.00001) and attentional 

Figure 4 Searchlight analyses. (a) Voxel-wise 
analyses were conducted to identify brain 
regions whose surrounding activity patterns 
for the two attentional states became more 
separable after neurofeedback training. 
We computed cross-validation accuracy for 
classifiers trained to decode face and scene 
attention from RT-residualized BOLD data using 
a sphere with a 1-voxel radius centered on each 
voxel. Increased separability was quantified as the difference in accuracy between the end (run n) and start (run 1) of the fMRI session. (b) A greater 
increase in classifier accuracy for the feedback group relative to the control group (P < 0.05, randomization test with threshold-free cluster correction; 
Montreal Neurological Institute (MNI) x, y, z coordinates in mm) was observed in left ventral temporal cortex (−34, −24, −25) and left basal ganglia 
(−18, −4, −5). Small clusters (not shown) were obtained in left lateral temporal cortex (−50, −45, −25; −51, −36, −20; −48, −42, −28) and left 
anterior temporal lobe (−26, 22, −32).

rwp rwa

0

0.5

1

F

F

S

S

S

S

F

F
–1

0

1

Whole-brain classifier output
for face and scene categories

Whole-brain classifier output
for task-relevant minus
task-irrelevant categories

Network classifier output for task-relevant 
minus task-irrelevant categories

a

b

c

F S S F
–1

0

1

Perceptual network in occipitotemporal cortex

–0.04

0

0.04

0.08

0.6 0.7 0.8

Whole-brain/network correlation
(rwp)

Spearman r = 0.29 Spearman r = 0.60

B
eh

av
io

ra
l t

ra
in

in
g 

(∆
A

′)

B
eh

av
io

ra
l t

ra
in

in
g 

(∆
A

′)

0.9 1.0

Whole-brain
to network
correlation

F S S F
–1

0

1

Attentional network in frontoparietal cortex

Whole-brain/network correlation
(rwa)

–0.04

0

0.04

0.08

0.6 0.7 0.8 0.9 1.0

× 5–7 runs per participant

Figure 5 Potential sources of feedback.  
(a) Real-time whole-brain classifier output  
from the feedback blocks of a representative 
run for a single participant: evidence for each 
category (top) and evidence for the task-relevant 
minus task-irrelevant categories (bottom).  
(b) Offline classifier output for the same blocks 
from a perceptual network in occipitotemporal 
cortex (left) and an attentional network in 
frontoparietal cortex (right). The output from 
the whole-brain classifier was correlated with 
the outputs of the perceptual network classifier 
(rwp) and attentional network classifier (rwa) over 
time during the feedback blocks of each run. 
These correlations were averaged across runs 
within each participant to produce a measure of 
the extent to which the participant’s real-time 
feedback relied on information in each network. 
(c) This measure of reliance on each network 
was in turn correlated with the change in 
behavioral A′ from pre- to post-training to assess 
whether feedback from each network was useful 
for training.

ba Run 1 Feedback > ControlRun n

SceneScene

Face

Increased separation between
attention tasks after training

Searchlight

SceneScene

Face

Classifier
hyperplane

0.05

0.001

L P (corrected)

np
g

©
 2

01
5 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



474	 VOLUME 18 | NUMBER 3 | MARCH 2015 nature neurOSCIenCe

a r t I C l e S

network (mean r = 0.83, s.e.m. = 0.01; P < 0.00001), although the 
correlation with the attentional network was significantly stronger 
(P = 0.04).

To assess whether the information contained in each network served 
as useful feedback for training, we related individual differences in 
these whole-brain/network correlations to the size of the training 
effect across participants. Behavioral improvement was unrelated to 
reliance on the perceptual network (r = 0.29, P = 0.27) but positively 
related to reliance on the attentional network (r = 0.60, P = 0.02).

DISCUSSION
We found that moment-to-moment feedback about attentional state 
could enhance sustained attention abilities. We used closed-loop neu-
rofeedback from MVPA as a type of cognitive prosthetic, facilitating 
participants’ ability to detect neural signals that indicated an impend-
ing attentional lapse by displaying them visually in a form that was 
directly relevant to the task. In other words, we provided a neural 
error signal so that participants could learn to better monitor and 
evaluate the state of their attention.

