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Abstract
Datacenter workloads demand high computational capabili-

ties, flexibility, power efficiency, and low cost. It is challenging
to improve all of these factors simultaneously. To advance dat-
acenter capabilities beyond what commodity server designs
can provide, we have designed and built a composable, recon-
figurable fabric to accelerate portions of large-scale software
services. Each instantiation of the fabric consists of a 6x8 2-D
torus of high-end Stratix V FPGAs embedded into a half-rack
of 48 machines. One FPGA is placed into each server, acces-
sible through PCIe, and wired directly to other FPGAs with
pairs of 10 Gb SAS cables.

In this paper, we describe a medium-scale deployment of
this fabric on a bed of 1,632 servers, and measure its efficacy
in accelerating the Bing web search engine. We describe
the requirements and architecture of the system, detail the
critical engineering challenges and solutions needed to make
the system robust in the presence of failures, and measure
the performance, power, and resilience of the system when
ranking candidate documents. Under high load, the large-
scale reconfigurable fabric improves the ranking throughput of
each server by a factor of 95% for a fixed latency distribution—
or, while maintaining equivalent throughput, reduces the tail
latency by 29%.

1. Introduction
The rate at which server performance improves has slowed

considerably. This slowdown, due largely to power limitations,

has severe implications for datacenter operators, who have

traditionally relied on consistent performance and efficiency

improvements in servers to make improved services economi-

cally viable. While specialization of servers for specific scale

workloads can provide efficiency gains, it is problematic for

two reasons. First, homogeneity in the datacenter is highly
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desirable to reduce management issues and to provide a consis-

tent platform that applications can rely on. Second, datacenter

services evolve extremely rapidly, making non-programmable

hardware features impractical. Thus, datacenter providers

are faced with a conundrum: they need continued improve-

ments in performance and efficiency, but cannot obtain those

improvements from general-purpose systems.

Reconfigurable chips, such as Field Programmable Gate

Arrays (FPGAs), offer the potential for flexible acceleration

of many workloads. However, as of this writing, FPGAs have

not been widely deployed as compute accelerators in either

datacenter infrastructure or in client devices. One challenge

traditionally associated with FPGAs is the need to fit the ac-

celerated function into the available reconfigurable area. One

could virtualize the FPGA by reconfiguring it at run-time to

support more functions than could fit into a single device.

However, current reconfiguration times for standard FPGAs

are too slow to make this approach practical. Multiple FPGAs

provide scalable area, but cost more, consume more power,

and are wasteful when unneeded. On the other hand, using a

single small FPGA per server restricts the workloads that may

be accelerated, and may make the associated gains too small

to justify the cost.

This paper describes a reconfigurable fabric (that we call

Catapult for brevity) designed to balance these competing

concerns. The Catapult fabric is embedded into each half-rack

of 48 servers in the form of a small board with a medium-sized

FPGA and local DRAM attached to each server. FPGAs are

directly wired to each other in a 6x8 two-dimensional torus,

allowing services to allocate groups of FPGAs to provide the

necessary area to implement the desired functionality.

We evaluate the Catapult fabric by offloading a significant

fraction of Microsoft Bing’s ranking stack onto groups of eight

FPGAs to support each instance of this service. When a server

wishes to score (rank) a document, it performs the software

portion of the scoring, converts the document into a format

suitable for FPGA evaluation, and then injects the document

to its local FPGA. The document is routed on the inter-FPGA

network to the FPGA at the head of the ranking pipeline.

After running the document through the eight-FPGA pipeline,

the computed score is routed back to the requesting server.

Although we designed the fabric for general-purpose service
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acceleration, we used web search to drive its requirements,

due to both the economic importance of search and its size

and complexity. We set a performance target that would be a

significant boost over software—2x throughput in the number

of documents ranked per second per server, including portions

of ranking which are not offloaded to the FPGA.

One of the challenges of maintaining such a fabric in the

datacenter is resilience. The fabric must stay substantially

available in the presence of errors, failing hardware, reboots,

and updates to the ranking algorithm. FPGAs can potentially

corrupt their neighbors or crash the hosting servers during

bitstream reconfiguration. We incorporated a failure handling

protocol that can reconfigure groups of FPGAs or remap ser-

vices robustly, recover from failures by remapping FPGAs,

and report a vector of errors to the management software to

diagnose problems.

We tested the reconfigurable fabric, search workload, and

failure handling service on a bed of 1,632 servers equipped

with FPGAs. The experiments show that large gains in search

throughput and latency are achievable using the large-scale

reconfigurable fabric. Compared to a pure software imple-

mentation, the Catapult fabric achieves a 95% improvement in

throughput at each ranking server with an equivalent latency

distribution—or at the same throughput, reduces tail latency by

29%. The system is able to run stably for long periods, with a

failure handling service quickly reconfiguring the fabric upon

errors or machine failures. The rest of this paper describes the

Catapult architecture and our measurements in more detail.

2. Catapult Hardware
The acceleration of datacenter services imposes several strin-

gent requirements on the design of a large-scale reconfigurable

fabric. First, since datacenter services are typically large and

complex, a large amount of reconfigurable logic is necessary.

Second, the FPGAs must fit within the datacenter architecture

and cost constraints. While reliability is important, the scale

of the datacenter permits sufficient redundancy that a small

rate of faults and failures is tolerable.

To achieve the required capacity for a large-scale reconfig-

urable fabric, one option is to incorporate multiple FPGAs

onto a daughtercard and house such a card along with a subset

of the servers. We initially built a prototype in this fashion,

with six Xilinx Virtex 6 SX315T FPGAs connected in a mesh

network through the FPGA’s general-purpose I/Os. Although

straightforward to implement, this solution has four problems.

First, it is inelastic: if more FPGAs are needed than there are

on the daughtercard, the desired service cannot be mapped.

