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         INTRODUCTION 
 
     As the global energy economy makes the transition from fossil fuels toward cleaner alternatives, 
fusion becomes an attractive potential solution for satisfying the growing needs.  Fusion energy, 
which is the power source for the sun, can be generated on earth in magnetically-confined 
laboratory plasma experiments (called “tokamaks”) when the isotopes of hydrogen (e.g., deuterium 
and tritium) combine to produce an energetic helium “alpha” particle and a fast neutron – with an 
overall energy multiplication factor of 450:1.  Building the scientific foundations needed to develop 
fusion power in a timely way requires properly responding to extreme scale computing and big data 
challenges that will enable effective new predictive capabilities addressing the complex dynamics 
governing MFE (Magnetic Fusion Energy) systems -- including ITER, a multi-billion 
dollar international burning plasma experiment supported by 7 governments representing over half 
of the world’s population.  This will involve deployment of both familiar “hypothesis-driven”/first 
principles approaches as well as new big-data-driven statistical approaches featuring machine 
learning. 
 
     An especially time-urgent and challenging problem facing the development of a fusion energy 
reactor today is the need to reliably avoid or mitigate the onset of disruptions -- large-scale 
macroscopic events in tokamak plasmas that  lead to a rapid termination of the discharges with 
accompanying major damage to the confining vessel.  During disruptions, the machine is subjected 
to massive thermal and electromagnetic loads as the plasma's thermal energy and current 
dissipate in a time on the order of a millisecond.  The associated damage from a small number of 
such events renders a sustainable tokamak fusion reactor impossible to achieve -- especially for 
ITER-scale burning plasma devices.   The temporal sequence for these highly deleterious 
phenomena can be characterized as a “precursor” phase during which the plasma pressure and 
current build up to conditions that approach a threshold which triggers large-scale magneto-
hydrodynamic (MHD) instabilities.  Once exceeded, the “thermal quench” phase begins --  
accompanied by a huge loss of thermal energy from the plasma to the first wall.   A “current 
quench” then follows during which the plasma current rapidly falls to zero – with this rapid change 
in the electric current inducing massive magnetic loads on the machine.  Mitigation techniques – 
such as introducing large amount of impurities into the plasma to radiate away some of the energy 
before it is expelled from the core region onto the walls – are only effective if deployed sufficiently 
in advance of the actual onset of the disruptions. It would be especially valuable if machine-



learning-based methods could be developed and tested to help provide timely guidance for 
disruption avoidance in the Joint European Torus (JET) – located in the UK and the repository of 
the most important data-base of fusion-grade plasmas. JET had previously achieved the world-
record “near breakeven” delivery of 10 MW of fusion power and is embarking on a new 5-year 
mission to revisit the high-powered Deuterium-Trititum (DT) campaign for the first time since 1997. 
Hypothesis-driven projections for disruption mitigation and avoidance have mostly been based on 
familiar computational Magnetohydrodynamic (MHD) models of limited physics fidelity that have 
not proven to be adequate for JET now or likely to be for ITER in the near future. 
 
     The benefit to Fusion Energy Science (FES) of machine-learning (ML) approaches to disruption 
prediction is the attractive potential for delivering the capability to significantly shorten the time to 
establish reliable operation in ITER at high performance.  If ITER has to determine the operating 
boundary by trial and error, this would prolong the non-nuclear phase of this very expensive 
program and introduce additional schedule risk into the nuclear phase. It would be especially 
valuable if advanced statistically-based, large-data-driven methodologies could be developed and 
tested in a timely way to help provide in-transit guidance for disruption avoidance in JET and in 
currently operating long pulse international experiments (KSTAR in Korea, EAST in China, …) of 
relevance to ITER.  As just noted, hypothesis-driven projections for disruption mitigation and 
avoidance have mostly been based on familiar computational MHD models of limited physics 
fidelity.  For example, the influx or accumulation of impurities that can be disruption-relevant are 
not included in such models.  Large-data-driven statistical methods can be viewed as 
complementary but a fundamentally different approach from hypothesis-driven methods. In view of 
the observed potential to date demonstrated in many other application domains (e.g., Google, bio-
informatics, etc.) it can be concluded that progress toward reliable operation and efficient 
experimentation in fusion experiments would benefit significantly from more accurate data-driven 
statistical modeling of the integrated physics relevant to the onset of disruptions first in JET and 
then in ITER.  It is also relevant to note at this point that the work on JET and NSTX – the “National 
Spherical Torus Experiment” located at the Princeton Plasma Physics Laboratory -- has focused on 
predicting the occurrence of the aforementioned current quench disruptions.  On ITER, it is also 
important to predict the occurrence of disruptive events that trigger a thermal quench -- which in 
present-day machines may not always lead to a current quench.  In other words, an important 
predictive tool development challenge would be to be to deliver reliable predictive software capable 
of providing adequate warning for a thermal quench on ITER. 
 