MVPA has become widespread because of its ability to read out the 
informational contents of the brain14,30. However, classifiers exploit 
any predictive variance that distinguishes between classes, and they 
are thus susceptible to confounding factors27. Our design allowed us 
to assess whether whole-brain classifier output truly reflected atten-
tional state—the cognitive variable of interest—using behavior as the 
yardstick: when provided as feedback, classifier output was useful for 
improving attention-dependent performance.

By using fMRI for cognitive training, we gained important insights 
about the underlying neural mechanisms. We first identified brain 
regions that were affected by training, including frontal cortex, ventral 
temporal cortex and basal ganglia (striatum and globus pallidus), 
which came to represent the attentional states more distinctively as 
a result of feedback. We interpret the increased neural separation in 
these regions as reflective of the two component processes in our 
sustained attention task. First, participants needed to select the image 
from the task-relevant category when confronted with a composite 
stimulus. Increased neural separation of face and scene attention in 
frontal cortex may reflect learning of better task or control represen-
tations for each category, which in turn enabled stronger top-down 
modulation of category-selective visual representations in ventral 
temporal cortex, biasing processing toward the task-relevant image 
and thereby facilitating its selection22,25,26,31,32. Second, participants 
needed to inhibit their prepotent response when the selected image 
came from the infrequent lure subcategory. Increased neural separa-
tion of face and scene attention in basal ganglia may reflect enhanced 
learning of different stimulus–response rules within each category, 
with the striatum directly gating responses to targets and indirectly 
blocking responses to lures via inhibitory projections to the globus 
pallidus25,33–35.

We next identified brain regions supporting the training process 
itself, simulating how feedback from these regions related to the real-
time feedback. Univariate activity in the FFA and PPA was weakly cor-
related with whole-brain multivariate evidence, whereas multivariate 
evidence from a perceptual network in occipitotemporal cortex and 
multivariate evidence from an attentional network in frontoparietal 
cortex were strongly correlated. These results suggest that distributed 
activity patterns contributed more to the training effect than punc-
tate responses in category-selective visual areas. We tested this more 
directly by exploiting variance in the training effect across partici-
pants. Training was predicted by the extent to which feedback relied 
on information in the attentional network, but not by reliance on 

information in the perceptual network or the relative activity levels 
of FFA and PPA. The importance of frontoparietal feedback can be 
interpreted as evidence that our attention training involved the rein-
forcement of task representations25,26, rewarding good states by reduc-
ing difficulty and punishing bad states by increasing difficulty. This 
interpretation is consistent with the observed multivariate changes in 
frontal cortex and basal ganglia, as these regions and their interaction 
are critical for feedback-based task learning36,37. It remains an open 
question whether feedback restricted to occipitotemporal cortex or to 
FFA and PPA (that is, without access to frontoparietal information) 
could lead to training.

The goal of our study was to derive basic science insights into the 
neural basis of top-down attention and the plasticity of attention-
related behavior. In the future, the kind of approach we pursued may 
find potential applications for training sustained attention in occu-
pational settings (for example, baggage screeners and truck drivers)38 
and clinical disorders (for example, attention deficit hyperactivity 
disorder and negative attentional biases in depression)39,40.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Participants. Eighty adults (45 female, 75 right-handed, mean age = 20.3 years) 
participated in the study for monetary compensation. This included 16 partici-
pants in each of the following: the fMRI experimental group, the fMRI control 
group, the no-feedback behavioral group, the RT-feedback behavioral group 
and the RT-control behavioral group. Each participant in the fMRI control and 
behavioral groups was matched as closely as possible to the demographics (age, 
gender and handedness) of a participant in the fMRI experimental group. Power 
analyses were not performed because of the use of a new paradigm and unknown 
behavioral and neural effect sizes. The sample size was chosen because it is fairly 
common for an fMRI study, especially one with multiple groups and sessions. 
Three additional fMRI participants were excluded because of technical problems 
with real-time data acquisition, one additional fMRI participant was excluded for 
falling asleep during several runs and one additional behavioral participant was 
excluded for low overall performance (3.2 s.d. below the mean in pre-training). 
For the fMRI participants, the experimenter was not blind to group assignment 
because of the complexity of data acquisition and analysis, especially the need 
to ensure that the real-time classification and feedback system was function-
ing. However, every fMRI participant received the same scripted instructions. 
All participants had normal or corrected-to-normal visual acuity and provided 
informed consent to a protocol approved by the Princeton University Institutional 
Review Board.