Second, if fewer FPGAs are needed, there is stranded capac-

ity. Third, the power and physical space for the board cannot

be accommodated in conventional ultra-dense servers, requir-

ing either heterogeneous servers in each rack, or a complete

redesign of the servers, racks, network, and power distribu-

tion. Finally, the large board is a single point of failure, whose

failure would result in taking down the entire subset of servers.
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Figure 1: (a) A block diagram of the FPGA board. (b) A picture
of the manufactured board. (c) A diagram of the 1 U, half-width
server that hosts the FPGA board. The air flows from the left
to the right, leaving the FPGA in the exhaust of both CPUs.

Figure 2: The logical mapping of the torus network, and the
physical wiring on a pod of 2 x 24 servers.

The alternative approach we took places a small daughter-

card in each server with a single high-end FPGA, and connects

the cards directly together with a secondary network. Provided

that the latency on the inter-FPGA network is sufficiently low,

and that the bandwidth is sufficiently high, services requiring

more than one FPGA can be mapped across FPGAs residing

in multiple servers. This elasticity permits efficient utilization

of the reconfigurable logic, and keeps the added acceleration

hardware within the power, thermal, and space limits of dense

datacenter servers. To balance the expected per-server per-

formance gains versus the necessary increase in total cost of

ownership (TCO), including both increased capital costs and

operating expenses, we set aggressive power and cost goals.

Given the sensitivity of cost numbers on elements such as pro-

duction servers, we cannot give exact dollar figures; however,

adding the Catapult card and network to the servers did not

exceed our limit of an increase in TCO of 30%, including a

limit of 10% for total server power.

2.1. Board Design

To minimize disruption to the motherboard, we chose to in-

terface the board to the host CPU over PCIe. While a tighter

coupling of the FPGA to the CPU would provide benefits in



terms of latency, direct access to system memory, and poten-

tially coherence, the selection of PCIe minimized disruption to

this generation of the server design. Since the FPGA resides in

I/O space, the board needed working memory to accommodate

certain services. We chose to add local DRAM, as SRAM

QDR arrays were too expensive to achieve sufficient capacity.

8 GB of DRAM was sufficient to map the services we had

planned, and fit within our power and cost envelopes.

Figure 1 shows a logical diagram of the FPGA board along

with a picture of the manufactured board and the server it

installs into [20]. We chose a high-end Altera Stratix V D5

FPGA [3], which has considerable reconfigurable logic, on-

chip memory blocks, and DSP units. The 8 GB of DRAM

consists of two dual-rank DDR3-1600 SO-DIMMs, which can

operate at DDR3-1333 speeds with the full 8 GB capacity, or

trade capacity for additional bandwidth by running as 4 GB

single-rank DIMMs at DDR3-1600 speeds. The PCIe and

inter-FPGA network traces are routed to a mezzanine connec-

tor on the bottom of the daughtercard, which plugs directly

into a socket on the motherboard. Other components on the

board include a programmable oscillator and 32 MB of Quad

SPI flash to hold FPGA configurations. Because of the limited

physical size of the board and the number of signals that must

be routed, we used a 16-layer board design. Our target appli-

cations would benefit from increased memory bandwidth, but

there was insufficient physical space to add additional DRAM

channels. We chose to use DIMMs with ECC to add resilience

as DRAM failures are commonplace at datacenter scales.

Figure 1(c) shows the position of the board in one of the

datacenter servers. We used the mezzanine connector at the

back of the server so that heat from the FPGA did not disrupt

the existing system components. Since the FPGA is subject

to the air being heated by the host CPUs, which can reach

68 ◦C, we used an industrial-grade FPGA part rated for higher-

temperature operation up to 100 ◦C. It was also necessary

to add EMI shielding to the board to protect other server

components from interference from the large number of high-

speed signals on the board. One requirement for serviceability

was that no jumper cables should be attached to the board

(e.g., power or signaling). By limiting the power draw of the

daughtercard to under 25 W, the PCIe bus alone provided all

necessary power. By keeping the power draw to under 20 W

during normal operation, we met our thermal requirements

and our 10% limit for added power.

2.2. Network Design

The requirements for the inter-FPGA network were low la-

tency and high bandwidth to meet the performance targets,

low component costs, plus only marginal operational expense

when servicing machines. The rack configuration we target

is organized into two half-racks called pods. Each pod has

its own power distribution unit and top-of-rack switch. The

pods are organized in a 24 U arrangement of 48 half-width

1 U servers (two servers fit into each 1 U tray).

Based on our rack configuration, we selected a two-

dimensional, 6x8 torus for the network topology. This arrange-

ment balanced routability and cabling complexity. Figure 2

shows how the torus is mapped onto a pod of machines. The

server motherboard routes eight high-speed traces from the

mezzanine connector to the back of the server chassis, where

the connections plug into a passive backplane. The traces are

exposed on the backplane as two SFF-8088 SAS ports. We

built custom cable assemblies (shells of eight and six cables)

that plugged into each SAS port and routed two high-speed

signals between each pair of connected FPGAs. At 10 Gb/s sig-

naling rates, each inter-FPGA network link supports 20 Gb/s

of peak bidirectional bandwidth at sub-microsecond latency,

with no additional networking costs such as NICs or switches.

Since the server sleds are plugged into a passive backplane,

and the torus cabling also attaches to the backplane, a server

can be serviced by pulling it out of the backplane without

unplugging any cables. Thus, the cable assemblies can be

installed at rack integration time, tested for topological cor-

rectness, and delivered to the datacenter with correct wiring

and low probability of errors when servers are repaired.

2.3. Datacenter Deployment

To test this architecture on a number of datacenter services at

scale, we manufactured and deployed the fabric in a production

datacenter. The deployment consisted of 34 populated pods

of machines in 17 racks, for a total of 1,632 machines. Each

server uses an Intel Xeon 2-socket EP motherboard, 12-core

Sandy Bridge CPUs, 64 GB of DRAM, and two SSDs in

addition to four HDDs. The machines have a 10 Gb network

card connected to a 48-port top-of-rack switch, which in turn

connects to a set of level-two switches.