     In the past few years, there has been some promising machine-learning-based predictive 
software developed using statistical data mining approaches at JET on their disruption-relevant 
data-base.  After first investigating classification & regression tree approaches [1], they moved on 
to support vector machine (SVM) methodologies [2]. Subsequent efforts have examined the 
selection of features that are used in the classifiers, using “genetic” algorithms to help select the 
sub-set of classifiers that have the strongest influence on the actual predictions.  Associated 
publication [3, 4] have looked at predicting the type of disruptions -- an approach with promise of 
being more useful in comparing with conventional first-principles-based simulation results.  It is 
also relevant to comment at this point that it might well be of interest to examine general 
unsupervised “deep learning” types of algorithms to select classifiers/features different from the 
aforementioned “supervised” genetic algorithms that have been deployed to date.  
 
     It is also valuable to view the prediction of disruption-relevant events from an 



experimentalist’s perspective – for example, by Peter DeVries on JET [5] and by Stefan 
Gerhardt on NSTX [6].  In particular, DeVries’ paper provides a comprehensive survey of 
possible causes of disruptions on JET, and Gerhardt’s paper describes the prediction of 
disruptions based on diagnostic data from the high-beta (ratio of plasma to magnetic pressure) 
spherical torus experiment (NSTX).  The disruptive threshold values on many signals were 
examined where: (i) raw diagnostic data were used as a signal for disruption prediction in some 
cases, while in others (ii) the deviations of the plasma data from simple models provided the 
information used to determine the proximity to disruption.  Not surprisingly, there was no single 
signal or calculation and associated threshold value which could be found in these studies to form 
the basis for disruption prediction in NSTX.  A novel means of combining multiple threshold tests 
was introduced in an algorithm that was applied to a database of ~2000 disruptions during the 
current flat-top phase of the discharges collected from three NSTX run campaigns.  After proper 
tuning, this algorithm produced a false-positive rate of 2.8%, with a late plus missed warning rate of 
3.7%, and thus a total failure rate of 6.5%.  Many of these false positives were triggered by near-
disruptive MHD events that could possibly have been disruptive in larger plasmas (such as JET) 
with more stored energy.  However, the algorithm is less efficient at detecting the MHD events that 
actually trigger the disruption process of interest. 
   
     While the JET statistical team has achieved progress in predicting disruptions using machine-
learning algorithms, there is significant room for improvement with respect both to the software as 
well as the more powerful hardware on which the possible new tools might need to be deployed.  
JET is accordingly very interested in collaboratively exploring advances/new machine-learning 
methodologies for improved disruption predictions – including the exciting new capabilities possibly 
enabled by access to more powerful computational hardware resources in the US.  This will 
facilitate dealing with more realistic but more complex multidimensional data, instead of the much 
simpler zero-dimensional data considered at present in all of their studies.  Targeted new 
capabilities will aim to: (i) improve the ability to handle much larger observational data sets, 
including the large image datasets from fast cameras; and (ii)  building new predictors capable of 
incorporating the multidimensional features of the data together with possible associated access to 
powerful HPC hardware at, for example, the US DOE Leadership Computing Facilities (LCF’s). 
This will require better understanding of the challenges of multidimensional analysis of the huge 
time-dependent disruption-relevant data base – first at JET and then including other tokamak 
facilities worldwide.  As a rough estimate, the magnitude of the current (still growing !) multi-
dimensional time-dependent signals in the JET data base can clearly exceed a petabyte.  It will be 
a quite formidable but very interesting challenge to develop an optimal strategy/roadmap for how 
best to identify what information/features can be readily extracted and how to do so, including:  (i) 
investigation of more advanced SVM methods – as well as the exploration of alternative 
approaches such as using Deterministic Annealing (DA) techniques [7, 8]; and (ii) improved feature 
extraction deployment of current Genetic Topographical Mapping (GTM) methods with 
consideration of signal representations different from the mean (averages over a chosen time 
segment at a given sampling rate) and standard deviation (std) approaches using Fast Fourier 
Transforms (FFT’s). 
 