Stimuli. Images consisted of grayscale photographs of male and female faces and 
indoor and outdoor scenes. These images were combined into composite stimuli 
by averaging pixel intensities using various weightings (for example, 60% face, 
40% scene). The stimuli were displayed on a projection screen at the back of the 
scanner bore (subtending 10 × 10° of visual angle) and viewed with a mirror 
attached to the head coil.

A fixation dot was superimposed on the images and presented during the 
inter-block intervals of each run, except when text instructions were displayed. 
Participants were instructed to fixate on this dot, they received practice doing 
so during their first session, and they were reminded about the importance of 
fixation before scanning. We did not use an eye tracker to ensure fixation because 
of the technical complexity of the real-time apparatus and analysis. Aside from 
this, eye tracking is rarely used in attention studies with overlapping face/scene 
stimuli22,41,42, and when it has been used, no differences in eye movements or 
position across categories were observed43. In fact, only one participant reported 
using an eye-movement strategy to perform the task, and this participant showed 
the smallest training effect of anybody in the feedback group.

Procedure. Participants completed three sessions on different days. The first day 
was a behavioral pre-training session with two runs of the sustained attention 
task. The second day was an fMRI session with several runs of the modified real-
time neurofeedback version of the sustained attention task. The number of runs 
varied across participants, depending on how many they could complete within 
2 h (range 6–9 runs). The third day was a behavioral post-training session, other-
wise identical to the first session. We attempted to conduct the sessions on three 
consecutive days, but this was not always possible because of scanner availability 
and participants’ schedules. All participants completed the study within 5 d. The 
average number of days (and s.e.m.) between the first and second sessions was 
1.19 (0.09) and between the second and third sessions was 1.25 (0.09).

Each task run contained eight blocks. Each block began with a text cue for 
1 s that instructed participants which subcategory was the target to which they 
should respond and, by extension, which category was to be attended. Four of 
the blocks involved attending to faces and the other four involved attending 
to scenes. The target subcategories were held constant within each participant  
(for example, “male” and “indoor”) but were counterbalanced across participants. 
The cue was followed by 1 s of fixation and then a series of 50 trials. Each trial 
contained a composite face/scene image presented for 1 s with no inter-stimulus 
interval. Responses were recorded during the first 850 ms of stimulus presenta-
tion to allow computation time at the end of the trial. The trial structure fol-
lowed a response inhibition task design9,20: 90% of images contained the target 
subcategory (for example, an indoor scene after an “indoor” cue) and required 
a response; the other 10% contained the non-target subcategory (in this case, an 
outdoor scene) to which responses needed to be withheld. The distribution of the 
subcategories was the same for the unattended category (for example, 90% male 

and 10% female after an “indoor” cue), although these images were irrelevant 
for determining whether to respond or not. After the last trial, there was a 4–6 s 
of fixation before the next block.

The first run of the rtfMRI session was identical to the runs of the behavioral 
sessions, with all composite stimuli being an equal mixture of face (50%) and 
scene (50%) images. Starting with the second run, the first four, ‘stable’ blocks 
kept the same equal mixture, but the final four, ‘feedback’ blocks had variable 
mixture proportions that depended on the participant’s attentional state. Text 
instructions appeared before the first feedback block to alert participants that 
neurofeedback was starting. Each of these blocks started with an equal mix-
ture for the first three trials. The mixture proportions for the remaining trials 
were determined on the basis of real-time MVPA of the fMRI data. They ranged 
from 17% to 98% of the task-relevant category (83% to 2% of the task-irrelevant  
category). For half of the participants, the last run of the rtfMRI session was 
identical to the first run, with all eight blocks using an equal mixture.