The daughtercards and cable assemblies were both tested at

manufacture and again at system integration. At deployment,

we discovered that 7 cards (0.4%) had a hardware failure, and

that one of the 3,264 links (0.03%) in the cable assemblies

was defective. Since then, over several months of operation,

we have seen no additional hardware failures.

3. Infrastructure and Platform Architecture

Supporting an at-scale deployment of reconfigurable hardware

requires a robust software stack capable of detecting failures

while providing a simple and accessible interface to software

applications. If developers have to worry about low-level

FPGA details, including drivers and system functions (e.g.,

PCIe), the platform will be difficult to use and rendered in-

compatible with future hardware generations. There are three

categories of infrastructure that must be carefully designed

to enable productive use of the FPGA: (1) APIs for interfac-

ing software with the FPGA, (2) interfaces between FPGA

application logic and board-level functions, and (3) support

for resilience and debugging.



3.1. Software Interface

Applications targeting the Catapult fabric share a common

driver and user-level interface. The communication interface

between the CPU and FPGA must satisfy two key design

goals: (1) the interface must incur low latency, taking fewer

than 10 μs for transfers of 16 KB or less, and (2) the interface

must be safe for multithreading. To achieve these goals, we

developed a custom PCIe interface with DMA support.

In our PCIe implementation, low latency is achieved by

avoiding system calls. We allocate one input and one output

buffer in non-paged, user-level memory and supply the FPGA

with a base pointer to the buffers’ physical memory addresses.

Thread safety is achieved by dividing the buffer into 64 slots,

where each slot is 1/64th of the buffer, and by statically assign-

ing each thread exclusive access to one or more slots. In the

case study in Section 4, we use 64 slots of 64 KB each.

Each slot has a set of status bits indicating whether the

slot is full. To send data to the FPGA, a thread fills its slot

with data, then sets the appropriate full bit for that slot. The

FPGA monitors the full bits and fairly selects a candidate slot

for DMA’ing into one of two staging buffers on the FPGA,

clearing the full bit once the data has been transferred. Fairness

is achieved by taking periodic snapshots of the full bits, and

DMA’ing all full slots before taking another snapshot of the

full bits. When the FPGA produces results for readback, it

checks to make sure that the output slot is empty and then

DMAs the results into the output buffer. Once the DMA is

complete, the FPGA sets the full bit for the output buffer and

generates an interrupt to wake and notify the consumer thread.

To configure the fabric with a desired function, user level

services may initiate FPGA reconfigurations through calls to

a low-level software library. When a service is deployed, each

server is designated to run a specific application on its local

FPGA. The server then invokes the reconfiguration function,

passing in the desired bitstream as a parameter.

3.2. Shell Architecture

In typical FPGA programming environments, the user is of-

ten responsible for developing not only the application itself

but also building and integrating system functions required

for data marshaling, host-to-FPGA communication, and inter-

chip FPGA communication (if available). System integration

places a significant burden on the user and can often exceed

the effort needed to develop the application itself. This devel-

opment effort is often not portable to other boards, making it

difficult for applications to work on future platforms.

Motivated by the need for user productivity and design

re-usability when targeting the Catapult fabric, we logically

divide all programmable logic into two partitions: the shell and

the role. The shell is a reusable portion of programmable logic

common across applications—while the role is the application

logic itself, restricted to a large fixed region of the chip.
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Figure 3: Components of the Shell Architecture.

Role designers access convenient and well-defined inter-

faces and capabilities in the shell (e.g., PCIe, DRAM, routing,

etc.) without concern for managing system correctness. The

shell consumes 23% of each FPGA, although extra capacity

can be obtained by discarding unused functions. In the future,

partial reconfiguration would allow for dynamic switching

between roles while the shell remains active—even routing

inter-FPGA traffic while a reconfiguration is taking place.

Figure 3 shows a block-level diagram of the shell architec-

ture, consisting of the following components:

• Two DRAM controllers, which can be operated indepen-

dently or as a unified interface. On the Stratix V, our dual-

rank DIMMs operate at 667 MHz. Single-rank DIMMs (or

only using one of the two ranks of a dual-rank DIMM) can

operate at 800 MHz.

• Four high-speed serial links running SerialLite III (SL3), a

lightweight protocol for communicating with neighboring

FPGAs. It supports FIFO semantics, Xon/Xoff flow control,

and ECC.

• Router logic to manage traffic arriving from PCIe, the role,

or the SL3 cores.

• Reconfiguration logic, based on a modified Remote Status

Update (RSU) unit, to read/write the configuration Flash.

• The PCIe core, with the extensions to support DMA.

• Single-event upset (SEU) logic, which periodically scrubs

the FPGA configuration state to reduce system or applica-

tion errors caused by soft errors.

The router is a standard crossbar that connects the four

inter-FPGA network ports, the PCIe controller, and the ap-

plication role. The routing decisions are made by a static

software-configured routing table that supports different rout-

ing policies. The transport protocol is virtual cut-through with

no retransmission or source buffering.



Since uncorrected bit errors can cause high-level disruptions

(requiring intervention from global management software), we

employ double-bit error detection and single-bit error correc-

tion on our DRAM controllers and SL3 links. The use of ECC

on our SL3 links incurs a 20% reduction in peak bandwidth.

ECC on the SL3 links is performed on individual flits, with cor-

rection for single-bit errors and detection of double-bit errors.

Flits with three or more bit errors may proceed undetected

through the pipeline, but are likely to be detected at the end

of packet transmission with a CRC check. Double-bit errors

and CRC failures result in the packet being dropped and not

returned to the host. In the event of a dropped packet, the host

will time out and divert the request to a higher-level failure

handling protocol.