     A prioritized collaborative plan for this research activity is currently under development together 
with the JET project -- which has formally agreed to provide the Princeton-based U.S. team with 
access to their huge disruption-relevant data base.  This will require further work on the following 
R& D topics: 



 
(1) It is of interest to explore new ensemble and consensus methods that can combine a number of 
machine learning methods to address more multi-dimensional properties of the data than currently 
focused upon in the JET studies [1-4].  An associated issue is the cost of computation since 
multiple methods might be required, and the combination of the results might demand expensive 
computational operations.  However, powerful open-science computational resource centers in the 
U.S. – such as the Oak Ridge National Laboratory’s Leadership Class Facility (OLCF) -- can be a 
major dedicated asset in helping us further examine ensemble and consensus methods.  As 
highlighted earlier, we will also explore alternative methods [e.g., Ref. 7] based on the deterministic 
annealing approach.  

 
(2) Regarding signals used in predictors in the previous JET studies [1-4], about 13 signals were 
selected.  There are of course possibilities to explore for improvement – especially since latent 
patterns may emerge when other signals (including multi-dimensional features) are used.  Indeed, 
from an experimental applications perspective, other measurements will be needed to address, for 
example, the thermal quench physics noted earlier in this White Paper.  In addition, as already 
discussed in previous studies [1-4], the algorithms that work well for a set of signals may not 
perform so well when other signals and other instruments are used.  For example, future JET 
diagnostics will have capabilities to image the main chamber in the fusion instrument – deploying, 
for example, advanced diagnostics capabilities such as ECEI (electron cyclotron emission 
imaging).  It would indeed be very interesting to systematically examine how multi-dimensional 
image data – with the deployment of modern visualization capabilities to help interpret/understand 
the more complex data -- could provide additional information that result in improved prediction 
results.  In this regard, we focus on the fact that image data – for example from fast cameras – can 
potentially provide spatial information that will be very interesting to exploit.  Since the current set 
of diagnostic signals studied to date [1-4], are mainly time series measurements of the various 
zero-D features (i.e., without spatial information) there is clearly significant headroom for 
improvement. 
 
(3) Feature extraction and selection methods are also improving at a significant pace in the 
Computer Science/Applied Math community.  As noted earlier in this White Paper, the previous 
JET studies (1-4) used two variables (mean and variance) calculated from the FFT’s of the signals.  
We intend to examine how the additional features (for example, emerging from the multi-
dimensional spatial characteristics of the signals) can be extracted with the goal of improving 
prediction accuracy.  Also, use of methods such as linear regression for selection of signals and 
features could prove to be useful.  In general, our supervised ML approach will draw on the 
expertise and experience of our fusion domain scientists in producing and analyzing plasma 
discharges to add a greater level of engagement of “human guidance” to the classification 
software. 
 
     In summary, a significant amount of research by JET scientists together with  collaborating 
European institutions such as CIEMAT in Spain have successfully deployed machine learning 
software interfaced with the large JET data base over the course of the past 6 years at the JET 
facility.  This has produced encouraging results involving primarily the application of the relatively 
straightforward support vector machine (SVM) approach.  Our perspective is that this challenging 
problem is an attractive target for exploring whether more large-data-dependent, supervised 
machine learning methodologies -- either beyond the straightforward SVM approach or upgraded 



to deal with much larger, more complex multi-dimensional data -- can have a demonstrably positive 
impact in accelerating progress on this very important demonstration problem in the Fusion Energy 
Science application domain. 
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