data acquisition. Experiments were run using the Psychophysics Toolbox for 
Matlab (http://psychtoolbox.org/). Neuroimaging data were acquired with a 3 T 
MRI scanner (Siemens Skyra) using a 16-channel head coil. We first collected a 
scout anatomical scan to align axial functional slices to the anterior commissure– 
posterior commissure line. Functional images were acquired using a gradient-
echo, echo-planar imaging sequence (2 s repetition time, 28 ms echo time, 3 mm 
isotropic voxel size, 64 × 64 matrix, 192 mm field of view, 36 slices) that covered 
most of the brain. At the end of the fMRI session, a high-resolution magnetization- 
prepared rapid acquisition gradient-echo (MPRAGE) anatomical scan was 
acquired for offline spatial registration. To improve registration, an additional 
coplanar T1 fast low angle shot anatomical scan was also acquired.

Statistics. Because some of the data violated the assumption of normality needed 
for parametric tests, we used nonparametric tests throughout to determine  
statistical significance. Subject-level bootstrap resampling44 was used to assess 
random-effects reliability for comparisons of a small number of variables to 
chance or each other; one-sided tests were used for directional hypotheses and 
two-sided tests for nondirectional hypotheses. Correlations between two variables 
were estimated with Spearman’s rank correlation after applying robust methods 
to eliminate the disproportionate influence of outliers in small samples45. 
Significance testing on voxel-wise brain maps was conducted with a permutation 
test in FSL’s “randomise” function46 and corrected for multiple comparisons using 
threshold-free cluster enhancement47. Each control participant was matched to 
one experimental participant in all respects except for the key manipulation (that 
is, on demographics, stimuli and number of runs), and so comparisons across 
groups were performed with a matched-pairs sample design.

Real-time analyses. Preprocessing. During the fMRI session, data were recon-
structed on the scanner. Prospective acquisition correction and retrospective 
motion correction were applied. Each motion-corrected volume was transferred 
to a separate analysis computer in real time. A brain mask was applied to elimi-
nate non-brain voxels. The volume was spatially smoothed in Matlab using a  
Gaussian kernel with full-width half-maximum (FWHM) = 5 mm. After each 
grouping of four stable blocks, the BOLD activity of every voxel was z-scored over 
time. The same normalization was applied during feedback blocks in real time, 
using the mean and standard deviation from the most recent four stable blocks.

Multivariate pattern analysis. During the fMRI session, we conducted MVPA 
using penalized logistic regression with L2-norm regularization (penalty = 1). 
The classifier was trained to distinguish top-down attention to faces and scenes 
from whole-brain activity patterns. The training examples for the classifier were 
obtained from a trailing window of stable blocks. For half of the participants, 
this trailing window included the twelve previous stable blocks and the clas-
sifier was trained during a 70-s fixation period between blocks 4 and 5 of the 
current run. For the other half, the trailing window did not include the stable 
blocks from the current run and the classifier was trained between runs; the 
fixation period between blocks 4 and 5 was reduced to 6 s. There were no reli-
able differences between these groups, and so they were analyzed together. For 
training the model, all regressors were shifted 4 s forward in time to adjust for 
the hemodynamic lag.

The trained model was tested in real time on brain volumes obtained during the 
feedback blocks. For each volume, the classifier estimated the extent to which the 
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brain activity pattern matched the pattern for the two attentional states on which 
it was trained (from 0 to 1). The neurofeedback was based on the difference of  
classifier outputs for the task-relevant category minus task-irrelevant category. 
These outputs are perfectly anticorrelated in a two-class classifier, such that the 
difference ranged from −1 to 1. As a result of the anticorrelation, it is difficult to 
disentangle less attention to the task-relevant category from more attention to 
the task-irrelevant category (and vice versa). Differences of −1 and 1 should thus 
be interpreted in relative terms as more attention to the task-irrelevant and task-
 relevant categories, respectively. Note that if participants were not in either atten-
tional state, the brain activity patterns would contain no signal that the classifier 
could identify and the classification would be driven by noise; the difference would 
then be 0 on average. We therefore interpret positive and negative values away from 0  
as evidence of selective attention to one category of the composite stimulus.