The SEU scrubber runs continuously to scrub configura-

tion errors. If the error rates can be brought sufficiently low,

with conservative signaling speeds and correction, the rare

errors can be handled by the higher levels of software, without

resorting to expensive approaches such as source-based re-

transmission or store-and-forward protocols. The speed of the

FPGAs and the ingestion rate of requests is high enough that

store-and-forward would be too expensive for the applications

that we have implemented.

3.3. Software Infrastructure

The system software, both at the datacenter level and in each

individual server, required several changes to accommodate

the unique aspects of the reconfigurable fabric. These changes

fall into three categories: ensuring correct operation, failure

detection and recovery, and debugging.

Two new services are introduced to implement this sup-

port. The first, called the Mapping Manager, is responsible for

configuring FPGAs with the correct application images when

starting up a given datacenter service. The second, called the

Health Monitor, is invoked when there is a suspected failure

in one or more systems. These services run on servers within

the pod and communicate through the Ethernet network.

3.4. Correct Operation

The primary challenge we found to ensuring correct operation

was the potential for instability in the system introduced by

FPGAs reconfiguring while the system was otherwise up and

stable. These problems manifested along three dimensions.

First, a reconfiguring FPGA can appear as a failed PCIe device

to the host, raising a non-maskable interrupt that may desta-

bilize the system. Second, a failing or reconfiguring FPGA

may corrupt the state of its neighbors across the SL3 links

by randomly sending traffic that may appear valid. Third, re-

configuration cannot be counted on to occur synchronously

across servers, so FPGAs must remain robust to traffic from

neighbors with incorrect or incompatible configurations (e.g.

"old" data from FPGAs that have not yet been reconfigured).

The solution to a reconfiguring PCIe device is that the driver

that sits behind the FPGA reconfiguration call must first dis-

able non-maskable interrupts for the specific PCIe device (the

FPGA) during reconfiguration.

The solution to the corruption of a neighboring FPGA dur-

ing reconfiguration is more complex. When remote FPGAs

are reconfigured, they may send garbage data. To prevent this

data from corrupting neighboring FPGAs, the FPGA being

reconfigured sends a “TX Halt” message, indicating that the

neighbors should ignore all further traffic until the link is re-

established. In addition, messages are delayed a few clock

cycles so that, in case of an unexpected link failure, it can be

detected and the message can be suppressed.

Similarly, when an FPGA comes out of reconfiguration, it

cannot trust that its neighbors are not sending garbage data.

To handle this, each FPGA comes up with “RX Halt” enabled,

automatically throwing away any message coming in on the

SL3 links. The Mapping Manager tells each server to release

RX Halt once all FPGAs in a pipeline have been configured.

3.5. Failure Detection and Recovery

When a datacenter application hangs for any reason, a machine

at a higher level in the service hierarchy (such as a machine

that aggregates results) will notice that a set of servers are

unresponsive. At that point, the Health Monitor is invoked.

The Health Monitor queries each machine to find its status.

If a server is unresponsive, it is put through a sequence of

soft reboot, hard reboot, and then flagged for manual service

and possible replacement, until the machine starts working

correctly. If the server is operating correctly, it responds to

the Health Monitor with information about the health of its

local FPGA and associated links. The Health Monitor returns

a vector with error flags for inter-FPGA connections, DRAM

status (bit errors and calibration failures), errors in the FPGA

application, PLL lock issues, PCIe errors, and the occurrence

of a temperature shutdown. This call also returns the machine

IDs of the north, south, east, and west neighbors of an FPGA,

to test whether the neighboring FPGAs in the torus are acces-

sible and that they are the machines that the system expects

(in case the cables are miswired or unplugged).

Based on this information, the Health Monitor may update

a failed machine list (including the failure type). Updating

the machine list will invoke the Mapping Manager, which will

determine, based on the failure location and type, where to re-

locate various application roles on the fabric. It is possible that

relocation is unnecessary, such as when the failure occurred

on a spare node, or when simply reconfiguring the FPGA in-

place is sufficient to resolve the hang. The Mapping Manager

then goes through its reconfiguration process for every FPGA

involved in that service—clearing out any corrupted state and

mapping out any hardware failure or a recurring failure with

an unknown cause. In the current fabric running accelerated

search, failures have been exceedingly rare; we observed no

hangs due to data corruption; the failures that we have seen

have been due to transient phenomena, primarily machine

reboots due to maintenance or other unresponsive services.



3.6. Debugging Support

In a large-scale datacenter deployment, hardware bugs or faults

inevitably occur at scale that escape testing and functional

validation. Diagnosing these scenarios often requires visibility

into the state of the hardware leading up to the point of failure.

The use of traditional interactive FPGA debugging tools at

scale (e.g., Altera SignalTap, Xilinx ChipScope) is limited

by (1) finite buffering capacity, (2) the need to automatically

recover the failed service, and (3) the impracticality of putting

USB JTAG units into each machine.

To overcome these issues, we embed a lightweight “always-

on” Flight Data Recorder that captures only salient information

about the FPGA during run-time into on-chip memory that can

be streamed out (via PCIe) at any time during the health status

check. The information kept in the FDR allows us to verify at

scale that FPGAs’ power-on sequences were correct (e.g., SL3

links locked properly, PLLs and resets correctly sequenced,

etc.) and that there were no intermittent errors.

In addition, the FDR maintains a circular buffer that records

the most recent head and tail flits of all packets entering and ex-

iting the FPGA through the router. This information includes:

(1) a trace ID that corresponds to a specific compressed docu-

ment that can be replayed in a test environment, (2) the size of

the transaction, (3) the direction of travel (e.g., north-to-south

link), and (4) other miscellaneous states about the system (e.g.,

non-zero queue lengths).

Although the FDR can only capture a limited window (512

recent events), it was surprisingly effective during late-stage

deployment and enabled us to diagnose and resolve problems

that only manifested at scale such as: (1) rare deadlock events

on an 8-stage FPGA pipeline, (2) untested inputs that resulted

in hangs in the stage logic, (3) intermittent server reboots,

and (4) unreliable SL3 links. In the future, we plan to extend

the FDR to perform compression of log information and to

opportunistically buffer into DRAM for extended histories.

4. Application Case Study

To drive the requirements of our hardware platform, we ported

a significant fraction of Bing’s ranking engine onto the Cata-

pult fabric. We programmed the FPGA portion of the ranking

engine by hand in Verilog, and partitioned it across seven

FPGAs—plus one spare for redundancy. Thus, the engine

maps to rings of eight FPGAs on one dimension of the torus.

Our implementation produces results that are identical to

software (even reproducing known bugs), with the exception of

uncontrollable incompatibilities, such as floating-point round-

ing artifacts caused by out-of-order operations. Although there

were opportunities for further FPGA-specific optimizations,

we decided against implementing them in favor of maintaining

consistency with software.

Bing search has a number of stages, many outside the scope

of our accelerated ranking service. As search queries arrive at

the datacenter, they are checked to see if they hit in a front-end

cache service. If a request misses in the cache, it is routed to

a top-level aggregator (TLA) that coordinates the processing

of the query and aggregates the final result. The TLA sends

the same query (through mid-level aggregators) to a large

number of machines performing a selection service that finds

documents (web pages) that match the query, and narrows

them down to a relatively small number per machine. Each

of those high-priority documents and its query are sent to a

separate machine running the ranking service, (the portion

that we accelerate with FPGAs) that assigns each document a

score relative to the query. The scores and document IDs are

returned to the TLA that sorts them, generates the captions,

and returns the results.

The ranking service is performed as follows. When a

query+document arrives at a ranking service server, the server

retrieves the document and its metadata, which together is

called a metastream, from the local solid-state drive. The

document is processed into several sections, creating several

metastreams. A “hit vector", which describes the locations

of query words in each metastream, is computed. A tuple is

created for each word in the metastream that matches a query

term. Each tuple describes the relative offset from the previ-

ous tuple (or start of stream), the matching query term, and a

number of other properties.

Many “features”, such as the number of times each query

word occurs in the document, are then computed. Synthetic

features, called free-form expressions (FFEs) are computed by

arithmetically combining computed features. All the features

are sent to a machine-learned model that generates a score.

That score determines the document’s position in the overall

ranked list of documents returned to the user.

We implemented most of the feature computations, all of the

free-form expressions, and all of the machine-learned model

on FPGAs. What remains in software is the SSD lookup,

the hit vector computation, and a small number of software-

computed features.

4.1. Software Interface

While the ranking service processes {document, query} tu-

ples, transmitting only a compressed form of the document

saves considerable bandwidth. Each encoded {document,

query} request sent to the fabric contains three sections: (i) a

header with basic request parameters, (ii) the set of software-

computed features, and (iii) the hit vector of query match

locations for each document’s metastreams.

The header contains a number of necessary additional fields,

including the location and length of the hit vector, the software-

computed features, document length, and number of query

terms. The software-computed features section contains one

or more pairs of {feature id, feature value} tuples for features

which are either not yet implemented on the FPGA, or do

not make sense to implement in hardware (such as document

features which are independent of the query and are stored

within the document).



Figure 4: Cumulative distribution of compressed document
sizes. Nearly all compressed documents are 64 KB or less.

To save bandwidth, software computed features and hit

vector tuples are encoded in three different sizes using two,

four, or six bytes depending on the query term. These streams

and tuples are processed by the feature extraction stage to

produce the dynamic features. These, combined with the

precomputed software features, are forwarded to subsequent

pipeline stages.

Due to our slot-based DMA interface and given that the

latency of Feature Extraction is proportional to tuple count, we

truncate compressed documents to 64 KB. This represents the

only unusual deviation of the accelerated ranker from the pure

software implementation, but the effect on search relevance

is extremely small. Figure 4 shows a CDF of all document

sizes in a 210 Kdoc sample collected from real-world traces.

As shown, nearly all of the compressed documents are under

64 KB (only 300 require truncation). On average, documents

are 6.5 KB, with the 99th percentile at 53 KB.

For each request, the pipeline produces a single score (a

4 Byte float) representing how relevant the document is to the

query. The score travels back up the pipeline through the dedi-

cated network to the FPGA that injected the request. A PCIe

DMA transfer moves the score, query ID, and performance

counters back to the host.

4.2. Macropipeline

The processing pipeline is divided into macropipeline stages,

with the goal of each macropipeline stage not exceeding 8 μs,

and a target frequency of 200 MHz per stage, This means that

each stage has 1,600 FPGA clock cycles or less to complete

processing. Figure 5 shows how we allocate functions to FP-

GAs in the eight-node group: one FPGA for feature extraction,

two for free-form expressions, one for a compression stage

that increases the efficiency of the scoring engines, and three

to hold the machine-learned scoring models. The eighth FPGA

is a spare which allows the Service Manager to rotate the ring

upon a machine failure and keep the ranking pipeline alive.

4.3. Queue Manager and Model Reload

So far the pipeline descriptions assumed a single set of features,

free form expressions and machine-learned scorer. In practice,

however, there are many different sets of features, free forms,
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Figure 5: Mapping of ranking roles to FPGAs on the reconfig-
urable fabric.

and scorers. We call these different sets models. Different

models are selected based on each query, and can vary for

language (e.g. Spanish, English, Chinese), query type, or for

trying out experimental models.