Neurofeedback. The output of the classifier was used to determine the pro-
portion of the images from the task-relevant and task-irrelevant categories in 
the composite stimulus on the next trial. The preprocessing and decoding of 
volume i were performed during volume i + 1 and the classifier output was used 
to update the stimulus mixture for the two trials in volume i + 2. This resulted in a 
minimum lag of 2 s (two trials) between data acquisition and feedback. Moreover, 
classifier output was averaged over a moving window of the preceding three 
volumes (i − 2, i − 1 and i for feedback in volume i + 2), meaning that feedback 
was based on brain states 2–8 s in the past. Because sustained attention fluctu-
ates slowly20, we reasoned that this smoothing would provide a better estimate 
of attentional state by reducing high-frequency noise.

The average classifier output was mapped to a proportion of the task-relevant 
category using a sigmoidal transfer function (Supplementary Figs. 4 and 5). 
The maximum output value (0.98) meant that the task-irrelevant image could 
be almost completely absent from the composite stimulus. The minimum out-
put value (0.17) meant that the task-relevant image was always present to some 
degree, even when participants had lapsed completely (giving them a foothold 
to recover). The inflection point of the logistic function was centered at an input 
greater than chance (0.60), based on the mean decoding accuracy of a group of 
pilot participants. This placed the sensitive range of the feedback closer to the 
typical real-time classifier output values. For follow-up analyses that assessed 
how the feedback changed over training, we computed the average proportion 
of the image from the task-relevant category in each training run and calculated 
the linear slope across runs for each participant.

Participants were aware of the feedback manipulation. Before the fMRI ses-
sion, they were told that the images in the second half of most runs would change 
depending upon their attention, as measured from their brain. Specifically, the 
task would get easier if they were paying attention and it would get harder if they 
became inattentive. They were shown examples of how a composite stimulus 
could change on the basis of whether they were doing a good or bad job of pay-
ing attention. Critically, control participants received the exact same instruc-
tions. After the study, participants completed a debriefing questionnaire, which 
included the question: “Did you feel that you could control the image with your 
brain?” Overall, 11 of 16 participants in the feedback group reported feeling some 
degree of brain control, compared to 4 of 16 participants in the control group. 
Interestingly, the feedback that the control participants received was positively 
correlated on average with what they would have received on the basis of their 
own brain activity patterns (mean r = 0.29, s.e.m. = 0.04, P < 0.00001). This cor-
relation suggests that their attentional state was affected by the sham feedback, 
which in turn determined what feedback they should have received next. Unlike 
the feedback participants, however, the control participants were only reacting 
to the feedback and not driving it.

offline analyses. General procedures. Using FSL (http://fsl.fmrib.ox.ac.uk/), the 
data were temporally high-pass filtered (200 s period cut-off), motion corrected 
again, and spatially smoothed with a Gaussian kernel (5 mm FWHM). They were 
then transformed into standard Montreal Neurological Institute (MNI) space by 
linearly registering to the MPRAGE images and to the MNI152 standard brain. 
We conducted offline MVPA using the Princeton Multi-Voxel Pattern Analysis 
Toolbox (http://www.pni.princeton.edu/mvpa/), with z-scoring over time within 
each run and the same type of classifier as in the real-time analyses (penalized 
logistic regression using L2-norm regularization, penalty = 1).

Decoding accuracy. We assessed our ability to decode attentional state 
within individual participants by classifying the stable blocks, which were 

 uncontaminated by stimulus-based feedback. (In fact, these data served as the 
training set for real-time classification, but were never subdivided into training 
and test sets so that classifier accuracy could be estimated with cross-validation.) 
We trained a classifier using the stable blocks from n − 1 runs and tested it on the 
left-out run, then repeated n times. By averaging over these folds, we obtained 
a measure of how well we could decode the attentional state of each participant 
and assessed reliability in the group relative to chance (0.5). We interpreted this 
decoding accuracy as reflecting the neural separability of attentional states rather 
than the precision with which the classifier algorithm captured these states per se. 
That is, low decoding accuracy for a participant does not necessarily mean that 
his or her classifier itself was inaccurate, but rather that it was accurately tracking 
poor neural separation between attentional states. Such separation may be related 
to individual differences in attentional abilities, with poor separation reflecting 
weaker selection of task-relevant information and/or increased distraction by 
task-irrelevant information. To verify this interpretation, we correlated decoding 
accuracy across participants with behavioral sensitivity from the pre-training 
session. We used A′ to index sensitivity because of its robustness to the high 
hit rates that we expected to obtain because of the greater frequency of targets 
than lures48.