When a ranking request comes in, it specifies which model

should be used to score the query. The query and document are

forwarded to the head of the processing pipeline and placed

in a queue in DRAM which contains all queries using that

model. The Queue Manager (QM) takes documents from each

queue and sends them down the processing pipeline. When

the queue is empty or when a timeout is reached, QM will

switch to the next queue. When a new queue (i.e. queries that

use a different model) is selected, QM sends a Model Reload

command down the pipeline, which will cause each stage to

load the instructions and data needed to evaluate the query

with the specified model.

Model Reload is a relatively expensive operation. In the

worst case, it requires all of the embedded M20K RAMs to

be reloaded with new contents from DRAM. On each board’s

D5 FPGA, there are 2,014 M20K RAM blocks, each with

20 Kb capacity. Using the high-capacity DRAM configuration

at DDR3-1333 speeds, Model Reload can take up to 250 μs.

This is an order of magnitude slower than processing a sin-

gle document, so the queue manager’s role in minimizing

model reloads among queries is crucial to achieving high per-

formance. However, while model reload is slow relative to

document processing, it is fast relative to FPGA configuration

or partial reconfiguration, which ranges from milliseconds

to seconds for the D5 FPGA. Actual reload times vary both

by stage and by model. In practice model reload takes much

less than 250 μs because not all embedded memories in the

design need to be reloaded, and not all models utilize all of

the processing blocks on the FPGAs.



Figure 6: The first stage of the ranking pipeline. A com-
pressed document is streamed into the Stream Processing
FSM, split into control and data tokens, and issued in paral-
lel to the 43 unique feature state machines. Generated feature
and value pairs are collected by the Feature Gathering Net-
work and forward on to the next pipeline stage.

4.4. Feature Extraction

The first stage of the scoring acceleration pipeline, Feature

Extraction (FE), calculates numeric scores for a variety of “fea-

tures” based on the query and document combination. There

are potentially thousands of unique features calculated for

each document, as each feature calculation produces a result

for every stream in the request—furthermore, some features

produce a result per query term as well. Our FPGA accelerator

offers a significant advantage over software because each of

the feature extraction engines can run in parallel, working on

the same input stream. This is effectively a form of Multiple

Instruction Single Data (MISD) computation.

We currently implement 43 unique feature extraction state

machines, with up to 4,484 features calculated and used by

downstream FFE stages in the pipeline. Each state machine

reads the stream of tuples one at a time and performs a local

calculation. For some features that have similar computations,

a single state machine is responsible for calculating values for

multiple features. As an example, the NumberOfOccurences
feature simply counts up how many times each term in the

query appears in each stream in the document. At the end of a

stream, the state machine outputs all non-zero feature values—

for NumberOfOccurences, this could be up to the number of

terms in the query.

To support a large collection of state machines working in

parallel on the same input data at a high clock rate, we organize

the blocks into a tree-like hierarchy and replicate the input

stream several times. Figure 6 shows the logical organization

of the FE hierarchy. Input data (the hit-vector) is fed into

a Stream Processing state machine which produces a series

of control and data messages that the various feature state

machines process. Each state machine processes the stream

a rate of 1-2 clock cycles per token. When a state machine

finishes its computation, it emits one or more feature index

and values that are fed into the Feature Gathering Network
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Figure 7: FFE Placed-and-Routed on FPGA.

that coalesces the results from the 43 state machines into a

single output stream for the downstream FFE stages. Inputs to

FE are double-buffered to increase throughput.

4.5. Free Form Expressions

Free Form Expressions (FFEs) are mathematical combinations

of the features extracted during the Feature Extraction stage.

FFEs give developers a way to create hybrid features that are

not conveniently specified as feature extraction state machines.

There are typically thousands of FFEs, ranging from very

simple (such as adding two features) to large and complex

(thousands of operations including conditional execution and

complex floating point operators such as ln, pow, and divide).

FFEs vary greatly across different models, so it is impractical

to synthesize customized datapaths for each expression.

One potential solution is to tile many off-the-shelf soft pro-

cessor cores (e.g., Nios II), but these single-threaded cores

are not efficient at processing thousands of threads with long-

latency floating point operations in the desired amount of

time per macropipeline stage (8 μs). Instead, we developed a

custom multicore processor with massive multithreading and

long-latency operations in mind. The result is the FFE proces-

sor shown in Figure 7. As we will describe in more detail, the

FFE microarchitecture is highly area-efficient, allowing us to

instantiate 60 cores on a single D5 FPGA.

There are three key characteristics of the custom FFE pro-

cessor that makes it capable of executing all of the expressions

within the required deadline. First, each core supports 4 si-

multaneous threads that arbitrate for functional units on a

cycle-by-cycle basis. While one thread is stalled on a long op-

eration such as fpdivide or ln, other threads continue to make

progress. All functional units are fully-pipelined, so any unit

can accept a new operation on each cycle.

Second, rather than fair thread scheduling, threads are stati-

cally prioritized using a priority encoder. The assembler maps

the expressions with the longest expected latency to Thread

Slot 0 on all cores, then fills in Slot 1 on all cores, and so forth.

Once all cores have one thread in each thread slot, the remain-

ing threads are appended to the end of previously-mapped

threads, starting again at Thread Slot 0.

Third, the longest latency expressions are split across mul-

tiple FPGAs. An upstream FFE unit can perform part of

the computation and produce an intermediate result called a

metafeature. These metafeatures are sent to the downstream
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FFEs like any other feature, effectively replacing that part of

the expressions with a simple feature read.

Because complex floating point instructions consume a

large amount of FPGA area, multiple cores (typically 6) are

clustered together to share a single complex block. Arbitration

for the block is fair with round-robin priority. The complex

block consists of units for ln, fpdiv, exp, and float-to-int. Pow,

integer divide, and mod are all translated into multiple in-

structions by the compiler to eliminate the need for expensive,

dedicated units. In addition, the complex block contains the

feature storage tile (FST). The FST is double-buffered, allow-

ing one document to be loaded while another is processed.