Predicting behavioral accuracy. For classifier output to provide useful feed-
back for training purposes, (1) it should be related to behavior on a trial-by-trial 
basis within participant and (2) this relationship should hold without artificially 
shifting trials back in time to correct for the hemodynamic lag (which cannot be 
done in real time). To judge whether these criteria were satisfied, we examined 
whether the classifier output before a lure trial (averaged over the three preced-
ing volumes, as used to calculate feedback) predicted whether participants cor-
rectly withheld their response or incorrectly responded. This relationship was 
tested with a logistic regression (correct rejection = 1, false alarm = 0), whose 
slope was reliably positive at the group level (mean slope = 0.67, s.e.m. = 0.11,  
P < 0.00001). That is, more classifier evidence from volumes 2–8 s in the past—
most influenced by neural events 6–12 s in the past, assuming a hemodynamic 
peak at 4 s—predicted behavioral accuracy on the current trial.

The average RT from the six trials during these volumes also predicted 
behavioral accuracy in a logistic regression (mean slope = 0.01, s.e.m. = 0.0009,  
P < 0.00001; Supplementary Fig. 2). To remove this confound, we averaged the 
two RTs from each volume, regressed this average out of the raw classifier output 
and behavioral accuracy across volumes, and then repeated the analysis above 
in the residuals (using partial correlation rather than logistic regression because 
behavioral accuracy was no longer binary). The positive relationship between 
classifier output and behavioral accuracy remained reliable (mean r = 0.06,  
s.e.m. = 0.01, P < 0.00001; Supplementary Fig. 3).

Changes in neural discriminability. We performed several analyses to examine 
whether attention training increased the separation between neural representa-
tions of the face and scene attentional states. We operationalized neural separation 
with decoding accuracy, comparing the first and last runs of the rtfMRI training 
session to assess training-induced changes. For each of these runs, we trained a 
classifier to decode attentional state from the stable blocks using a split-half cross-
validation procedure. To ensure that classification was not confounded by RT, we 
averaged the two RTs in every volume of the stable blocks and regressed out the 
resulting RT time course from the brain data before analysis27. We calculated the 
difference in decoding accuracy as the last minus first run for each participant 
and assessed the reliability of this change at the group level, comparing feedback 
and control groups. This analysis was performed over the whole brain, within 
each of the four lobes (defined using the MNI atlas in FSL), and over spherical 
searchlights (1 voxel radius, 7 voxel maximum volume) centered on every voxel 
in the brain.

Simulated feedback. For the univariate analysis of FFA and PPA, we localized 
these areas within each participant by contrasting face and scene attention blocks 
in the first fMRI run (which had no feedback). FFA and PPA ROIs were defined 
as 5-mm spheres around the peak face- and scene-selective voxels in right and 
left lateral fusiform gyri and collateral sulci/parahippocampal gyri, respectively. 
We then collapsed over hemispheres and averaged the time series of the voxels in 
each bilateral ROI for all feedback blocks (starting in the second fMRI run). For 
each block, we calculated the difference over time between the task-relevant ROI 
(FFA and PPA for face and scene attention, respectively) and the task-irrelevant 
ROI (PPA and FFA for face and scene attention, respectively) and then concate-
nated these differences across blocks within each run. To estimate how FFA and 
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PPA activity related to the real-time feedback in each run, we correlated this 
ROI-derived time series with the difference in whole-brain classifier output for 
the task-relevant minus task-irrelevant categories (face minus scene evidence for 
face attention and scene minus face evidence for scene attention) from the same 
blocks and then averaged across runs. These FFA/PPA to whole-brain correlations 
were in turn correlated across feedback participants with the improvement in A′ 
from pre- to post-training.