4.6. Document Scoring

The last stage of the pipeline is a machine learned model

evaluator which takes the features and free form expressions

as inputs and produces single floating-point score. This score

is sent back to the Search software, and all of the resulting

scores for the query are sorted and returned to the user in

sorted order as the sorted search results.

5. Evaluation

We evaluate the Catapult fabric by deploying and measuring

the Bing ranking engine described in Section 4 on a bed of

1,632 servers with FPGAs. Our investigation focuses on node-,

ring-, and system-level experiments to understand the impact

of hardware acceleration on latency and throughput. We also

report FPGA area utilization and power efficiency.

Node-Level Experiments We measure each stage of the

pipeline on a single FPGA and inject scoring requests col-

lected from real-world traces. Figure 8 reports the average

throughput of each pipeline stage (normalized to the slowest

stage) in two loopback modes: (1) requests and responses sent

over PCIe and (2) requests and responses routed through a

loopback SAS cable (to measure the impact of SL3 link latency

and throughput on performance). Overall, the results show a

significant variation in throughput across all stages. Although

the stages devoted to scoring achieve very high processing

rates, the pipeline is limited by the throughput of FE.
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Figure 9: Overall pipeline throughput increases from 1 to 12
threads (normalized to a single thread). Beyond 12 threads,
the throughput is limited by the slowest stage in the pipeline.
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Figure 10: Latency in the pipeline increases with the number
of threads due to queuing.

Ring-Level Experiments (single-node injector) In our

ring-level experiments, we perform injection tests on a full

pipeline with eight FPGAs. Figure 9 shows the normalized

pipeline throughput when a single node (in this case FE) injects

documents with a varying number of CPU threads. As shown

in Figure 9, we achieve full pipeline saturation at around 12

CPU threads, a level consistent with our node-level through-

put experiments. For the same set of conditions, Figure 10

plots the normalized latency for the user-level software (i.e.,

between the time the ranking application injects a document

and when the response is received) as thread count increases.
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against the input compressed document size.
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Figure 13: As the number of nodes injecting (1 thread each)
increases from 1 to 8, request latency increases slightly due to
increased contention for network bandwidth between nodes.

Figure 11 shows the unloaded latency of the scoring pipeline

versus the size of a compressed document. The results show a

minimum latency incurred that is proportional to the document

size (i.e., the buffering and streaming of control and data

tokens) along with a variable computation time needed to

process the input documents.

Ring-Level Experiments (multi-node injectors) We next

evaluate the effect on latency and throughput when multiple

servers are allowed to inject documents into a shared ranking

pipeline. Figure 12 shows the aggregate pipeline throughput as

we increase the total number of injecting nodes. When all eight

servers are injecting, the peak pipeline saturation is reached

(equal to the rate at which FE can process scoring requests).

Under the same conditions, Figure 13 shows the latencies

observed by two different nodes injecting requests from the

head (FE) and tail (Spare) of the pipeline. Because the Spare

FPGA must forward its requests along a channel shared with

responses, it perceives a slightly higher but negligible latency

increase over FE at maximum throughput.

Production Software Measurements In this section, we

compare the average and tail latency distributions of Bing’s

production-level ranker running with and without FPGAs on a

bed of 1,632 servers (of which 672 run the ranking service).

For a range of representative injection rates per server used in

production, Figure 14 illustrates how the FPGA-accelerated

ranker substantially reduces the end-to-end scoring latency

relative to software. For example, given a target injection rate
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Figure 14: The FPGA ranker achieves lower average and tail
latencies relative to software as the injection rate increases.
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of 1.0 per server, the FPGA reduces the worst-case latency

by 29% in the 95th percentile distribution. The improvement

in FPGA scoring latency increases further at higher injection

rates, because the variability of software latency increases at

higher loads (due to contention in the CPU’s memory hierar-

chy) while the FPGA’s performance remains stable.

Figure 15 shows the measured improvement in scoring

throughput while bounding the latency at the 95th percentile

distribution. For the points labeled on the x-axis at 1.0 (which

represent the maximum latency tolerated by Bing at the 95th

percentile), the FPGA achieves a 95% gain in scoring through-

put relative to software.

Given that FPGAs can be used to improve both latency and

throughput, Bing could reap the benefits in two ways: (1) for

equivalent ranking capacity, fewer servers can be purchased (in

the target above, by nearly a factor of two), or (2) new capabili-

ties and features can be added to the software and/or hardware

stack without exceeding the maximum allowed latency.

FPGA Area, Power, and Frequency Table 1 shows the

FPGA area consumption and clock frequencies for all of the

stages devoted to ranking. Despite the modest area consump-

tion and operating at clock frequencies much lower than con-

ventional processors, the use of FPGAs significantly improves

throughput and latency. In the long term, there is substan-



 FE FFE0 FFE1 Comp Scr0 Scr1 Scr2 Spare 
Logic (%) 74 86 86 20 47 47 48 10 
RAM (%) 49 50 50 64 88 88 90 15 
DSP (%) 12 29 29 0 0 0 1 0 

Clock (MHz) 150 125 125 180 166 166 166 175 

Table 1: FPGA area usage and clock frequencies for each of
the ranking stages.

tial headroom to improve both the FPGA clock rate and area

efficiency of our current pipeline.

To measure the maximum power overhead of introducing

FPGAs to our servers, we ran a “power virus” bitstream on

one of our FPGAs (i.e., maxing out the area and activity factor)

and measured a modest power consumption of 22.7 W.

6. Related Work

Many other groups have worked on incorporating FPGAs into

CPU systems to accelerate workloads in large-scale systems.

One challenge to developing a hybrid computing system

is the integration of server-class CPUs with FPGAs. One

approach is to plug the FPGA directly onto the native sys-

tem bus, for example, in systems using AMD’s HyperTrans-

port [23, 10], or Intel’s Front Side Bus [18] and QuickPath

Interconnect (QPI) [15]. While integrating the FPGA directly

onto the processor bus would reduce DMA latency, this la-

tency is not the bottleneck in our application and would not

significantly improve overall performance. In addition, attach-

ing the FPGA to QPI would require replacing one CPU with

an FPGA, severely impacting the overall utility of the server

for applications which cannot use the FPGA.