For the multivariate analysis of perceptual and attentional networks, we first 
defined each network using functional and anatomical criteria. The functional cri-
terion was based on forward-inference meta-analyses from http://neurosynth.org/  
using the search terms “faces” OR “scenes” for the perceptual network and  
“attention” for the attentional network. The results were downloaded as  
voxel-wise masks and thresholded at z = 2.3. The anatomical criterion was  
based on the MNI atlas in FSL, which was used to generate binary masks of 
the occipital and temporal lobes for the perceptual network and the frontal and 
parietal lobes for the attentional network. Voxels that survived the intersection 
of the functional and anatomical masks were used to train a separate classifier 
for each network. Other than being performed offline rather than in real time, 
the rest of the classification procedure was identical to that of the whole-brain 
classifier, with training for each run based on a moving window of stable blocks 
and testing occurring volume by volume in the feedback blocks. The classifier 
output for each network was correlated with the whole-brain classifier output 
to estimate how much information in that network contributed to the real-time 
feedback in every run, and these correlations were averaged across runs within 
each participant. These network/whole-brain correlations were then correlated 
with the improvement in A′ from pre- to post-training across feedback partici-
pants to assess the usefulness of relying on information in the perceptual and 
attentional networks for training.

Behavioral control experiments. We recruited three behavioral control par-
ticipants for each fMRI participant from the feedback group of the main study 
(total n = 48). They were all demographically matched to the fMRI participant 
in handedness, gender and age (±1 year). In addition, they received the same 
experimental design, in terms of stimulus order, block order, number of training 
runs, number of sessions and number of days between sessions. The training 
session was conducted in a behavioral testing room rather than the scanner. To 
emulate the contextual change experienced by the fMRI participants in switching 
environments between pre-/post-training and training, the pre- and post-training 
sessions were run in a different room in a different part of our building. Across 
the three groups of participants, we manipulated the nature of the feedback that 
they received during training. The assignment of control participants to each of 
these feedback conditions was randomized.

The no-feedback experiment (n = 16) was identical to the fMRI study, other 
than being conducted outside the scanner and replacing all feedback blocks with 
stable blocks. That is, the stimulus mixture proportion remained constant at  
50% for both categories during all blocks. As a result of removing the feedback, 
participants also did not receive instructions about how to interpret varying 
stimulus proportions and there was no separate, yoked control group.

The RT-feedback experiment was identical to the fMRI study, other than being 
conducted outside the scanner and having the feedback controlled by RT rather 
than whole-brain classifier output. This experiment contained two between-
subject conditions, the RT-feedback group (n = 16) and the RT-control group 
(n = 16). Participants were assigned in matched pairs, with the RT-control par-
ticipant in each pair receiving feedback yoked to that generated by the matched 
RT-feedback participant. Thus, by definition, the RT-feedback participant was 
run before their match. However, the RT-feedback and RT-control participants 
from different pairs were interleaved and run in the same cohort. Participants in 
both groups received the same instructions, which were slightly modified from 
the fMRI study to remove scanner-related references. Not only were participants 
blind to their condition, but the experimenter was also blind (other than to the 
first and last participants, who were necessarily RT-feedback and RT-control par-
ticipants, respectively). A different researcher conducted participant recruitment 
and scheduling, resulting in a double-blind procedure. (Note that because of the 
lack of feedback in the no-feedback experiment, the experimenter was aware of 
whether a participant ended up in that particular group.)

The feedback regime for the RT-feedback condition was very similar to the 
fMRI experiment, using RT (instead of fMRI category evidence) as a measure 
of attentional state. During feedback blocks, the proportion of the task-relevant 
category increased when participants responded slowly and decreased when they 
responded quickly. We chose this mapping because RT was faster on trials pre-
ceding false alarms than correct rejections (Supplementary Fig. 2), consistent 
with habitual responding and worse sustained attention9. More specifically, the 
feedback was based on the participant’s deviation from their average RT, calcu-
lated over a trailing window of stable blocks (the same set as used for training 
data in the fMRI classifier). The stimulus mixture proportion was adjusted using 
the average of the RTs from the previous six trials, which was equivalent to the 
three brain volumes that were used for feedback in the fMRI version. A sigmoidal 
transfer function transformed this value into a stimulus mixture proportion.

A Supplementary methods checklist is available.
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