IBM’s Coherence Attach Processor Interface (CAPI) [26]

and Convey’s Hybrid-core Memory Interconnect (HCMI) [8]

both enable advanced memory sharing with coherence be-

tween the FPGA and CPU. Since our ranking application only

requires simple memory sharing, these mechanisms are not

yet necessary but may be valuable for future applications.

Instead of incorporating FPGAs into the server, several

groups have created network-attached FPGA appliances that

operate over Ethernet or Infiniband. The Convey HC-2 [8],

Maxeler MPC series [21], BeeCube BEE4 [5] and SRC MAP-

station [25] are all examples of commercial FPGA acceleration

appliances. While the appliance model appears to be an easy

way to integrate FPGAs into the datacenter, it breaks homo-

geneity and reduces overall datacenter flexibility. In addition,

many-to-one network communication can result in dropped

packets, making the bounds on latencies much harder to guar-

antee. Finally, the appliance creates a single point of failure

that can disable many servers, thus reducing overall reliability.

For these reasons, we distribute FPGAs across servers.

Several large systems have also been built with distributed

FPGAs, including the Cray XD-1 [9], Novo-G [12], and

QP [22]. These systems integrate the FPGA with the CPU, but

the FPGA-to-FPGA communication must be routed through

the CPU. Maxwell [4] is the most similar to our design, as it di-

rectly connects FPGAs in a 2-D torus using InfiniBand cables,

although the FPGAs do not implement routing logic. These

systems are targeted to HPC rather than datacenter workloads,

but they show the viability of FPGA acceleration in large sys-

tems. However, datacenters require greater flexibility within

tighter cost, power, and failure tolerance constraints than spe-

cialized HPC machines, so many of the design decisions made

for these systems do not apply directly to the Catapult fabric.

FPGAs have been used to implement and accelerate impor-

tant datacenter applications such as Memcached [17, 6] com-

pression/decompression [14, 19], K-means clustering [11, 13],

and web search. Pinaka [29] and Vanderbauwhede, et. al [27]

used FPGAs to accelerate search, but focused primarily on

the Selection stage of web search, which selects which doc-

uments should be ranked. Our application focuses on the

Ranking stage, which takes candidate documents chosen in

the Selection stage as the input.

The FFE stage is a soft processor core, one of many avail-

able for FPGAs, including MicroBlaze [28] and Nios II [2].

Unlike other soft cores, FFE is designed to run a large number

of threads, interleaved on a cycle-by-cycle basis.

The Shell/Role design is aimed at abstracting away the

board-level details from the application developer. Several

other projects have explored similar directions, including Vir-

tualRC [16], CoRAM [7], BORPH [24], and LEAP [1].

7. Conclusions

FPGAs show promise for accelerating many computational

tasks, but they have not yet become mainstream in commodity

systems. Unlike GPUs, their traditional applications (rapid

ASIC prototyping and line-rate switching) are unneeded in

high-volume client devices and servers. However, FPGAs are

now powerful computing devices in their own right, suitable

for use as fine-grained accelerators. This paper described a

large-scale reconfigurable fabric intended for accelerating dat-

acenter services. Our goal in building the Catapult fabric was

to understand what problems must be solved to operate FPGAs

at scale, and whether significant performance improvements

are achievable for large-scale production workloads.

When we first began this investigation, we considered both

FPGAs and GPUs as possible alternatives. Both classes of

devices can support copious parallelism, as both have hundreds

to thousands of arithmetic units available on each chip. We

decided not to incorporate GPUs because the current power

requirements of high-end GPUs are too high for conventional

datacenter servers, but also because it was unclear that some

latency-sensitive ranking stages (such as feature extraction)

would map well to GPUs.

Our study has shown that FPGAs can indeed be used to

accelerate large-scale services robustly in the datacenter. We

have demonstrated that a significant portion of a complex

datacenter service can be efficiently mapped to FPGAs, by



using a low-latency interconnect to support computations that

must span multiple FPGAs. Special care must be taken when

reconfiguring FPGAs, or rebooting machines, so that they

do not crash the host server or corrupt their neighbors. We

described and tested a high-level protocol for ensuring safety

when reconfiguring one or more chips. With this protocol and

the appropriate fault handling mechanisms, we showed that

a medium-scale deployment of FPGAs can increase ranking

throughput in a production search infrastructure by 95% at

comparable latency to a software-only solution. The added

FPGA compute boards only increased power consumption

by 10% and did not exceed our 30% limit in the total cost

of ownership of an individual server, yielding a significant

overall improvement in system efficiency.

We conclude that distributed reconfigurable fabrics are a

viable path forward as increases in server performance level

off, and will be crucial at the end of Moore’s Law for contin-

ued cost and capability improvements. Reconfigurability is a

critical means by which hardware acceleration can keep pace

with the rapid rate of change in datacenter services.

A major challenge in the long term is programmability.

FPGA development still requires extensive hand-coding in

RTL and manual tuning. Yet we believe that incorporating

domain-specific languages such as Scala or OpenCL, FPGA-

targeted C-to-gates tools such as AutoESL or Impulse C, and

libraries of reusable components and design patterns, will

be sufficient to permit high-value services to be productively

targeted to FPGAs for now. Longer term, more integrated de-

velopment tools will be necessary to increase the programma-

bility of these fabrics beyond teams of specialists working with

large-scale service developers. Within ten to fifteen years, well

past the end of Moore’s Law, compilation to a combination of

hardware and software will be commonplace. Reconfigurable

systems, such as the Catapult fabric presented here, will be

necessary to support these hybrid computation models.
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